PRELIMINARY STORMWATER MANAGEMENT REPORT

for

STOKES ESTATE

Residential Development Westtown Township Chester County, Pennsylvania

> April 29, 2021 Revised August 31, 2021 Revised September 29, 2021

> > D.L. Howell Job# 3868

Prepared for:

Fox Clearing, LLC 227 Granite Run Drive, Suite 100 Lancaster, PA 17601

D.L. HOWELL & ASSOCIATES, INC.

1250 Wrights Lane, West Chester, PA 19380 Phone: 610-918-9002 Fax: 610-918-9003

TABLE OF CONTENTS

Section	n		Page
1.0	1.1 Land1.2 Site S	TONUse	1 1
2.0	RUNOFF MA	NAGEMENT	4
3.0	PERMANEN'	T BMPs	4
4.0	CONCLUSIO	NS	5
LIST (OF FIGURES Figure 1-1	Site Location Map	3
APPE	NDICES		
	Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Stormwater Volume Calculations Peak Flow Summary SCS Runoff Coefficients Calculations SCS Hydrograph Reports & Basin Routings USDA NRCS Soil Report Stormwater Infiltration Testing Report	

1.0 INTRODUCTION

This Stormwater Management Report presents the preliminary permanent control measures/facilities required to support construction activities for the Stokes Estate Residential Development . The 65 +/-acre tract is located in Westtown Township (Figure 1-1).

The proposed land development consists of constructing 68 residential dwelling units, access roads, stormwater management facilities, and public utilities. One access point to the parcel will be off Shiloh Road, with a second access through an existing right of way to Shiloh Hill Drive. The buildings and roads will be constructed to comply with design standards and safety requirements of the Townships and local Fire Marshals.

1.1 LAND USE

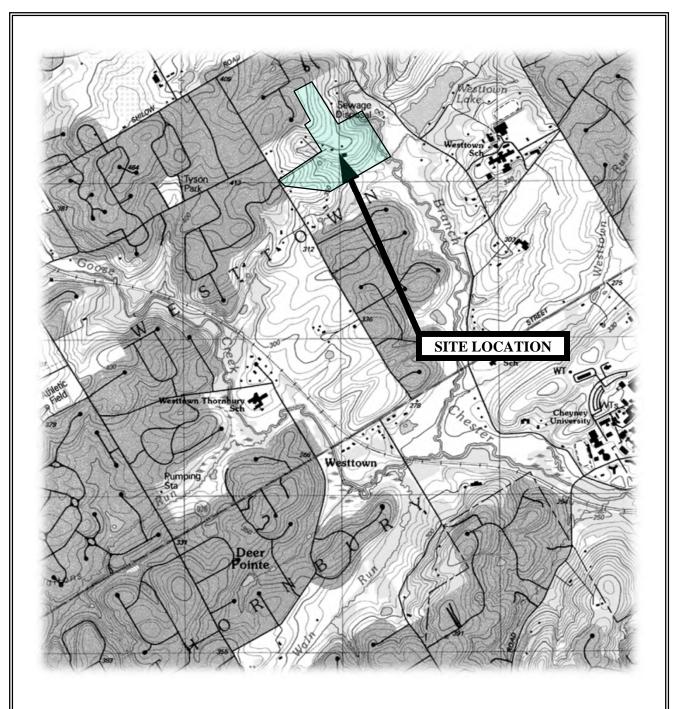
The existing land is currently utilized for agriculture, with a few hedgerows and mature trees scattered throughout, mostly along the existing driveway and near the existing residence and outbuildings. The site generally drains to two separate water bodies, where the southern portion of the property drains to an Unnamed Tributary to the East Branch of Chester Creek that flows through the property, and the eastern end of the site drains directly to the East Branch of Chester Creek, also on the property. Therefore, the entire site is located in the Chester Creek watershed. Per Pennsylvania Department of Environmental Protection, 25 Pa. Code, 93.9g "Water Quality Standards" Chester Creek is classified as Trout Stocking Fishery (TSF).

1.2 SITE SOILS

Site soils mapping provided by the United States Department of Agriculture Natural Resources Conservation Service – Web Soil Survey. According to the Web Soil Survey mapping, the following soil types are located within the project study area;

Baile Silt Loam (Ba)
Codorus Silt Loam (Co)
Gladstone Gravelly Loam (GdB) (GdC) (GfD)
Hatboro Silt Loam (Ha)
Manor Loam (MaD)
Urban land – Gladstone complex, 0 to 8 percent

Refer to Appendix E for Soils Map and report.


1.3 SOIL/GEOLOGIC LIMITATIONS:

Some groundwater and rock were encountered in a few locations during infiltration testing. D.L. Howell has taken into consideration these known soil limitations when designing the infiltration BMPs for the project. The stormwater infiltration facilities have either been relocated to areas where limiting areas weren't encountered or has been set a minimum of 2 feet higher than any prohibitive soil limitation elevations witnessed during infiltration testing and adequate infiltration results have been achieved at the adjusted elevations.

If during construction, any other unknown soil limitation (i.e. bedrock or high water) is discovered the contractor is responsible for immediately contacting the site geo-technical engineer, design engineer, conservation district and the township engineer for an appropriate solution. The site design drawings contain a pumped water filter bag detail which should be utilized if any excavations need to be dewatered due to high groundwater or excessive rainfall.

Geologic formations/soil conditions that may have the potential to cause pollution:

Furthermore, there are no known geologic formations or soil conditions that have the potential to cause pollution during earth disturbance activities. If during construction, an unknown geologic formations or soil conditions is discovered the contractor is responsible for immediately contacting the Chester County Conservation District and the design engineer.

Source:

United States Department of the Interior Geological Survey 7.5 Minute Series (Topographic) Map West Chester, Pennsylvania Quadrangle Scale 1:24000

Stokes Estate

Westtown Township Chester County, Pennsylvania Figure Number: FIGURE 1-1

Title: SITE LOCATION MAP

2.0 RUNOFF MANAGEMENT

The purpose of the stormwater management design is to quantify and control stormwater runoff generated by the modifications of the ground surface conditions to the site (i.e. roads, buildings, driveways, etc.). Post-development stormwater management is achieved at the site through three combination surface infiltration basins strategically located throughout the site to control runoff.

The infiltration basins have been designed utilizing Soil Conservation Service (SCS) method for infiltration and peak flow requirements and Westttown Township regulations for peak flow calculations (See Appendices for worksheets). The stormwater management control for this project was designed to include all impervious surfaces associated with this subdivision application, with an assumption of 3,800 SF of impervious coverage per single family lot. These systems are designed to provide an overall reduction in the post-developed runoff for the 2-year, 10-year, 25-year, 50-year, and 100-year, 24-hour storm event to less than 50% of the pre-development runoff rates for the equivalent storm events based on the Chester Creek Watershed Release Rate Map. A stormwater conveyance system will be utilized to convey runoff from the proposed improvements to the proposed stormwater facilities. The stormwater conveyance system will be designed to convey flows up to the 100-year storm event. Flows to the pipes will be generated using the Universal Rational Method and the pipes sized using Manning's Method and Hydraulic Grade Line calculations will also be provided. The infiltration basins have been designed and sized to fully infiltrate the increase in volume, pre to post-development for the 2-year storm as required by the NPDES Phase II regulations.

3.0 NPDES STORMWATER COMPLIANCE

As stated above, the infiltration facilities have been designed and sized to fully infiltrate the 2-year increase in volume; therefore the NPDES Phase II infiltration requirement has been met. Furthermore, as described above, the infiltration basins have been designed to incorporate Pennsylvania Department of Environmental Protection's infiltration guidelines, as stated in Appendix C of the Pennsylvania Stormwater Best Management Practices Manual dated December 2006. The stormwater management systems have been designed to maximize infiltration best management practice (BMP) technologies and minimize point source discharges. This plan will further act to perform/provide the following:

- · Preserve the integrity of stream channels and maintain and protect the physical, biological and chemical qualities of the receiving stream by utilizing several BMPs to handle the increase in runoff and volume prior to reaching the stream.
- Prevent an increase in the rate of stormwater runoff by utilizing BMPs to reduce the peak flow rate of all storm events up to the 100 year to below the equivalent storm in the pre developed condition.
- · Minimize any increase in stormwater runoff volume by utilizing infiltration BMPs which are designed and sized to fully infiltrate the 2-year increase in volume.
- · Minimize impervious areas
- Maximize the protection of existing drainage features and existing vegetation by capturing stormwater runoff from the proposed impervious areas then conveying the flow to stormwater BMPs facilities prior to any release to the existing stream, thereby protecting it from any
- · Minimize land clearing and grading by protecting and preserving the majority of the existing woodlands, and natural areas.
- · Minimize soil compaction by specifying the installation of orange construction fencing to protect the areas of the proposed infiltration BMPs.
- · Utilize other structural or nonstructural BMPs that prevent or minimize changes in stormwater runoff. The structural BMPs are infiltration beds, and water quality filters, while the non-

structural BMPs are protecting existing riparian buffers, minimizing total disturbed area, and protecting sensitive features.

D.L. Howell & Associates, Inc. has designed Best management Practices (BMP's) consistent with Chapter 6 of the PA Stormwater Best Management Practices Manual within the stormwater collection and conveyance system in addition to infiltrating the net increase in volume from pre to post-development for the 2-year storm event.

The applicant has been able to demonstrate compliance with 102.8(b), through the use of infiltration.

Permanent BMP's proposed for the developed site are as follows:

- Vegetated Swales
- Infiltration Basins
- Forebays
- Level Spreaders

4.0 CONCLUSIONS

D.L. Howell & Associates, Inc. has completed a preliminary stormwater engineering design for the proposed project in Westtown Township, Chester County, Pennsylvania. Using site-specific topography, soils, land cover, hydrologic data, and Township Ordinances, D.L. Howell & Associates, Inc. designed the stormwater management system for the proposed facilities. The objective of the stormwater design was to develop site-specific stormwater management structures that reduced post-development runoff to pre-development runoff rates and provided volumetric storage per PADEP NPDES Phase II requirements. Post-development stormwater management is achieved through a stormwater collection system consisting of curbed inlets, swales, catch basins, and stormwater infiltration basins/beds.

APPENDIX A

STORMWATER VOLUME CALCULATIONS

CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

Worksheet 4, Pennsylvania Stormwater Best Management Practices Manual

Chapter 8

PROJECT: Stokes Estate

Drainage Area: DP001 Chester Creek

2-Year Rainfall: 3.2 in

Total Site Area: acres
Protected Site Area: acres
Managed Area: 13.67 acres

Existing Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	ø	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	Α		0.00	25	30.0000	6.0000	0.29	
Meadow	Α		0.00	30	23.3333	4.6667	0.10	
Impervious	Α		0.00	98	0.20	0.04	2.97	
Woodland	В		0.00	55	8.1818	1.6364	0.25	
Meadow	В	672,131	15.43	58	7.2414	1.4483	0.34	19,111
Meadow (20% Imperv)	В		0.00	58	7.2414	1.4483	0.34	
Impervious (80%)	В		0.00	98	0.2041	0.0408	2.97	
Woodland	С		0.00	70	4.2857	0.8571	0.83	
Meadow	С		0.00	71	4.0845	0.8169	0.88	
Impervious	С		0.00	98	0.2041	0.0408	2.97	
Woodland	D		0.00	77	2.9870	0.5974	1.21	
Meadow	D		0.00	78	2.8205	0.5641	1.27	
Impervious	D		0.00	98	0.2041	0.0408	2.97	
TOTAL:		672,131	15.43					19,111

Developed Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	s	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	323,952	7.44	61	6.3934	1.2787	0.44	11,985
Impervious	N/A	153,121	3.52	98	0.2041	0.0408	2.97	37,865
Meadow	В	118,483	2.72	58	7.2414	1.4483	0.34	3,369
			0.00					
			0.00					
			0.00					
			0.00					
			0.00					
TOTAL:		595,556	13.67					53,220

2-Year Volume Increase (ft³): 34,108

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = (P - 0.2S)2 / (P + 08.S) P = 2-Year Rainfall (in)S = (1000/CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12 $Q = Runoff (in) \\ Area = Land Use Area (Sq. Ft)$

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

Worksheet 4, Pennsylvania Stormwater Best Management Practices Manual

Chapter 8

PROJECT: Rustin Residential

Drainage Area: DP002 UNT Chester Creek

2-Year Rainfall: 3.2 in

Total Site Area: acres
Protected Site Area: acres
Managed Area: 20.97 acres

Existing Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	Α		0.00	25	30.0000	6.0000	0.29	
Meadow	Α		0.00	30	23.3333	4.6667	0.10	
Impervious	Α		0.00	98	0.20	0.04	2.97	
Woodland	В		0.00	55	8.1818	1.6364	0.25	
Meadow	В	745,375	17.11	58	7.2414	1.4483	0.34	21,194
Meadow (20% Imperv)	В		0.00	58	7.2414	1.4483	0.34	
Impervious (80%)	В		0.00	98	0.2041	0.0408	2.97	
Woodland	С		0.00	70	4.2857	0.8571	0.83	
Meadow	С	91,390	2.10	71	4.0845	0.8169	0.88	6,687
Impervious	С		0.00	98	0.2041	0.0408	2.97	
Woodland	D		0.00	77	2.9870	0.5974	1.21	
Meadow	D		0.00	78	2.8205	0.5641	1.27	
Impervious	D		0.00	98	0.2041	0.0408	2.97	
TOTAL:		836,765	19.21					27,882

Developed Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	s	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	С	75,360	1.73	74	3.5135	0.7027	1.04	6,516
Lawn	В	563,811	12.94	61	6.3934	1.2787	0.44	20,859
Impervious	N/A	274,153	6.29	98	0.2041	0.0408	2.97	67,795
			0.00					
			0.00					
			0.00					
			0.00					
			0.00					
			0.00					
TOTAL:		913,324	20.97					95,170

2-Year Volume Increase (ft ³):	67,289
--	--------

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = (P - 0.2S)2 / (P + 08.S) P = 2-Year Rainfall (in) S = (1000/CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12 $Q = Runoff (in) \\ Area = Land Use Area (Sq. Ft)$

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

STRUCTURAL BMP VOLUME CREDITS

Worksheet 5, Pennsylvania Stormwater Best Management Practices Manual

Chapter 8

PROJECT:Stokes EstateSub-BasinChester Creek DP001

Required Control Volume34,108Cubic FeetNon-Structural Volume Credit0Cubic FeetStructure Volume Requirement34,108Cubic Feet

Section	Proposed BMP	Area (sf)	Storage Volume (ft ³)
6.4.1	Porous Pavement		
6.4.2	6.4.2 Infiltration Basin		35,889
6.4.3	Infltration Bed		
6.4.4	Infiltration Trench		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well/Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Infiltration Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-Use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond/Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
	Other		
		0	35,889

Total Structural Volume (cf)	35,889
Structural Volume Requirement (cf)	34,108
DIFFERENCE	1,781

STRUCTURAL BMP VOLUME CREDITS

Worksheet 5, Pennsylvania Stormwater Best Management Practices Manual

Chapter 8

 PROJECT:
 Stokes Estate

 Sub-Basin
 UNT Chester Creek DP002

Required Control Volume67,289Cubic FeetNon-Structural Volume Credit0Cubic FeetStructure Volume Requirement67,289Cubic Feet

Section	Proposed BMP	Area (sf)	Storage Volume (ft ³)
6.4.2	Infiltration Basin 1 Combined		34,254
6.4.2			33,072
6.4.3	Infltration Bed(s)		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well/Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Infiltration Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-Use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond/Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
	Other		
		0	67,326

Total Structural Volume (cf)	67,326
Structural Volume Requirement (cf)	67,289
DIFFERENCE	37

INFILTRATION VOLUME CALCULATION Basin 1 Upper

PROJECT NAME: Stokes Estate
LOCATION: Westtown Township

DATE: PREPARED BY: **DWG** 3/30/2021 CHECKED BY: **DLH** DATE:

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLUME (CUBIC FI	
ELEVATION	AREA	AREA	IN ELEVATION	INCREMENTAL	TOTAL
(FEET)	(SQ.FT.)	(SQ.FT.)	(FEET)	INCREWENTAL	TOTAL
320.00	13,236				0
		14,996	2.00	29991	
322.00	16,755				29,991
		18,686	2.00	37372	
324.00	20,617				67,363
		22,559	2.00	45117	
326.00	24,500				112,480

Proposed Infiltration Volume

Storage Volume (CF) Elevation 29,991 322.00 322.50 39,334 324.00 67,363

Volume = 39,334 CF

*Only 34,254 CF drains to the basin in the 2 year storm, therefore only 34,254 CF is being taken credit for

INFILTRATION VOLUME CALCULATION Basin 1 Lower

LOCATION: Westtown Township

PREPARED BY: **DWG** DATE: 3/30/2021 CHECKED BY: **DLH** DATE:

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
302.00	2,215				0
		3,094	2.00	6187	
304.00	3,972				6,187
		7,254	2.00	14507	
306.00	10,535				20,694
		12,703	2.00	25405	
308.00	14,870				46,099

Proposed Infiltration Volume

Storage Volume (CF)

Elevation 302.00

0 <u>6,187</u> 304.00 304.00 6,187

Volume = 6,187 CF

INFILTRATION VOLUME CALCULATION Basin 2

LOCATION: Westtown Township
PREPARED BY: DWG DATE: 3/30/2021 CHECKED BY: **DLH** DATE:

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
306.00	8,255				0
		10,349	2.00	20698	
308.00	12,443				20,698
		14,558	2.00	29116	
310.00	16,673				49,814
		18,892	2.00	37783	
312.00	21,110				87,597
		·			

Proposed Infiltration Volume

Storage Volume (CF) 20,698

308.00 306.85 <u>3,956</u> 310.00 49,814

Volume = 3,956 CF

Elevation

INFILTRATION VOLUME CALCULATION Basin 3

PROJECT NAME: Stokes Estate
LOCATION: Westtown Township

DATE: PREPARED BY: **DWG** 3/30/2021 CHECKED BY: **DLH** DATE:

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
316.00	15,345				0
		17,505	2.00	35010	
318.00	19,665				35,010
		21,938	2.00	43876	
320.00	24,211				78,886
		25,391	1.00	25391	
321.00	26,570				104,277

Proposed Infiltration Volume

Storage Volume (CF) Elevation 35,010 318.00 318.50 45,979 320.00 78,886

Volume = 45,979 CF

*Only 35,889 CF drains to the basin in the 2 year storm, therefore only 35,889 CF is being taken credit for

APPENDIX B TOWNSHIP POST DEVELOPMENT FLOW REDUCTION SUMMARIES

Stormwater Summary Peak Flow Reduction Requirements

DATE: <u>9/30/2021</u> BY: <u>DWG</u>

JOB NO.: DESCRIPTION: 3868

PROJECT:

Stokes Estate

TOWNSHIP: Westtown

Stormwater Summary DP001 Chester Creek

1-year Pre-Developed 1.30 cfs Hydrograph 1	6
307	
1-year Post-Developed 0.58 cfs Hydrograph 7	
2-year Pre-Developed 4.32 cfs Hydrograph 1	<u>′</u>
2-year Post-Developed 1.15 cfs Hydrograph 7	0
5-year Pre-Developed 12.58 cfs Hydrograph 1	<u>,</u>
5-year Post-Developed 2.31 cfs Hydrograph 7	O
10-year Pre-Developed 20.75 cfs Hydrograph 1	<u>,</u>
10-year Post-Developed 3.34 cfs Hydrograph 7	0
25-year Pre-Developed 33.98 cfs Hydrograph 1	<u>′</u>
25-year Post-Developed 6.86 cfs Hydrograph 7	U
50-year Pre-Developed 46.28 cfs Hydrograph 1	<u>′</u>
50-year Post-Developed 21.53 cfs Hydrograph 7	o
100-year Pre-Developed 60.31 cfs Hydrograph 1	<u>′</u>
100-year Post-Developed 29.04 cfs Hydrograph 7	U

CHESTER CREEK 0.50 RELEASE RATE AREA

Post Developed 2 Year Flow =	1.15	cfs	SATISFIED
Pre Developed 1 Year Flow =	1.30	cfs	SATISFIED
Post Developed 5 Year Flow =	2.31	cfs	SATISFIED
50% Pre Developed 5 Year Flow =	6.29	cfs	SATISITED
Post Developed 10 Year Flow -	2 24	ofe	
•			SATISFIED
50% Pre Developed 10 Year Flow =	10.38	CTS	
Post Developed 25 Year Flow =	6.86	cfs	CATICEIED
50% Pre Developed 25 Year Flow =	16.99	cfs	SATISFIED
Post Developed 50 Year Flow =	21.53	cfs	SATISFIED
50% Pre Developed 50Year Flow =	23.14	cfs	OATIONED
Post Developed 100 Year Flow =	29.04	cfs	0.17107177
•			SATISFIED
	Post Developed 1 Year Flow = Post Developed 5 Year Flow = 50% Pre Developed 5 Year Flow = Post Developed 10 Year Flow = 50% Pre Developed 10 Year Flow = Post Developed 25 Year Flow = 50% Pre Developed 25 Year Flow = Post Developed 50 Year Flow =	Post Developed 5 Year Flow = 2.31 50% Pre Developed 5 Year Flow = 6.29 Post Developed 10 Year Flow = 3.34 50% Pre Developed 10 Year Flow = 10.38 Post Developed 25 Year Flow = 6.86 50% Pre Developed 25 Year Flow = 16.99 Post Developed 25 Year Flow = 21.53 50% Pre Developed 50 Year Flow = 23.14 Post Developed 100 Year Flow = 29.04	Post Developed 5 Year Flow = 2.31 cfs 50% Pre Developed 5 Year Flow = 6.29 cfs Post Developed 10 Year Flow = 3.34 cfs 50% Pre Developed 10 Year Flow = 10.38 cfs Post Developed 10 Year Flow = 6.86 cfs 50% Pre Developed 25 Year Flow = 6.86 cfs 50% Pre Developed 25 Year Flow = 16.99 cfs Post Developed 50 Year Flow = 21.53 cfs 50% Pre Developed 50 Year Flow = 23.14 cfs Post Developed 100 Year Flow = 29.04 cfs

Stormwater Summary Peak Flow Reduction Requirements

DATE: <u>9/30/2021</u> BY: <u>DWG</u>

JOB NO.:

DESCRIPTION:

3868

PROJECT:

Stokes Estate

TOWNSHIP: Westtown

Stormwater Summary DP002 UNT Chester Creek

				% Reduction
1-year	Pre-Developed	2.47 cfs	Hydrograph 2	83%
1-year	Post-Developed	0.42 cfs	Hydrograph 15	03%
2-year	Pre-Developed	6.85 cfs	Hydrograph 2	000/
2-year	Post-Developed	0.96 cfs	Hydrograph 15	86%
5-year	Pre-Developed	18.02 cfs	Hydrograph 2	88%
5-year	Post-Developed	2.12 cfs	Hydrograph 15	88%
10-year	Pre-Developed	28.64 cfs	Hydrograph 2	200/
10-year	Post-Developed	3.17 cfs	Hydrograph 15	89%
25-year	Pre-Developed	45.70 cfs	Hydrograph 2	000/
25-year	Post-Developed	6.17 cfs	Hydrograph 15	86%
50-year	Pre-Developed	46.28 cfs	Hydrograph 2	5.40 /
50-year	Post-Developed	21.32 cfs	Hydrograph 15	54%
100-year	Pre-Developed	79.34 cfs	Hydrograph 2	500/
100-year	Post-Developed	37.69 cfs	Hydrograph 15	52%

CHESTER CREEK 0.50 RELEASE RATE AREA

Post Developed 2 Year Flow =	0.96	cfs	SATISFIED
Pre Developed 1 Year Flow =	2.47	cfs	SATISFIED
Post Developed 5 Year Flow =	2.12	cfs	SATISFIED
50% Pre Developed 5 Year Flow =	9.01	cfs	SATISFIED
Post Developed 10 Year Flow =	3.17	cfs	SATISFIED
50% Pre Developed 10 Year Flow =	14.32	cfs	SATISFIED
Post Developed 25 Year Flow =	6.17	cfs	SATISFIED
50% Pre Developed 25 Year Flow =	22.85	cfs	SATISFIED
Post Developed 50 Year Flow =	21.32	cfs	SATISFIED
50% Pre Developed 50Year Flow =	23.14	cfs	SATISFIED
			·
Post Developed 100 Year Flow =	37.69	cfs	SATISFIED
50% Pre Developed 100 Year Flow =	39.67	cfs	SATISFIED

APPENDIX C SCS METHOD CURVE NUMBER (CN) CALCULATIONS

TOWNSHIP:

DATE: 3/29/2021

Westtown

BY: <u>DWG</u>

JOB NO.: 3868 PROJECT: Stokes Estate

DESCRIPTION: PREDEVELOPED AREA CHESTER CREEK DP001

Total Area: 15.43 acres

		Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comment
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	
GdB	Gladstone	В	Meadow	Good	58	15.43	894.94	
	Loam	В	Woods	Good	55	0.00	0.00	
Ва	Baile Silt	С	Meadow	Good	71	0.00	0.00	
	Loam	С	Woods	Good	70	0.00	0.00	

Total Area 15.43 894.94

 Weighted Soil
 894.9
 =
 58.0

 Complex Number
 15.4

*SEE HYDRAFLOW REPORT FOR TIME OF CONCENTRATION

TOWNSHIP:

DATE: 3/29/2021

Westtown

BY: <u>DWG</u>

JOB NO.: 3868 PROJECT: Stokes Estate

DESCRIPTION: PREDEVELOPED AREA UNT CHESTER CREEK DP002

Total Area: 19.21 acres

Hyd		Hydrological	Hydrological		Soil Runoff	Area	Complex Number	Comment
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	
GdB	Gladstone	В	Meadow	Good	58	17.11	992.38	
	Loam	В	Woods	Good	55	0.00	0.00	
Ва	Baile Silt	С	Meadow	Good	71	2.10	149.10	
	Loam	С	Woods	Good	70	0.00	0.00	

Total Area 19.21 1141.48

 Weighted Soil
 1141.5
 =
 59.4

 Complex Number
 19.2

*SEE HYDRAFLOW REPORT FOR TIME OF CONCENTRATION

DATE: 3/29/2021

BY: <u>DWG</u>

JOB NO.: 3868 PROJECT: Stokes Estate TOWNSHIP: Westtown

DESCRIPTION: POST DEVELOPED BASIN 3

Total Area: 12.15 acres

		Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comment
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	
GdB	Gladstone	В	Meadow	Good	58	2.47	143.26	
	Loam	В	Lawn	Good	61	6.25	381.38	
		N/A	Impervious	N/A	98	3.43	335.94	
Ba	Baile Silt	С	Meadow	Good	71	0.00	0.00	
	Loam	С	Lawn	Good	74	0.00	0.00	

Total Area 12.15 860.57

 Weighted Soil
 860.6
 =
 70.8

 Complex Number
 12.2

TOWNSHIP:

DATE: 3/29/2021

Westtown

BY: <u>DWG</u>

JOB NO.: 3868 PROJECT: Stokes Estate

DESCRIPTION: POST DEVELOPED BYPASS DP002

Total Area: 1.49 acres

Symbol Soil I GdB Glad	l Name	Soil Group	Land Use	Condition	Curve Number			
GdB Glad	datana			Condition	Curve Number	acres	acres	
	usione	В	Meadow	Good	58	0.00	0.00	
Lo	.oam	В	Lawn	Good	61	1.40	85.40	
		N/A	Impervious	N/A	98	0.09	8.55	
Ba Baile	ile Silt	С	Meadow	Good	71	0.00	0.00	
Lo	.oam	С	Lawn	Good	74	0.00	0.00	

Total Area 1.49 93.95

 Weighted Soil
 93.9
 =
 63.2

 Complex Number
 1.5

TOWNSHIP:

DATE: 3/29/2021

Westtown

BY: <u>DWG</u>

JOB NO.: 3868 PROJECT: Stokes Estate

DESCRIPTION: POST DEVELOPED BASIN 1

Total Area: 10.95 acres

		Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comment
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	
GdB	Gladstone	В	Meadow	Good	58	0.00	0.00	
	Loam	В	Lawn	Good	61	7.57	461.77	
		N/A	Impervious	N/A	98	3.08	301.86	
Ba	Baile Silt	С	Meadow	Good	71	0.00	0.00	
	Loam	С	Lawn	Good	74	0.30	22.20	
		· ·		0000		0.00		

Total Area 10.95 785.83

 Weighted Soil
 785.8
 =
 71.8

 Complex Number
 11.0

TOWNSHIP:

DATE: 3/29/2021

Westtown

BY: <u>DWG</u>

JOB NO.: 3868 PROJECT: Stokes Estate

DESCRIPTION: POST DEVELOPED BASIN 2

Total Area: 8.54 acres

		Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comment
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	
GdB	Gladstone	В	Meadow	Good	58	0.00	0.00	
	Loam	В	Lawn	Good	61	4.41	269.01	
		N/A	Impervious	N/A	98	3.23	316.23	
Ba	Baile Silt	С	Meadow	Good	71	0.00	0.00	
	Loam	С	Lawn	Good	74	0.90	66.60	

Total Area 8.54 651.84

 Weighted Soil
 651.8
 =
 76.4

 Complex Number
 8.5

TOWNSHIP:

DATE: 3/29/2021

Westtown

BY: <u>DWG</u>

JOB NO.:3868PROJECT:Stokes EstateDESCRIPTION:POST DEVELOPED BYPASS DP002

Total Area: 1.54 acres

		Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comment
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	
GdB	Gladstone	В	Meadow	Good	58	0.00	0.00	
	Loam	В	Lawn	Good	61	1.54	93.94	
		N/A	Impervious	N/A	98	0.00	0.00	
Ba	Baile Silt	С	Meadow	Good	71	0.00	0.00	
	Loam	С	Lawn	Good	74	0.00	0.00	

Total Area 1.54 93.94

Weighted Soil 93.9 = 61.0

Complex Number 1.5

APPENDIX D

HYDRAFLOW HYDROGRAPH REPORTS

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hydrograph Return Period Recap	1
1 - Year	
Summary Report	2
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
TR-55 Tc Worksheet	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
TR-55 Tc Worksheet	
Hydrograph No. 4, SCS Runoff, Post Basin 3	
Hydrograph No. 5, Reservoir, Basin 3 Routed	
Pond Report - Basin 3	
Hydrograph No. 6, SCS Runoff, Post Bypass DP001	
Hydrograph No. 7, Combine, Post Total DP001	
Hydrograph No. 9, SCS Runoff, Post Basin 1	12
Hydrograph No. 10, Reservoir, Basin 1 Upper Routed	13
Pond Report - Basin 1 Upper	
Hydrograph No. 11, Reservoir, Basin 1 Lower Routed	
Pond Report - Basin 1 Lower	
Hydrograph No. 12, SCS Runoff, Post Basin 2	
Hydrograph No. 13, Reservoir, Basin 2 Routed	
Pond Report - Basin 2 Hydrograph No. 14, SCS Runoff, Post Bypass DP002	20
Hydrograph No. 15, Combine, Post Total DP002	
ya. og.ap	. – .
2 - Year	
Summary Report	. 22
Hydrograph Reports	. 23
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	. 23
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	. 24
Hydrograph No. 4, SCS Runoff, Post Basin 3	
Hydrograph No. 5, Reservoir, Basin 3 Routed	
Hydrograph No. 6, SCS Runoff, Post Bypass DP001	
Hydrograph No. 7, Combine, Post Total DP001	
Hydrograph No. 9, SCS Runoff, Post Basin 1	
Hydrograph No. 10, Reservoir, Basin 1 Upper Routed	
Hydrograph No. 11, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 12, SCS Runoff, Post Basin 2	
Hydrograph No. 13, Reservoir, Basin 2 Routed	
Hydrograph No. 14, SCS Runoff, Post Bypass DP002	
Hydrograph No. 15, Combine, Post Total DP002	
Trydrograph No. 15, Combine, Fost Fotal Dr 602	. 55
5 - Year	
Summary Report	. 36
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 4, SCS Runoff, Post Basin 3	. 39

Contents continued...

Hydrograph No. 5, Reservoir, Basin 3 Routed	
10 - Year	50
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 4, SCS Runoff, Post Basin 3	
Hydrograph No. 5, Reservoir, Basin 3 Routed	
Hydrograph No. 6, SCS Runoff, Post Bypass DP001	
Hydrograph No. 7, Combine, Post Total DP001	
Hydrograph No. 9, SCS Runoff, Post Basin 1	
Hydrograph No. 10, Reservoir, Basin 1 Upper Routed	
Hydrograph No. 11, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 12, SCS Runoff, Post Basin 2	
Hydrograph No. 13, Reservoir, Basin 2 Routed	
Hydrograph No. 14, SCS Runoff, Post Bypass DP002	
Hydrograph No. 15, Combine, Post Total DP002	63
25 - Year	
Summary Report	64
Hydrograph No. 1, SCS Buneff, Dr. Doveland DD001	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 4, SCS Runoff, Post Basin 3	
Hydrograph No. 5, Reservoir, Basin 3 Routed	
Hydrograph No. 6, SCS Runoff, Post Bypass DP001	
Hydrograph No. 7, Combine, Post Total DP001	
Hydrograph No. 9, SCS Runoff, Post Basin 1	
Hydrograph No. 10, Reservoir, Basin 1 Upper Routed	
Hydrograph No. 11, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 12, SCS Runoff, Post Basin 2	
Hydrograph No. 13, Reservoir, Basin 2 Routed	
Hydrograph No. 14, SCS Runoff, Post Bypass DP002	
Hydrograph No. 15, Combine, Post Total DP002	//
50 - Year	
Summary Report	78
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	

Contents continued...

	Hydrograph No. 4, SCS Runoff, Post Basin 3	81
	Hydrograph No. 5, Reservoir, Basin 3 Routed	
	Hydrograph No. 6, SCS Runoff, Post Bypass DP001	
	Hydrograph No. 7, Combine, Post Total DP001	84
	Hydrograph No. 9, SCS Runoff, Post Basin 1	85
	Hydrograph No. 10, Reservoir, Basin 1 Upper Routed	86
	Hydrograph No. 11, Reservoir, Basin 1 Lower Routed	87
	Hydrograph No. 12, SCS Runoff, Post Basin 2	88
	Hydrograph No. 13, Reservoir, Basin 2 Routed	89
	Hydrograph No. 14, SCS Runoff, Post Bypass DP002	90
	Hydrograph No. 15, Combine, Post Total DP002	
100 - Sı	Year ummary Report	92
•		JL
	ydrograph Reports	
		93
	ydrograph Reports	93 93
	Hydrograph No. 1, SCS Runoff, Pre Developed DP001	939495
	ydrograph Reports	939495
	Hydrograph Reports	93 94 95 96 97
	Hydrograph No. 1, SCS Runoff, Pre Developed DP001 Hydrograph No. 2, SCS Runoff, Pre Developed DP002 Hydrograph No. 4, SCS Runoff, Post Basin 3 Hydrograph No. 5, Reservoir, Basin 3 Routed Hydrograph No. 6, SCS Runoff, Post Bypass DP001 Hydrograph No. 7, Combine, Post Total DP001	93 94 95 96 97 98
	Hydrograph No. 1, SCS Runoff, Pre Developed DP001 Hydrograph No. 2, SCS Runoff, Pre Developed DP002 Hydrograph No. 4, SCS Runoff, Post Basin 3 Hydrograph No. 5, Reservoir, Basin 3 Routed Hydrograph No. 6, SCS Runoff, Post Bypass DP001 Hydrograph No. 7, Combine, Post Total DP001 Hydrograph No. 9, SCS Runoff, Post Basin 1	93 94 95 96 97 98 99
	Hydrograph Reports	93 94 95 96 97 98 99
	Hydrograph Reports	93 94 95 96 97 98 99 00
	Hydrograph Reports	93 94 95 96 97 98 99 00 01
	Hydrograph Reports	93 94 95 96 97 98 99 100 101
	Hydrograph Reports	93 93 94 95 96 97 98 99 100 101 102

Hydrograph Return Period Recap

- 1	Hydrograph	Inflow				Peak Ou	tflow (cfs))			Hydrograph
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.295	4.322		12.58	20.75	33.98	46.28	60.31	Pre Developed DP001
2	SCS Runoff		2.474	6.847		18.02	28.64	45.70	61.46	79.34	Pre Developed DP002
4	SCS Runoff		11.58	17.70		29.68	39.83	55.13	68.94	84.16	Post Basin 3
5	Reservoir	4	0.000	0.000		0.543	1.424	6.253	19.64	24.38	Basin 3 Routed
6	SCS Runoff		0.583	1.146		2.314	3.349	4.966	6.425	8.052	Post Bypass DP001
7	Combine	5, 6	0.583	1.146		2.314	3.349	6.859	21.53	29.04	Post Total DP001
9	SCS Runoff		11.30	16.97		28.01	37.29	51.31	63.94	77.75	Post Basin 1
10	Reservoir	9	0.000	0.000		0.510	1.244	3.633	10.69	30.18	Basin 1 Upper Routed
11	Reservoir	10	0.000	0.000		0.375	0.928	2.071	5.226	13.13	Basin 1 Lower Routed
12	SCS Runoff		12.13	17.09		26.44	34.26	46.02	56.20	67.22	Post Basin 2
13	Reservoir	12	0.000	0.120		0.682	1.706	5.509	18.98	33.12	Basin 2 Routed
14	SCS Runoff		0.417	0.956		2.121	3.170	4.826	6.335	8.028	Post Bypass DP002
15	Combine	11, 13, 14	0.417	0.956		2.121	3.170	6.169	21.32	37.69	Post Total DP002

Proj. file: SWM.gpw

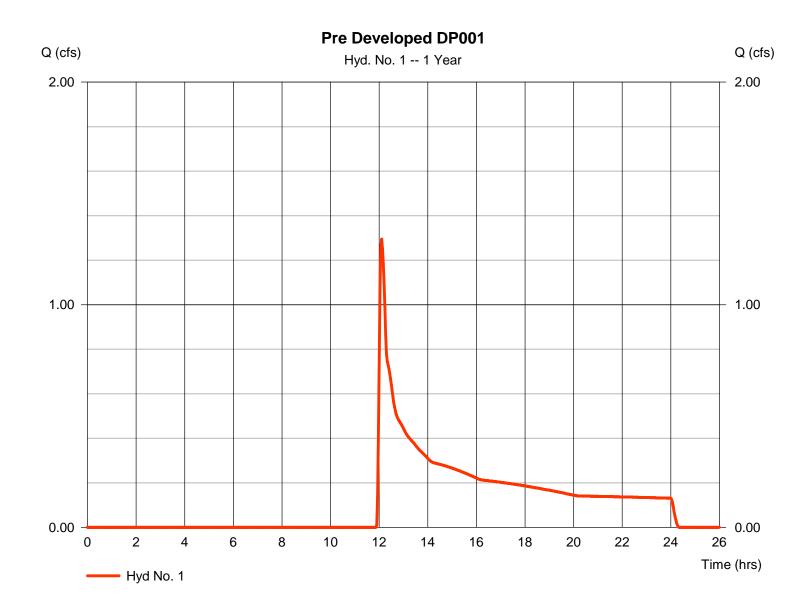
Thursday, 09 / 30 / 2021

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

		_				Tiyuran	ow riyurograpii	IS EXTENSION OF A	utodesk® Civil 3D® by Autodesk, Inc. v2t
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.295	2	726	10,628				Pre Developed DP001
2	SCS Runoff	2.474	2	724	15,638				Pre Developed DP002
4	SCS Runoff	11.58	2	718	24,233				Post Basin 3
5	Reservoir	0.000	2	n/a	0	4	317.29	24,233	Basin 3 Routed
6	SCS Runoff	0.583	2	718	1,570				Post Bypass DP001
7	Combine	0.583	2	718	1,570	5, 6			Post Total DP001
9	SCS Runoff	11.30	2	718	23,379				Post Basin 1
10	Reservoir	0.000	2	n/a	0	9	321.56	23,379	Basin 1 Upper Routed
11	Reservoir	0.000	2	n/a	0	10	302.20	0.000	Basin 1 Lower Routed
12	SCS Runoff	12.13	2	718	24,366				Post Basin 2
13	Reservoir	0.000	2	n/a	0	12	308.25	24,366	Basin 2 Routed
14	SCS Runoff	0.417	2	720	1,355				Post Bypass DP002
15	Combine	0.417	2	720	1,355	11, 13, 14			Post Total DP002
SW	M.gpw				Return	Period: 1 Ye	ear	Thursday,	09 / 30 / 2021

Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

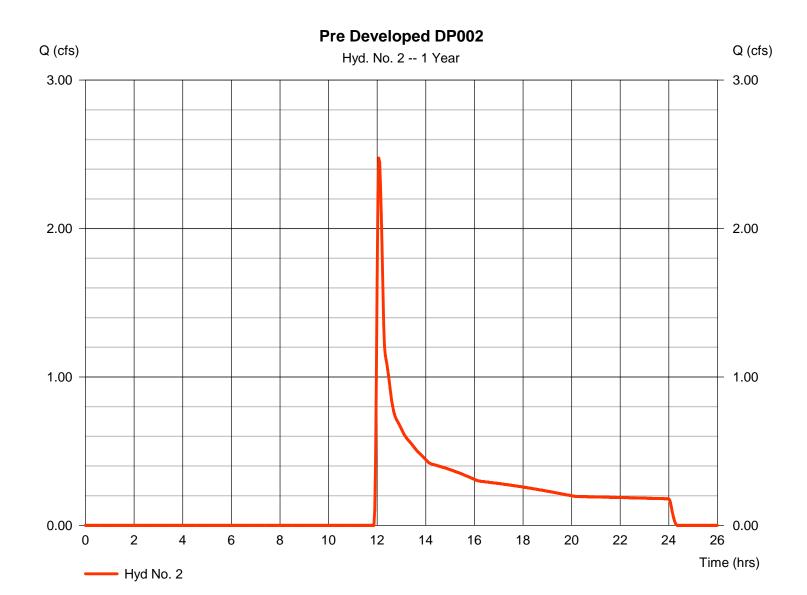
Hydrograph type = SCS Runoff Peak discharge = 1.295 cfsStorm frequency Time to peak = 12.10 hrs= 1 yrsTime interval = 2 min Hyd. volume = 10,628 cuftDrainage area Curve number = 15.430 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 12.00 \, \text{min}$ Total precip. = 2.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1Pre Developed DP001

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.240 = 100.0 = 3.20 = 4.00	+	0.011 0.0 0.00 0.00	+	0.011 0.0 0.00 0.00	_	10.81
, ,	- 10.01	-	0.00	T	0.00	_	10.01
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 330.00 = 9.00 = Unpaved =4.84	t	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.14	+	0.00	+	0.00	=	1.14
Channel Flow							
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.015		0.00 0.00 0.015		0.00 0.00 0.015		
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015 0.00	=	0.00

Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 2

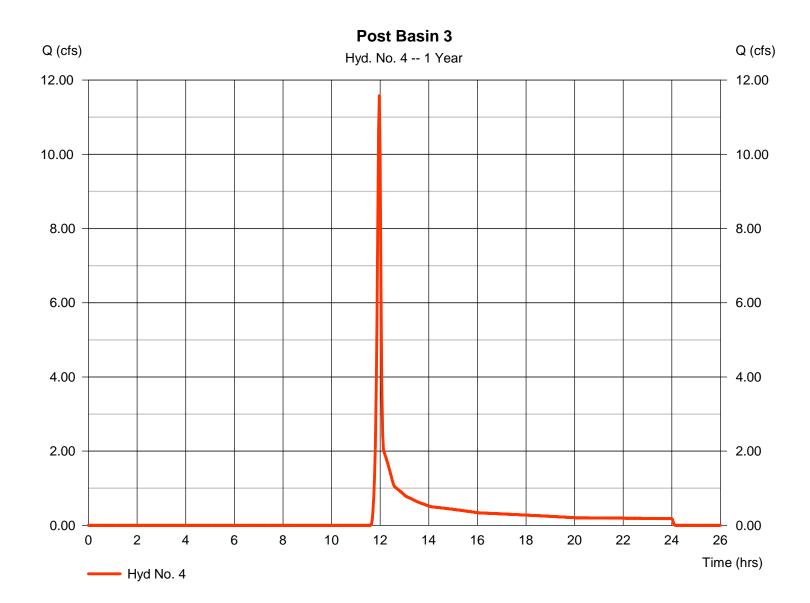
Pre Developed DP002

Hydrograph type = SCS Runoff Peak discharge = 2.474 cfsStorm frequency Time to peak = 12.07 hrs= 1 yrsTime interval = 2 min Hyd. volume = 15,638 cuftCurve number Drainage area = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ft= TR55 Time of conc. (Tc) $= 12.00 \, \text{min}$ Tc method Total precip. = 2.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2Pre Developed DP002

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.20 = 7.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.65	+	0.00	+	0.00	=	8.65
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 957.00 = 8.90 = Unpaved =4.81	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.31	+	0.00	+	0.00	=	3.31
Channel Flow							
X sectional flow area (sqft) Wetted perimeter (ft)	= 0.00		0.00		0.00		
Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015		0.00 0.00 0.015		
Channel slope (%) Manning's n-value	= 0.00 = 0.015		0.00 0.00 0.015		0.00 0.00 0.015		
Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.015 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015 0.00	=	0.00


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 4

Post Basin 3

Hydrograph type = SCS Runoff Peak discharge = 11.58 cfsStorm frequency Time to peak $= 11.97 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 24,233 cuftDrainage area Curve number = 12.150 ac= 70.8= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

Hydrograph type = Reservoir Peak discharge = 0.000 cfsStorm frequency Time to peak = n/a= 1 yrsTime interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. Max. Elevation = 317.29 ft= 4 - Post Basin 3 Reservoir name = Basin 3 Max. Storage = 24,233 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

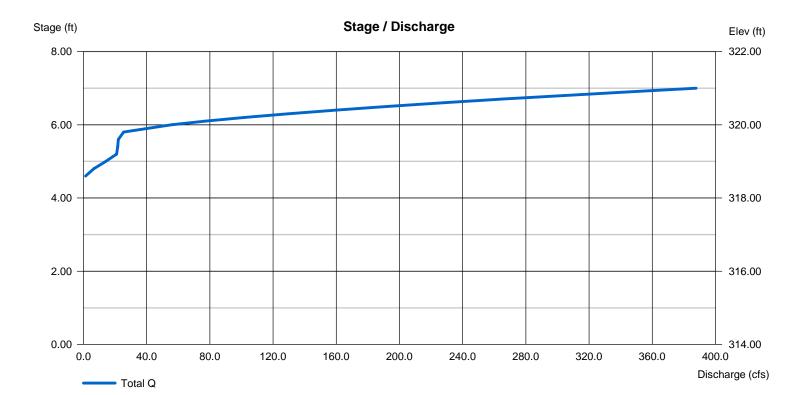
Thursday, 09 / 30 / 2021

Pond No. 5 - Basin 3

Pond Data

Compressorial-UBasetede finne McCent 60 rCare 28.04 (re. Sigle etrapere 20 r0 6 tho o Bostead feel eval wild \$4.00 Utat Deep Beegin 1998 (E.) eV etrapere 20 1.60 Ma ft

Stage / Storage Table

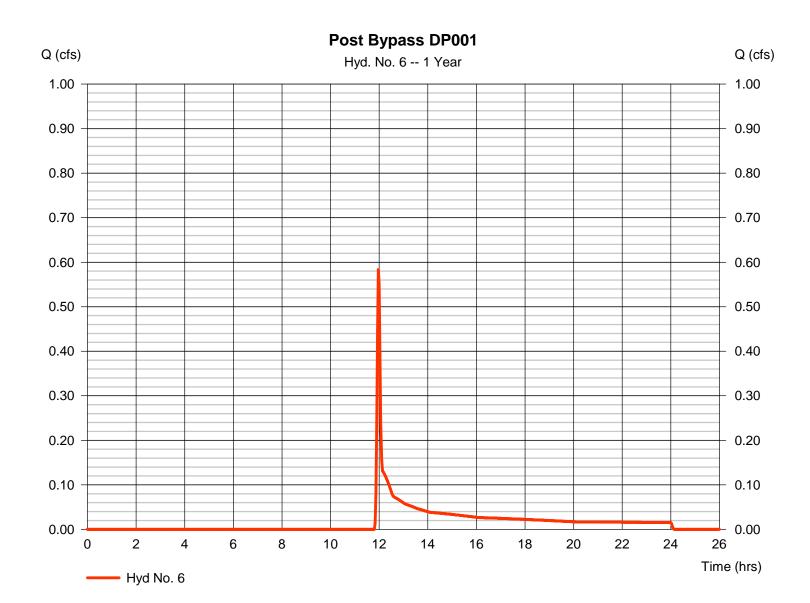

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	314.00	2,000	0	0
0.20	314.20	2,000	159	159
0.40	314.40	2,000	159	318
0.60	314.60	2,000	159	478
0.80	314.80	2,000	159	637
1.00	314.99	2,000	159	796
1.19	315.19	2,000	159	955
1.39	315.39	2,000	159	1,114
1.59	315.59	2,000	159	1,274
1.79	315.79	2,000	159	1,433
1.99	315.99	2,000	159	1,592
2.00	316.00	15,345	87	1,679
4.00	318.00	19,665	35,010	36,689
6.00	320.00	24,211	43,876	80,565
7.00	321.00	26,570	25,391	105,955

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	Inactive	0.00	0.00	Crest Len (ft)	= 12.00	Inactive	100.00	0.00
Span (in)	= 18.00	5.00	0.00	0.00	Crest El. (ft)	= 318.50	318.00	319.75	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 312.00	318.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 5.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

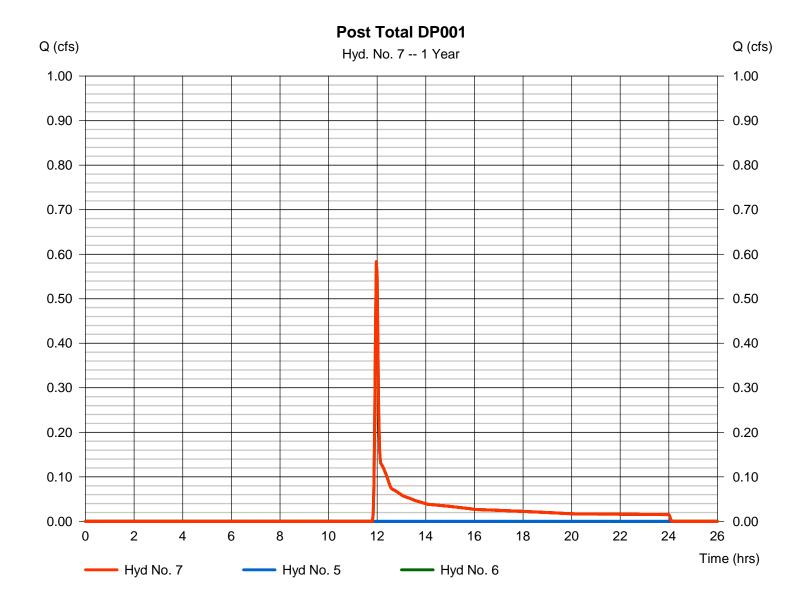

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 0.583 cfsStorm frequency Time to peak $= 11.97 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 1,570 cuftDrainage area Curve number = 1.440 ac= 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

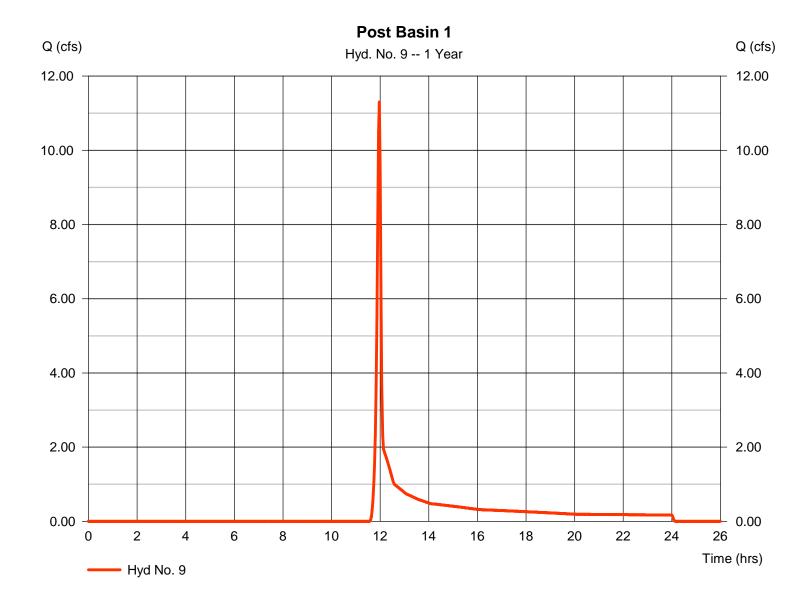

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 0.583 cfsStorm frequency Time to peak = 1 yrs $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 1,570 cuftInflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

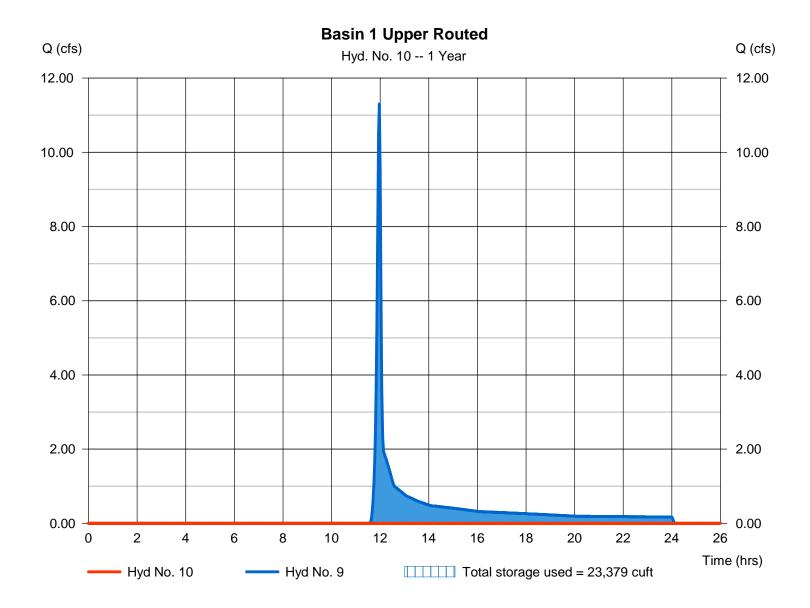

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 9

Post Basin 1

Hydrograph type = SCS Runoff Peak discharge = 11.30 cfsStorm frequency Time to peak $= 11.97 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 23,379 cuftDrainage area Curve number = 10.950 ac= 71.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

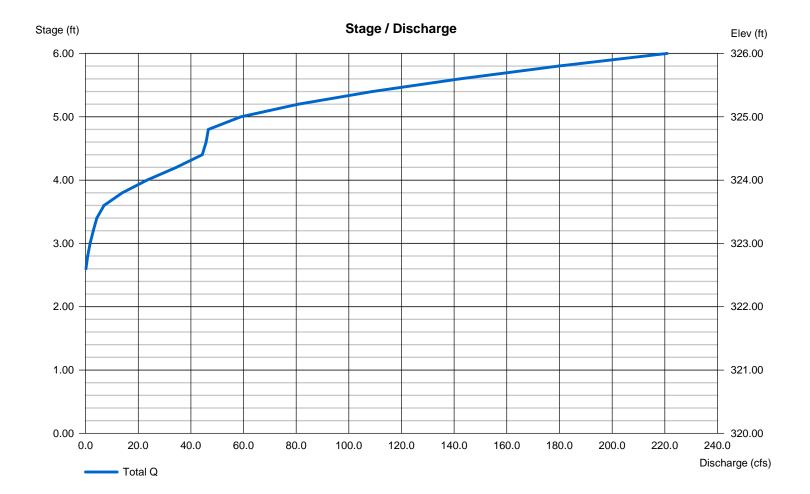
Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency Time to peak = n/a= 1 yrsTime interval = 2 min Hyd. volume = 0 cuftMax. Elevation Inflow hyd. No. = 9 - Post Basin 1 = 321.56 ftReservoir name = Basin 1 Upper Max. Storage = 23,379 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Pond No. 2 - Basin 1 Upper

Pond Data

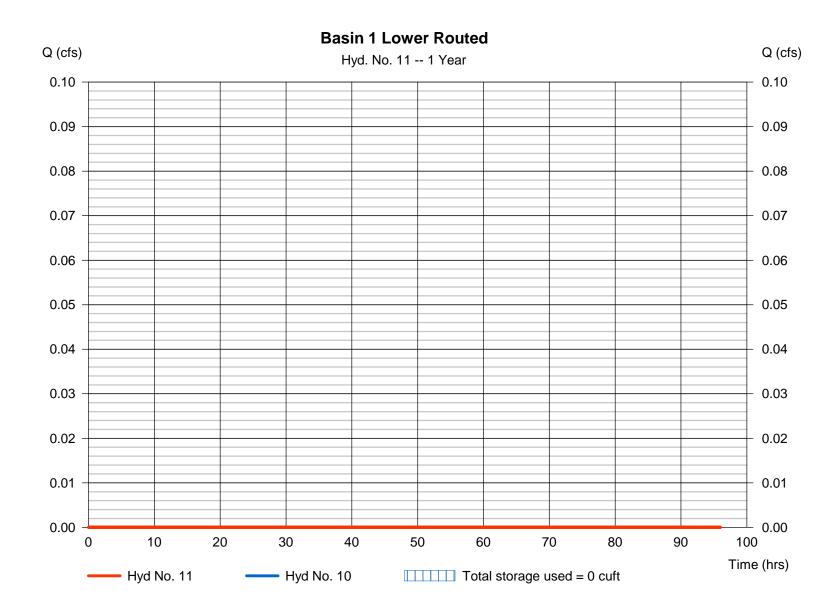

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 320.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	320.00	13,236	0	0
2.00	322.00	16,755	29,991	29,991
4.00	324.00	20,617	37,372	67,363
6.00	326.00	24,500	45,117	112,480

Culvert / Orifice Structures Weir Structures [B] [A] [B] [C] [D] [A] [C] [PrfRsr] Rise (in) = 24.000.00 0.00 0.00 Crest Len (ft) = 12.00 1.50 50.00 0.00 Span (in) = 24.000.00 0.00 0.00 Crest El. (ft) = 323.50322.50 324.80 0.00 No. Barrels = 1 0 0 Weir Coeff. = 3.333.33 2.60 3.33 = 314.000.00 0.00 0.00 Weir Type Rect Broad Invert El. (ft) = 1 = 50.000.00 0.00 0.00 Multi-Stage Length (ft) = Yes Yes No No = 0.500.00 0.00 n/a Slope (%) N-Value = .013.013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. Multi-Stage No No TW Elev. (ft) = n/aNo = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

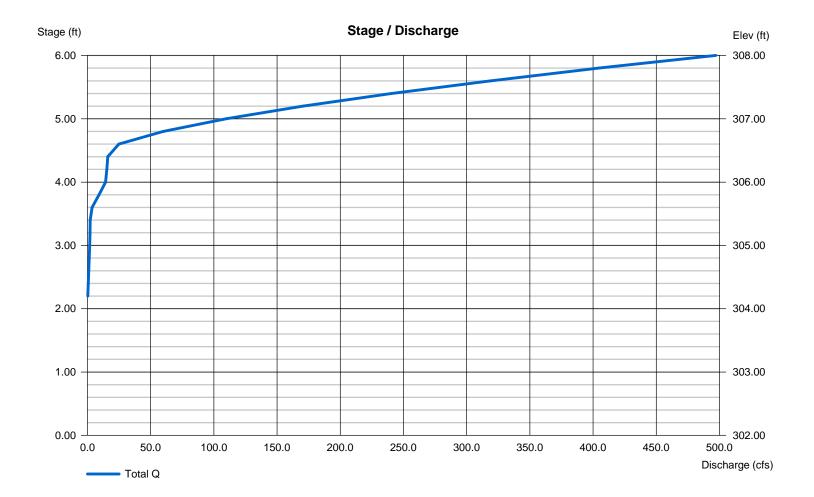
Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency Time to peak = n/a= 1 yrsTime interval = 2 min Hyd. volume = 0 cuftInflow hyd. No. Max. Elevation = 10 - Basin 1 Upper Routed = 302.20 ft= Basin 1 Lower Reservoir name Max. Storage = 0 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Pond No. 1 - Basin 1 Lower

Pond Data

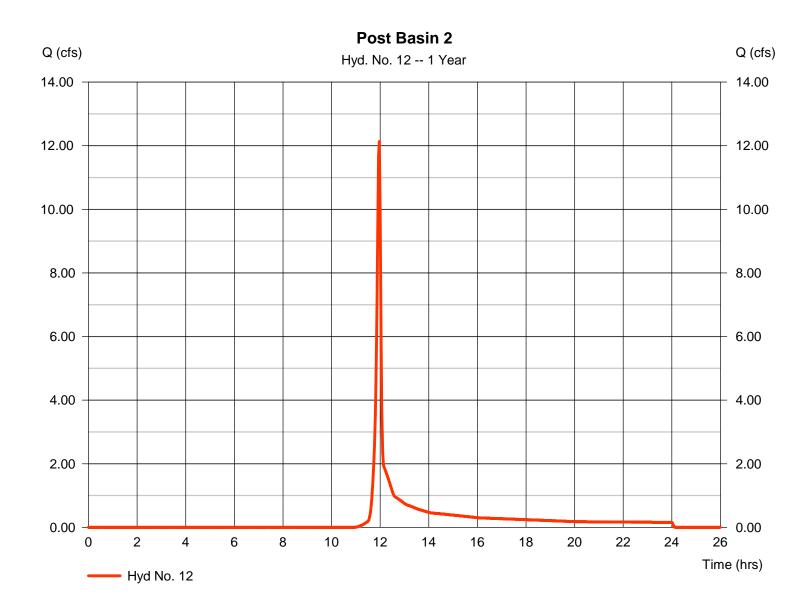

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 302.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	302.00	2,215	0	0
2.00	304.00	3,972	6,187	6,187
4.00	306.00	10,535	14,507	20,694
6.00	308.00	14,870	25,405	46,099

Culvert / Orifice Structures Weir Structures [A] [B] [C] [D] [A] [B] [C] [PrfRsr] Rise (in) = 18.009.00 0.00 0.00 Crest Len (ft) = 12.00 100.00 0.00 0.00 Span (in) = 18.009.00 0.00 0.00 Crest El. (ft) = 305.50306.50 0.00 0.00 No. Barrels = 1 0 Weir Coeff. = 3.332.60 3.33 3.33 1 = 302.00304.00 0.00 0.00 Weir Type Broad Invert El. (ft) = 1 = 50.000.00 0.00 0.00 Multi-Stage Length (ft) = Yes No No No Slope (%) = 0.500.00 0.00 n/a N-Value = .013.013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. Multi-Stage No TW Elev. (ft) = n/aYes No = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 12.13 cfsStorm frequency Time to peak $= 11.97 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 24,366 cuftDrainage area Curve number = 8.540 ac= 76.4= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

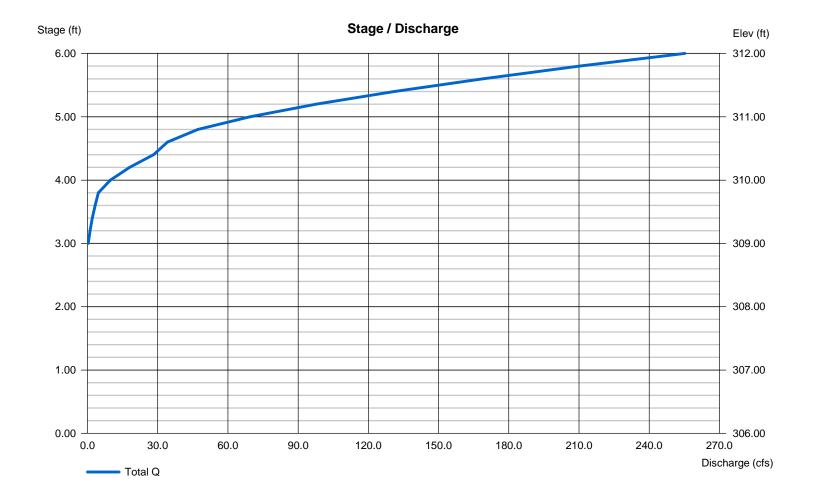
Hydrograph type = Reservoir Peak discharge = 0.000 cfsStorm frequency Time to peak = n/a= 1 yrsTime interval = 2 min Hyd. volume = 0 cuftInflow hyd. No. Max. Elevation = 308.25 ft= 12 - Post Basin 2 Reservoir name = Basin 2 Max. Storage = 24,366 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Pond No. 3 - Basin 2

Pond Data

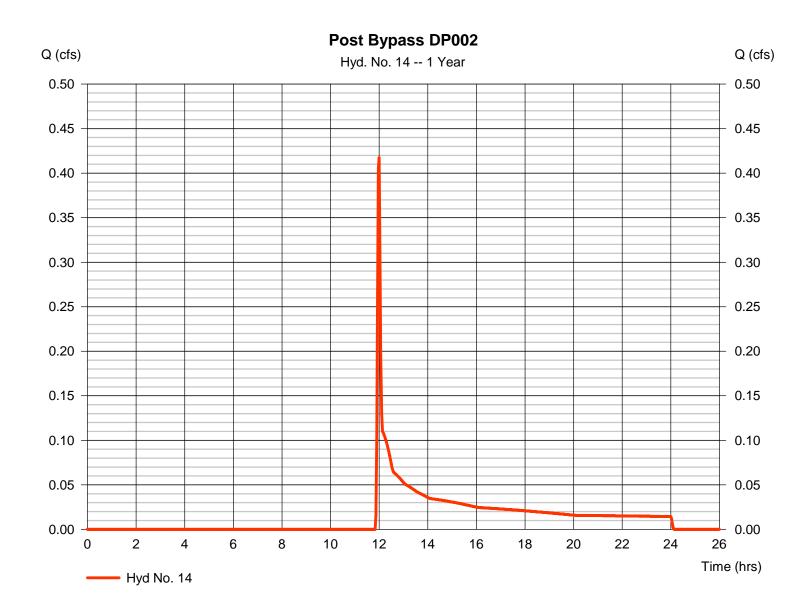

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 306.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	306.00	8,255	0	0
2.00	308.00	12,443	20,698	20,698
4.00	310.00	16,673	29,116	49,814
6.00	312.00	21,110	37,783	87,597

Culvert / Orifice Structures Weir Structures [A] [B] [C] [D] [A] [B] [C] [PrfRsr] Rise (in) = 24.000.00 0.00 0.00 Crest Len (ft) = 12.00 1.50 50.00 0.00 Span (in) = 24.000.00 0.00 0.00 Crest El. (ft) = 309.80308.85 310.60 0.00 No. Barrels = 1 0 0 Weir Coeff. = 3.333.33 2.60 3.33 = 304.000.00 0.00 0.00 Weir Type Rect Broad Invert El. (ft) = 1 = 50.000.00 0.00 0.00 Multi-Stage Length (ft) = Yes Yes No No Slope (%) = 0.500.00 0.00 n/a N-Value = .013.013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. Multi-Stage = n/aNo No TW Elev. (ft) No = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

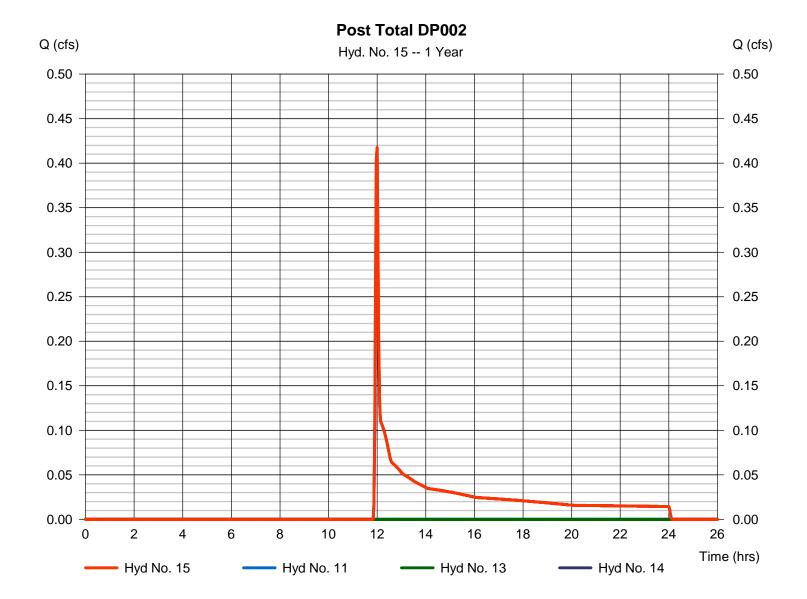

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 0.417 cfsStorm frequency Time to peak $= 12.00 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 1,355 cuftDrainage area Curve number = 1.540 ac= 61 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 2.70 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 15

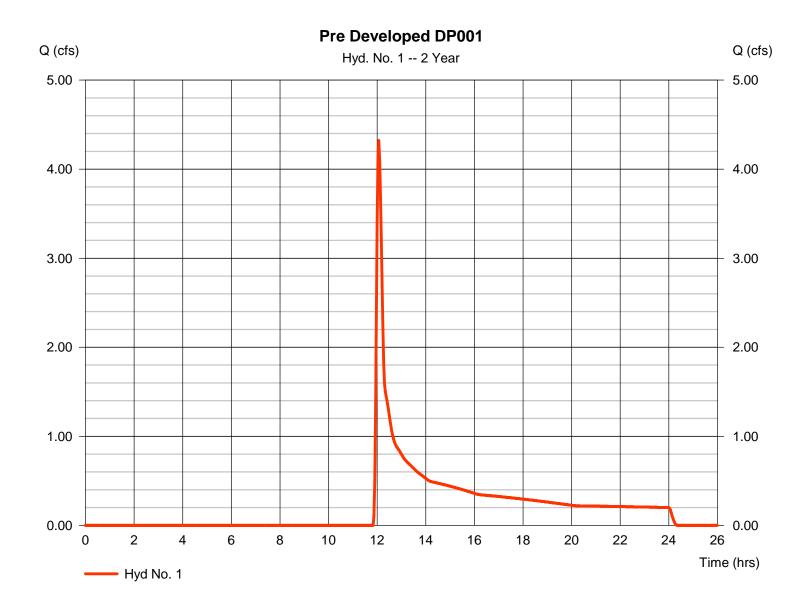
Post Total DP002

Hydrograph type = Combine Peak discharge = 0.417 cfsStorm frequency Time to peak = 1 yrs $= 12.00 \, hrs$ Time interval = 2 min Hyd. volume = 1,355 cuftInflow hyds. = 11, 13, 14 Contrib. drain. area = 1.540 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

	Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v202								
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.322	2	724	19,687				Pre Developed DP001
2	SCS Runoff	6.847	2	724	27,873				Pre Developed DP002
4	SCS Runoff	17.70	2	718	35,889				Post Basin 3
5	Reservoir	0.000	2	n/a	0	4	317.95	35,889	Basin 3 Routed
6	SCS Runoff	1.146	2	718	2,583				Post Bypass DP001
7	Combine	1.146	2	718	2,583	5, 6			Post Total DP001
9	SCS Runoff	16.97	2	718	34,254				Post Basin 1
10	Reservoir	0.000	2	n/a	0	9	322.23	34,254	Basin 1 Upper Routed
11	Reservoir	0.000	2	n/a	0	10	302.20	0.000	Basin 1 Lower Routed
12	SCS Runoff	17.09	2	718	34,170				Post Basin 2
13	Reservoir	0.120	2	1444	1,815	12	308.88	33,546	Basin 2 Routed
14	SCS Runoff	0.956	2	718	2,327				Post Bypass DP002
15	Combine	0.956	2	718	4,142	11, 13, 14			Post Total DP002
— SW	M.gpw				Return F	Period: 2 Ye	ear	Thursday,	09 / 30 / 2021

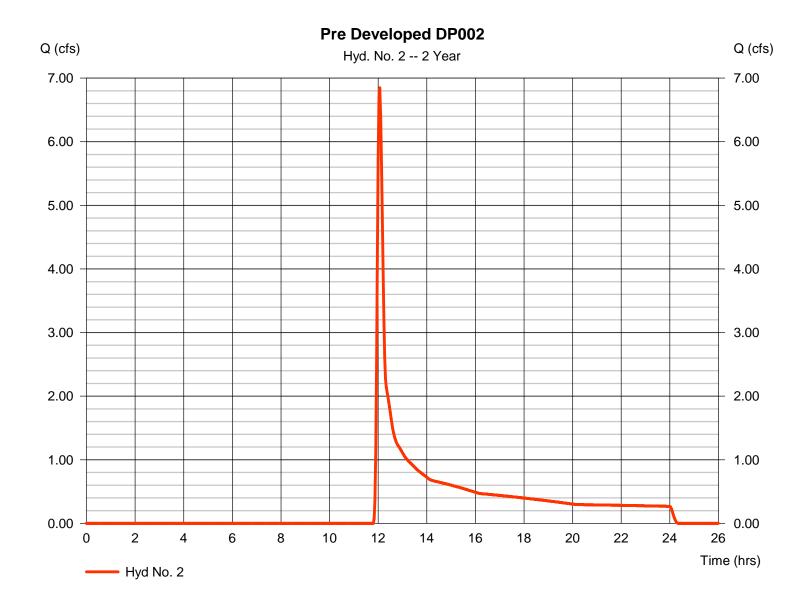

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

Hydrograph type = SCS Runoff Peak discharge = 4.322 cfsStorm frequency = 2 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 19,687 cuftDrainage area = 15.430 acCurve number = 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 12.00 \, \text{min}$ Tc method = TR55 Total precip. = 3.20 inDistribution = Type II Storm duration = 24 hrs = 484 Shape factor

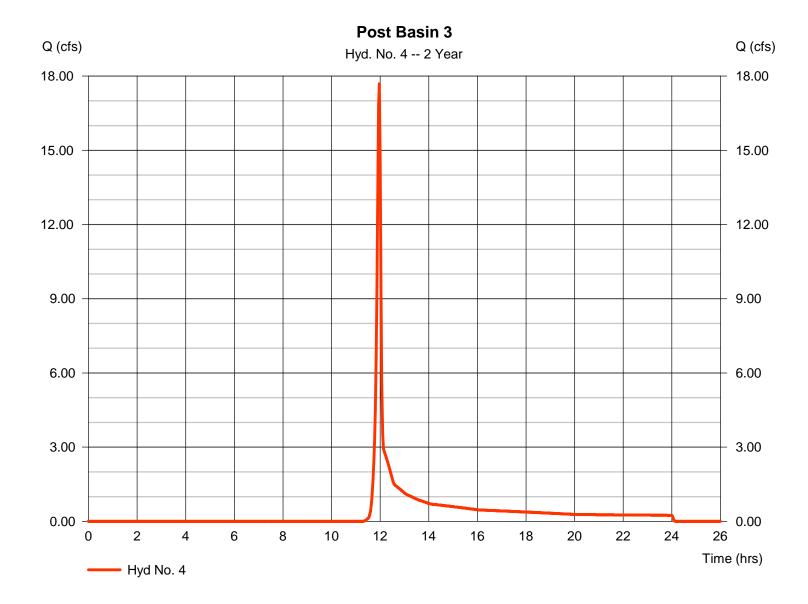

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 2

Pre Developed DP002

Hydrograph type = SCS Runoff Peak discharge = 6.847 cfsStorm frequency = 2 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 27,873 cuftDrainage area Curve number = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 3.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

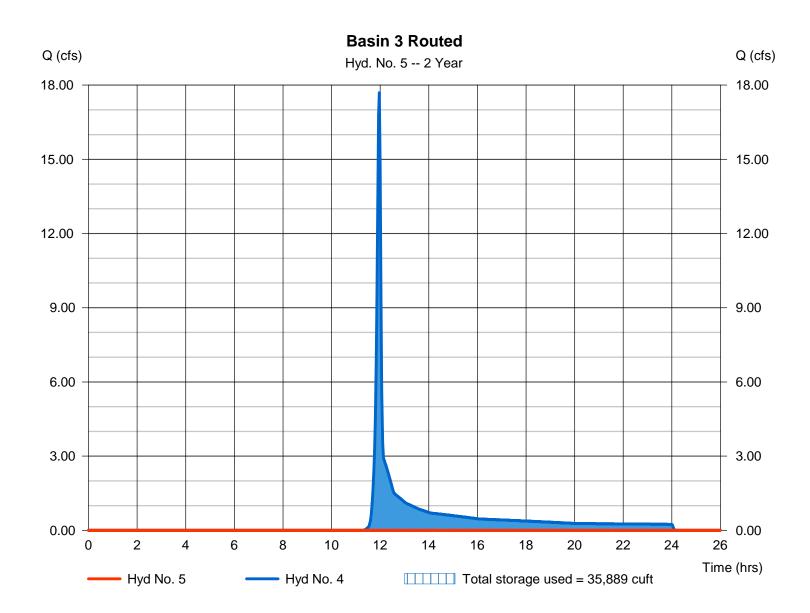

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 4

Post Basin 3

Hydrograph type = SCS Runoff Peak discharge = 17.70 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 35,889 cuftDrainage area Curve number = 12.150 ac= 70.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

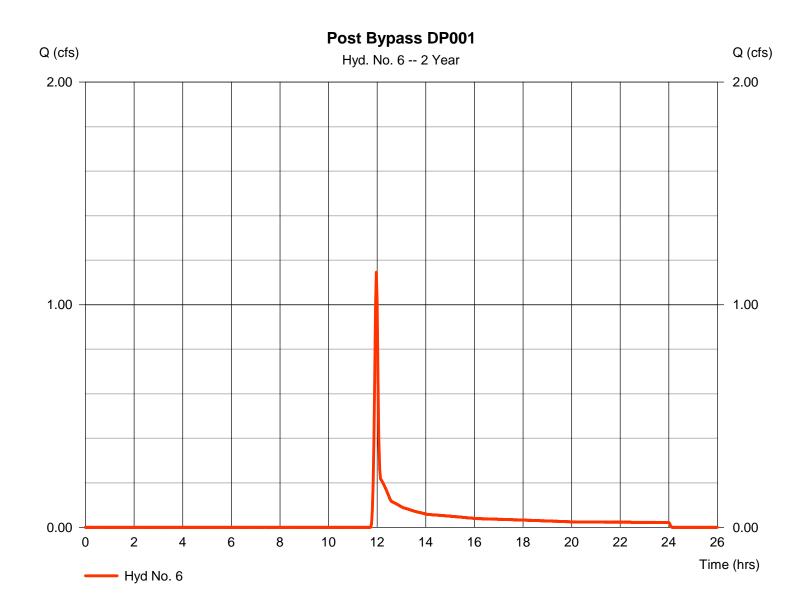

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

= Reservoir Hydrograph type Peak discharge = 0.000 cfsStorm frequency = 2 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuftInflow hyd. No. Max. Elevation = 4 - Post Basin 3 = 317.95 ftReservoir name = Basin 3 Max. Storage = 35,889 cuft

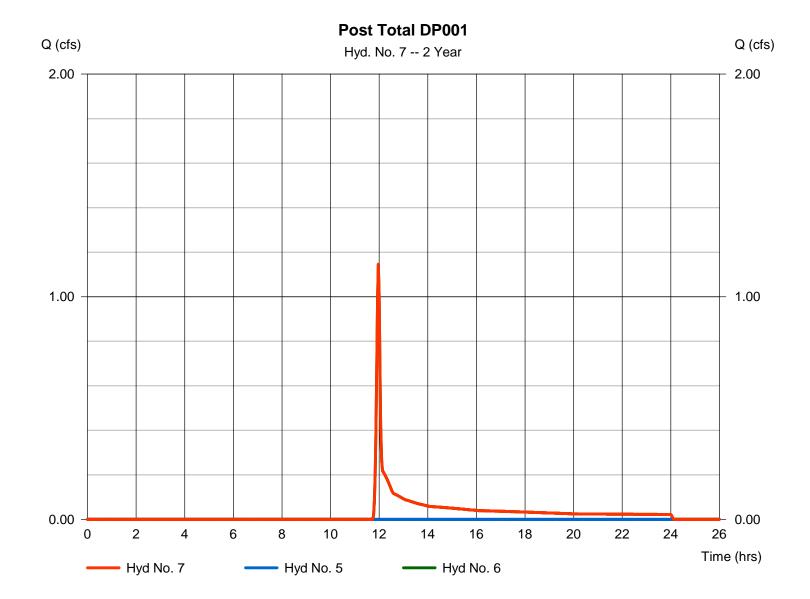

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 1.146 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 2,583 cuftDrainage area Curve number = 1.440 ac= 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.20 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

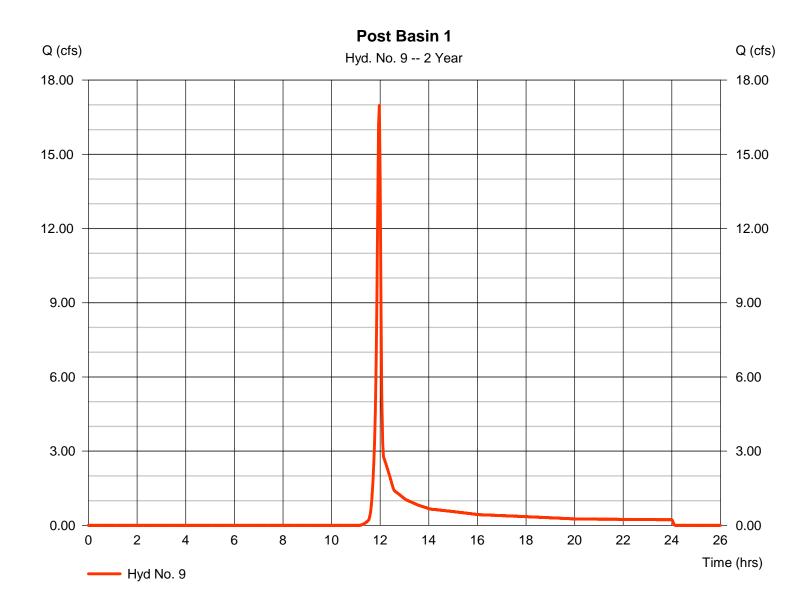

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 1.146 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 2,583 cuftInflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

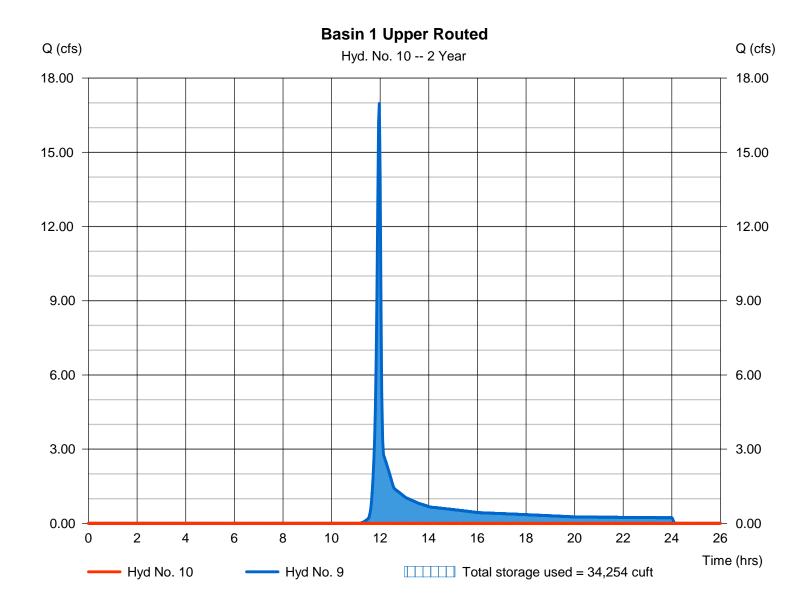

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 9

Post Basin 1

Hydrograph type = SCS Runoff Peak discharge = 16.97 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 34,254 cuftDrainage area Curve number = 10.950 ac= 71.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

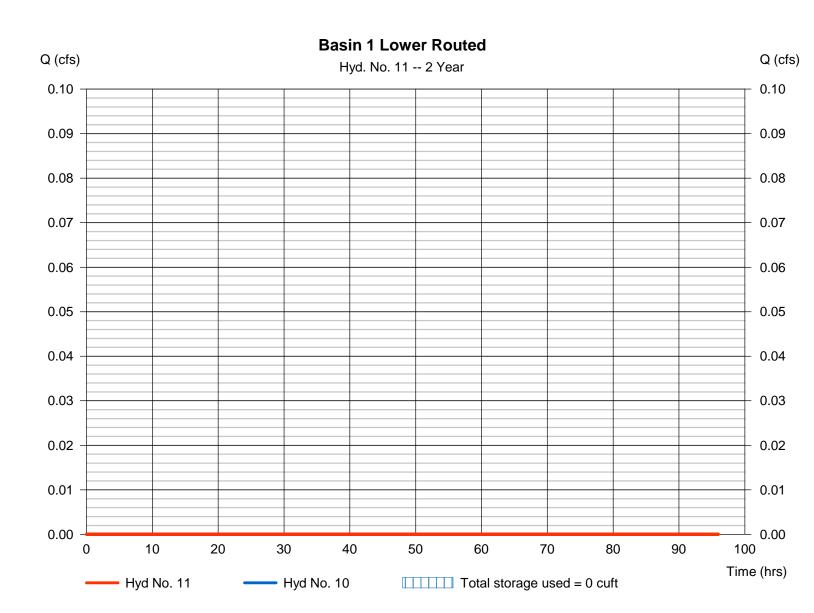

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 2 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuftMax. Elevation Inflow hyd. No. = 9 - Post Basin 1 = 322.23 ftReservoir name = Basin 1 Upper Max. Storage = 34,254 cuft

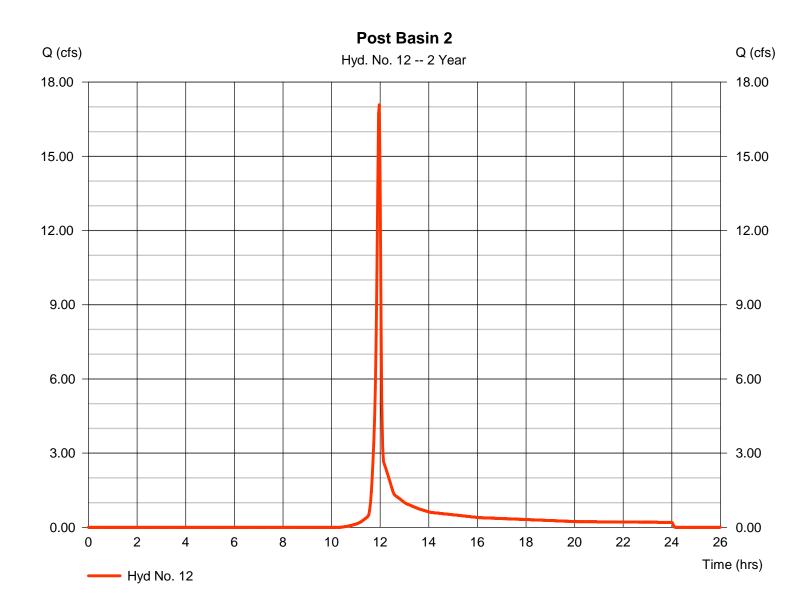

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 2 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuftInflow hyd. No. Max. Elevation = 10 - Basin 1 Upper Routed = 302.20 ft= Basin 1 Lower Reservoir name Max. Storage = 0 cuft

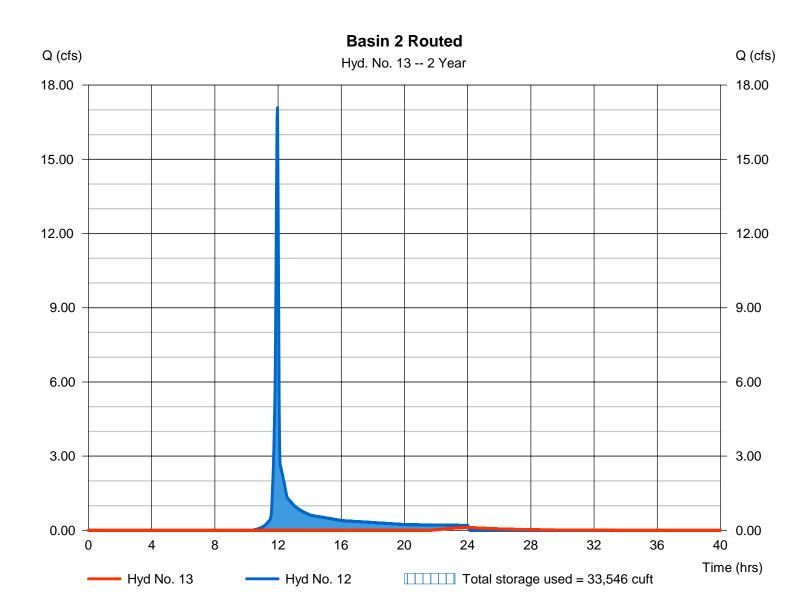

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 17.09 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 34,170 cuftDrainage area Curve number = 8.540 ac= 76.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

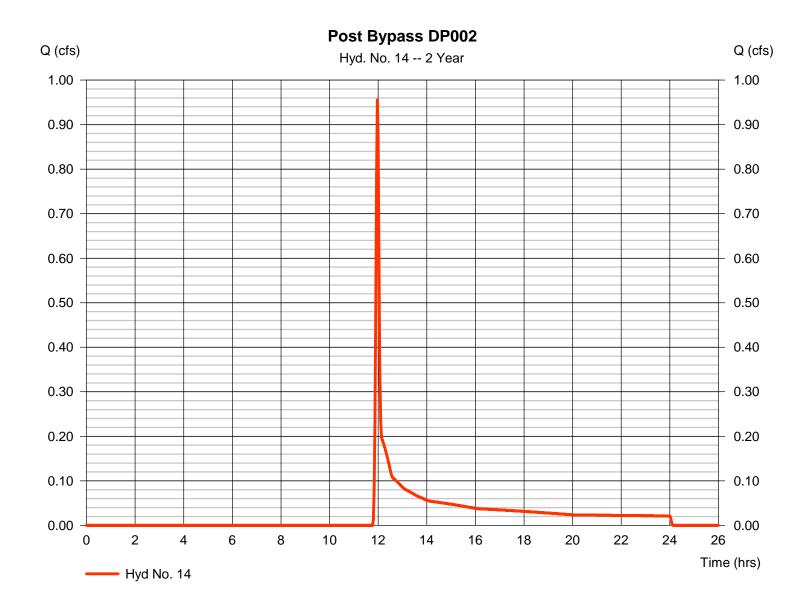

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

Hydrograph type = Reservoir Peak discharge = 0.120 cfsStorm frequency = 2 yrsTime to peak = 24.07 hrsTime interval = 2 min Hyd. volume = 1.815 cuftInflow hyd. No. Max. Elevation = 12 - Post Basin 2 = 308.88 ftReservoir name = Basin 2 Max. Storage = 33,546 cuft

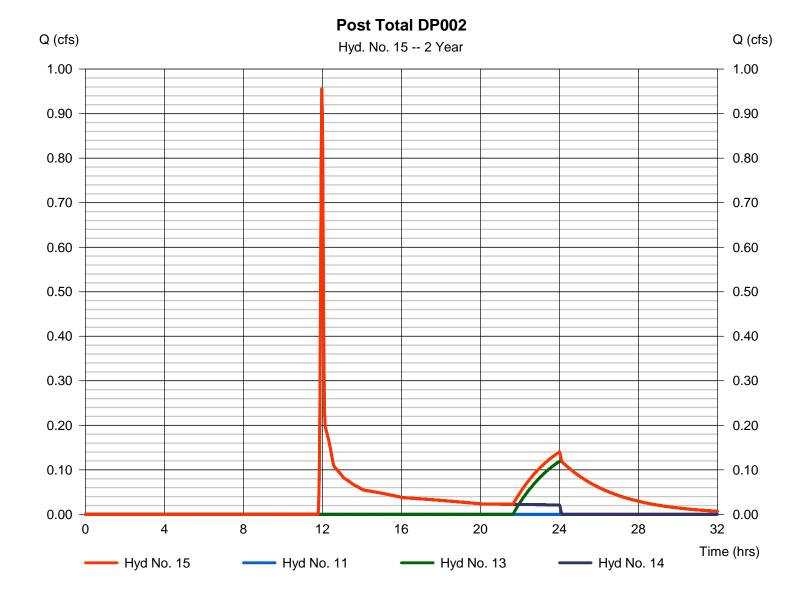

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 0.956 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 2.327 cuftCurve number Drainage area = 1.540 ac= 61 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 3.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 15

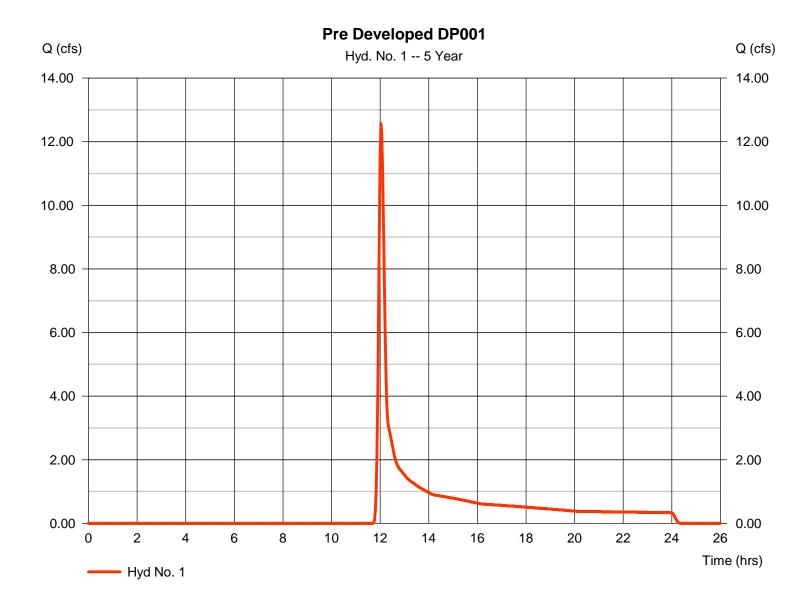
Post Total DP002

Hydrograph type = Combine Peak discharge = 0.956 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 4,142 cuft= 11, 13, 14 Inflow hyds. Contrib. drain. area = 1.540 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

	Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v202								
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	12.58	2	722	40,519				Pre Developed DP001
2	SCS Runoff	18.02	2	722	55,435				Pre Developed DP002
4	SCS Runoff	29.68	2	718	59,371				Post Basin 3
5	Reservoir	0.543	2	1094	13,903	4	318.49	47,347	Basin 3 Routed
6	SCS Runoff	2.314	2	718	4,767				Post Bypass DP001
7	Combine	2.314	2	718	18,670	5, 6			Post Total DP001
)	SCS Runoff	28.01	2	718	56,002				Post Basin 1
10	Reservoir	0.510	2	1086	18,513	9	322.71	43,189	Basin 1 Upper Routed
11	Reservoir	0.375	2	1362	12,317	10	304.32	8,514	Basin 1 Lower Routed
12	SCS Runoff	26.44	2	718	53,176				Post Basin 2
13	Reservoir	0.682	2	918	20,822	12	309.11	36,790	Basin 2 Routed
14	SCS Runoff	2.121	2	718	4,472				Post Bypass DP002
15	Combine	2.121	2	718	37,611	11, 13, 14			Post Total DP002
	'M.gpw				Return F	Period: 5 Ye	ear	Thursday,	09 / 30 / 2021

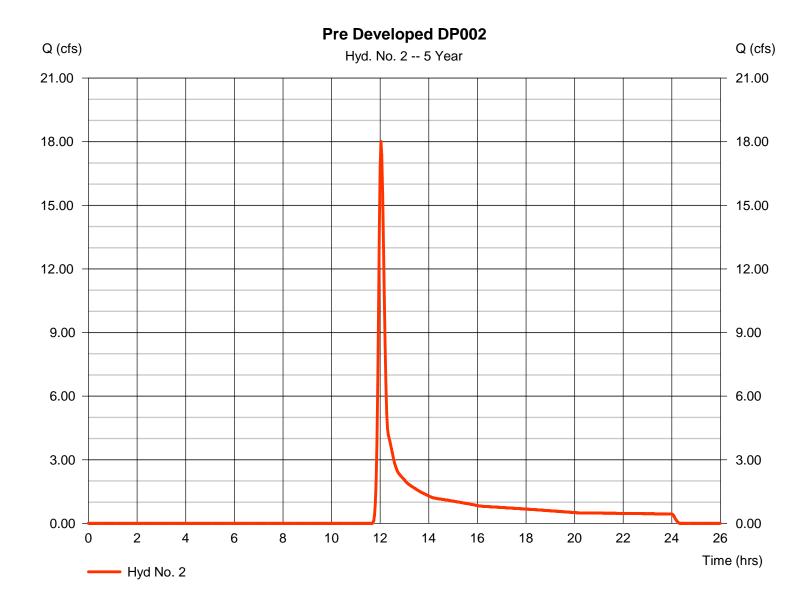

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

Hydrograph type = SCS Runoff Peak discharge = 12.58 cfsStorm frequency = 5 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 40,519 cuftDrainage area Curve number = 15.430 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 4.08 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

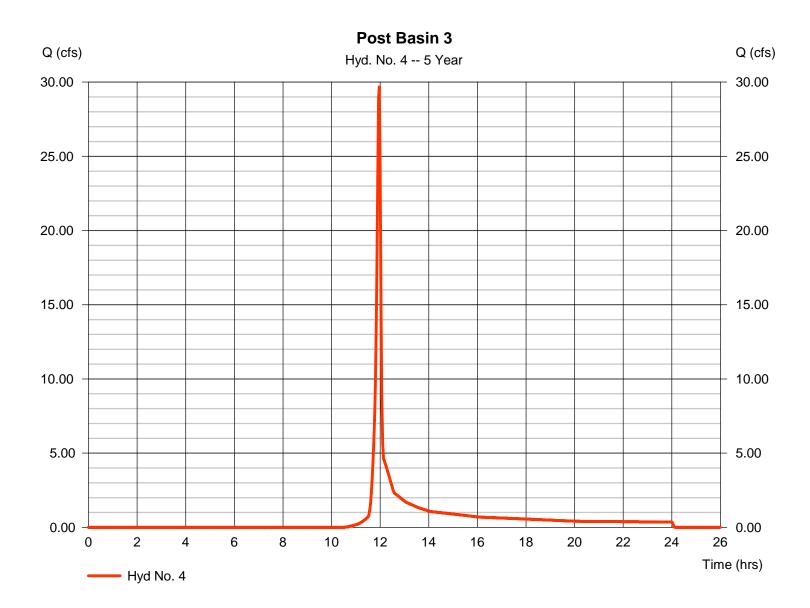

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 2

Pre Developed DP002

Hydrograph type = SCS Runoff Peak discharge = 18.02 cfsStorm frequency Time to peak = 12.03 hrs= 5 yrsTime interval = 2 min Hyd. volume = 55,435 cuftDrainage area Curve number = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 4.08 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

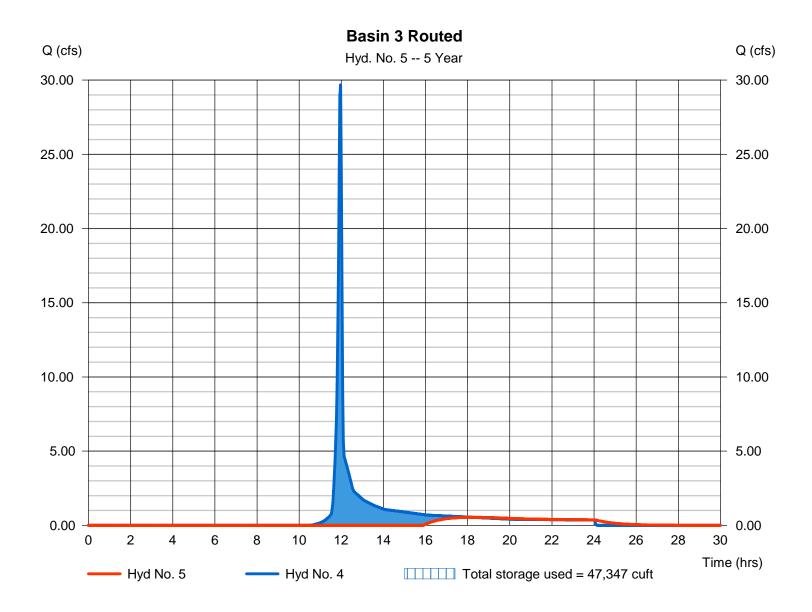

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 4

Post Basin 3

Hydrograph type = SCS Runoff Peak discharge = 29.68 cfsStorm frequency = 5 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 59,371 cuftDrainage area Curve number = 12.150 ac= 70.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.08 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

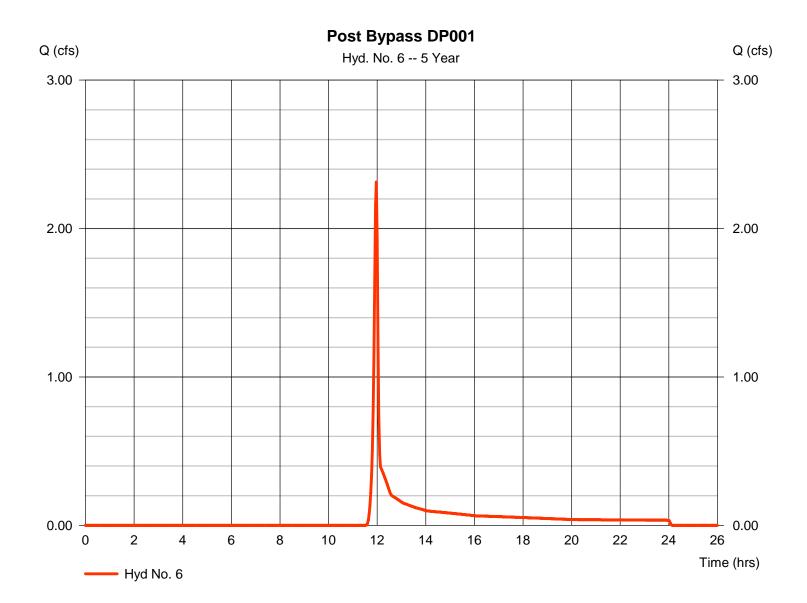

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

Hydrograph type = Reservoir Peak discharge = 0.543 cfsStorm frequency Time to peak $= 18.23 \, hrs$ = 5 yrsTime interval = 2 min Hyd. volume = 13,903 cuftMax. Elevation Inflow hyd. No. = 4 - Post Basin 3 = 318.49 ftReservoir name = Basin 3 Max. Storage = 47,347 cuft

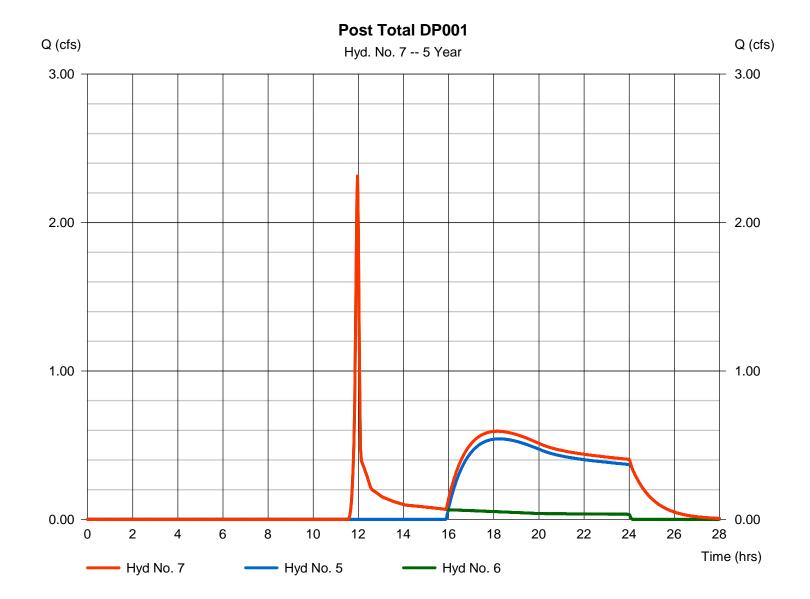

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 2.314 cfsStorm frequency = 5 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 4,767 cuftCurve number Drainage area = 1.440 ac= 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 4.08 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

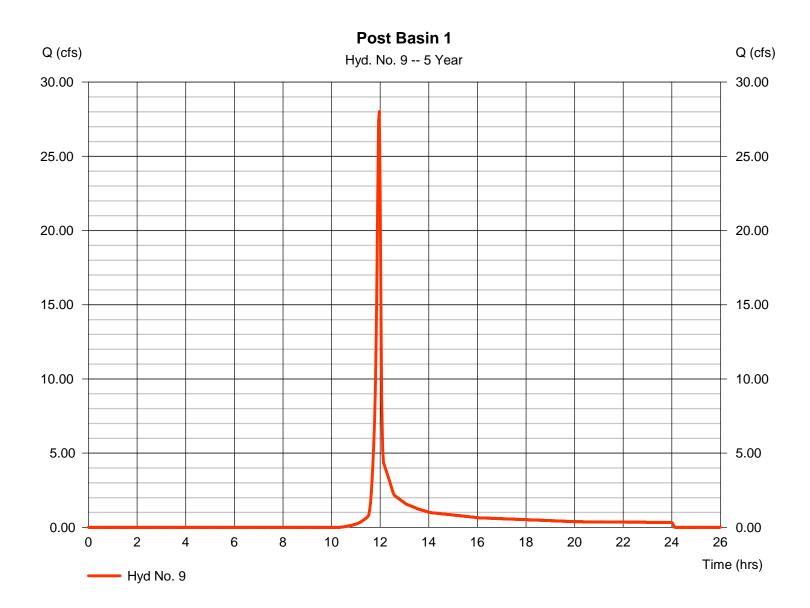

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 2.314 cfsStorm frequency = 5 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 18,670 cuftInflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

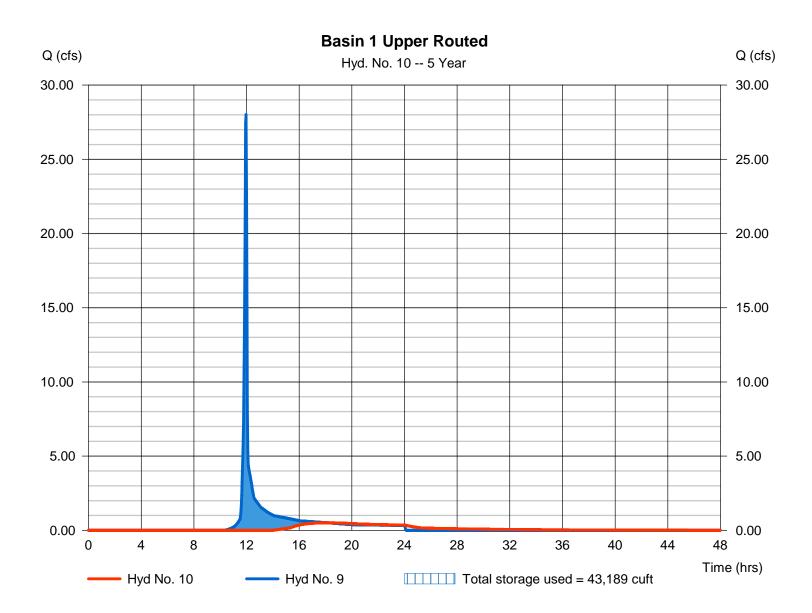

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 9

Post Basin 1

Hydrograph type = SCS Runoff Peak discharge = 28.01 cfsStorm frequency = 5 yrsTime to peak = 11.97 hrsTime interval = 2 min Hyd. volume = 56,002 cuftDrainage area Curve number = 10.950 ac= 71.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.08 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

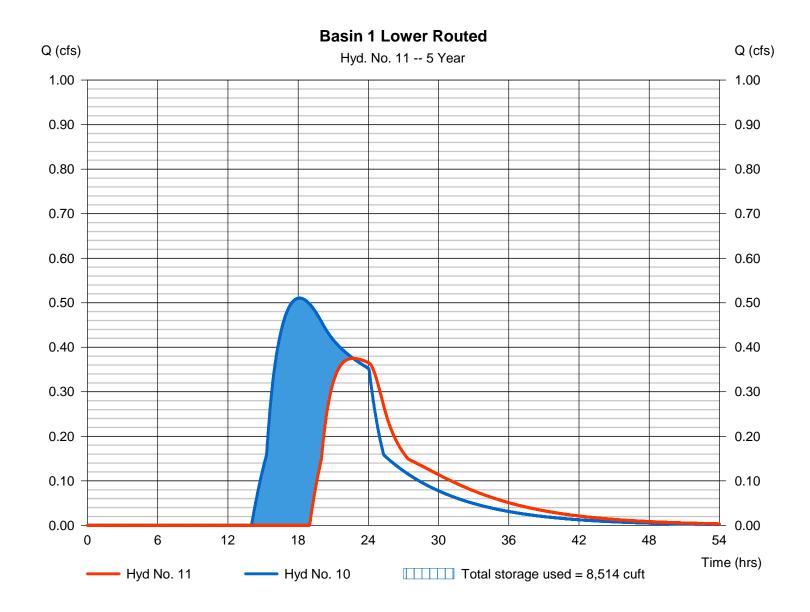

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

Hydrograph type Peak discharge = 0.510 cfs= Reservoir Storm frequency Time to peak $= 18.10 \, hrs$ = 5 yrsTime interval = 2 min Hyd. volume = 18,513 cuftMax. Elevation Inflow hyd. No. = 9 - Post Basin 1 = 322.71 ftReservoir name = Basin 1 Upper Max. Storage = 43,189 cuft

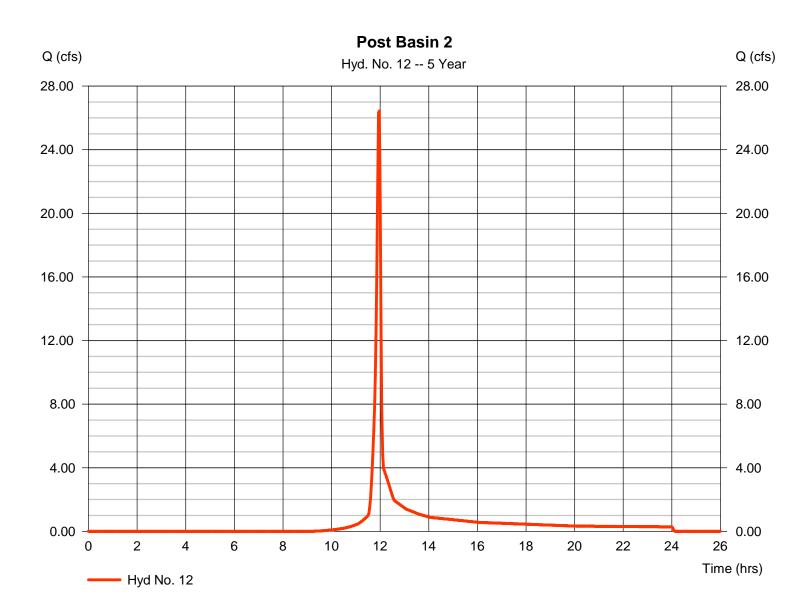

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

Hydrograph type Peak discharge = 0.375 cfs= Reservoir Storm frequency Time to peak $= 22.70 \, hrs$ = 5 yrsTime interval = 2 min Hyd. volume = 12,317 cuftMax. Elevation Inflow hyd. No. = 10 - Basin 1 Upper Routed = 304.32 ft= Basin 1 Lower Reservoir name Max. Storage = 8,514 cuft

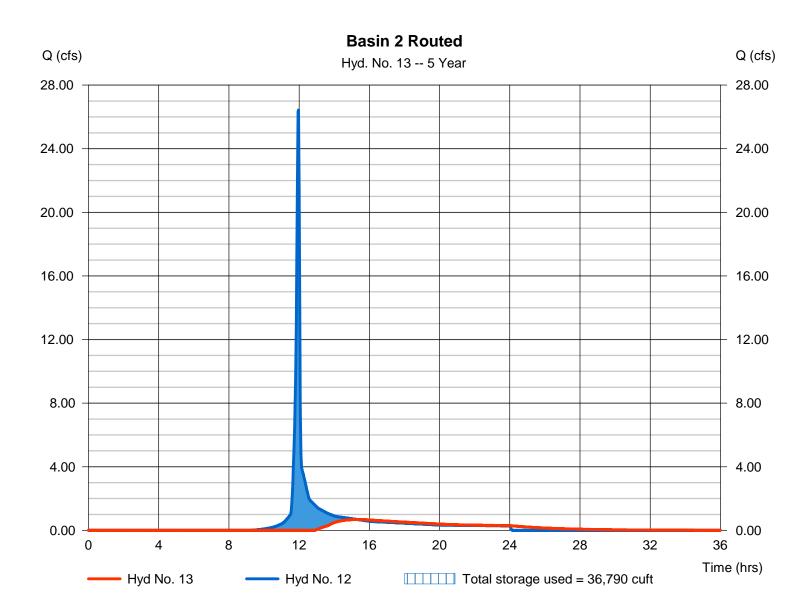

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 26.44 cfsStorm frequency Time to peak = 11.97 hrs= 5 yrsTime interval = 2 min Hyd. volume = 53,176 cuftDrainage area Curve number = 8.540 ac= 76.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.08 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

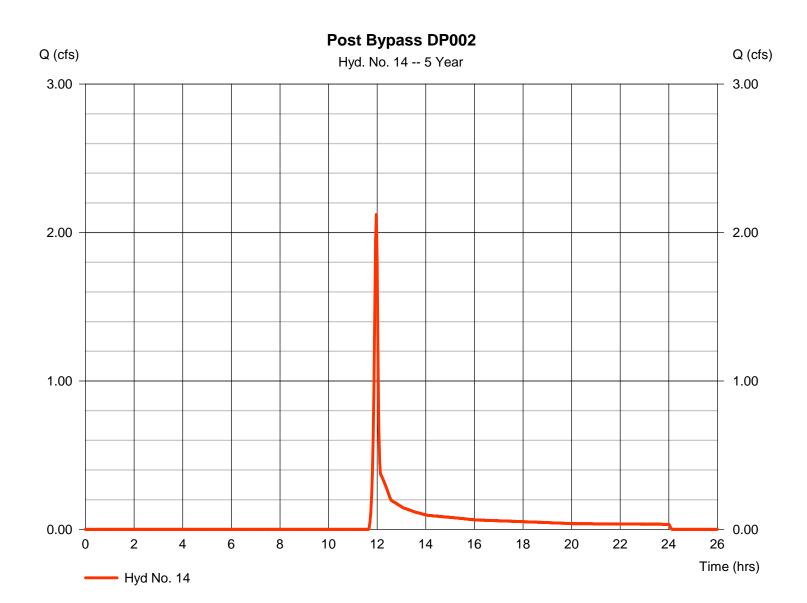

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

Hydrograph type = Reservoir Peak discharge = 0.682 cfsStorm frequency Time to peak $= 15.30 \, hrs$ = 5 yrsTime interval = 2 min Hyd. volume = 20,822 cuftInflow hyd. No. Max. Elevation = 12 - Post Basin 2 = 309.11 ftReservoir name = Basin 2 Max. Storage = 36,790 cuft


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

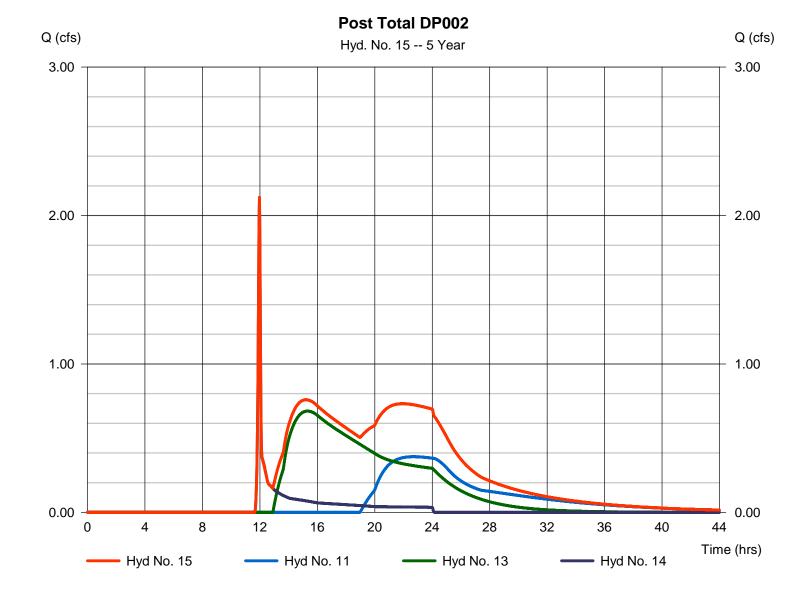
Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 2.121 cfsStorm frequency = 5 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 4,472 cuftDrainage area = 1.540 acCurve number = 61 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 4.08 inDistribution = Type II Storm duration = 24 hrs = 484Shape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


Thursday, 09 / 30 / 2021

Hyd. No. 15

Post Total DP002

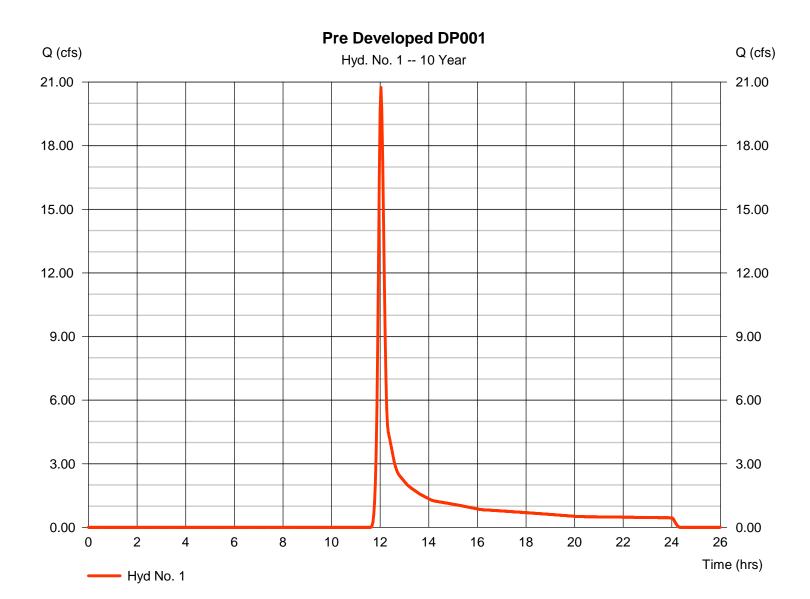
Hydrograph type = Combine
Storm frequency = 5 yrs
Time interval = 2 min
Inflow hyds. = 11, 13, 14

Peak discharge = 2.121 cfs
Time to peak = 11.97 hrs
Hyd. volume = 37,611 cuft
Contrib. drain. area = 1.540 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

	3 1				- 1-	Hydrafi	ow Hydrograph	Extension for Autodesk® Civil 3D® by Autodesk, Inc. v202		
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	20.75	2	722	60,334				Pre Developed DP001	
2	SCS Runoff	28.64	2	722	81,339				Pre Developed DP002	
4	SCS Runoff	39.83	2	718	79,751				Post Basin 3	
5	Reservoir	1.424	2	838	34,284	4	318.61	49,983	Basin 3 Routed	
6	SCS Runoff	3.349	2	718	6,757				Post Bypass DP001	
7	Combine	3.349	2	718	41,040	5, 6			Post Total DP001	
9	SCS Runoff	37.29	2	718	74,773				Post Basin 1	
10	Reservoir	1.244	2	848	37,284	9	322.89	46,611	Basin 1 Upper Routed	
11	Reservoir	0.928	2	996	31,087	10	304.57	10,321	Basin 1 Lower Routed	
12	SCS Runoff	34.26	2	716	69,196				Post Basin 2	
13	Reservoir	1.706	2	788	36,842	12	309.33	40,115	Basin 2 Routed	
14	SCS Runoff	3.170	2	718	6,463				Post Bypass DP002	
15	Combine	3.170	2	718	74,392	11, 13, 14			Post Total DP002	
SWM.gpw					Return F	Period: 10 Y	ear	Thursday,	09 / 30 / 2021	

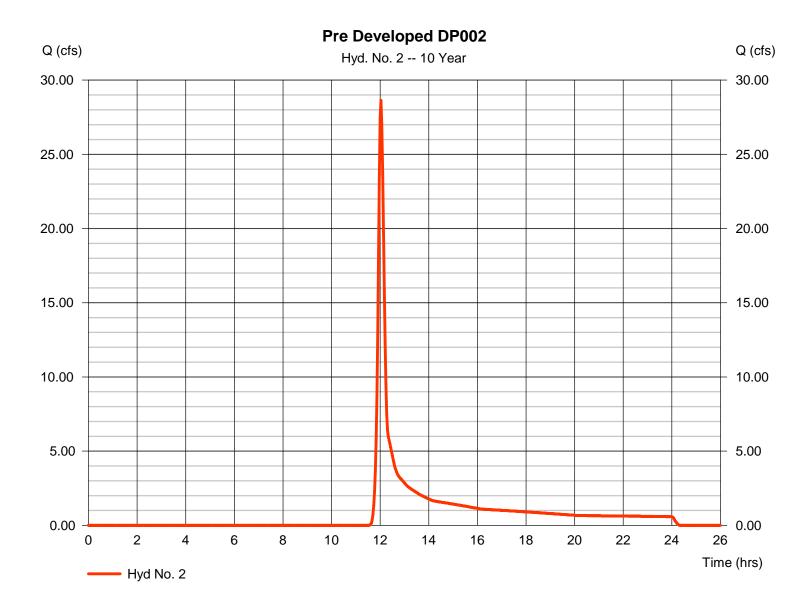

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

Hydrograph type = SCS Runoff Peak discharge = 20.75 cfsStorm frequency = 10 yrsTime to peak = 12.03 hrsTime interval = 2 minHyd. volume = 60,334 cuftDrainage area Curve number = 15.430 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 4.77 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

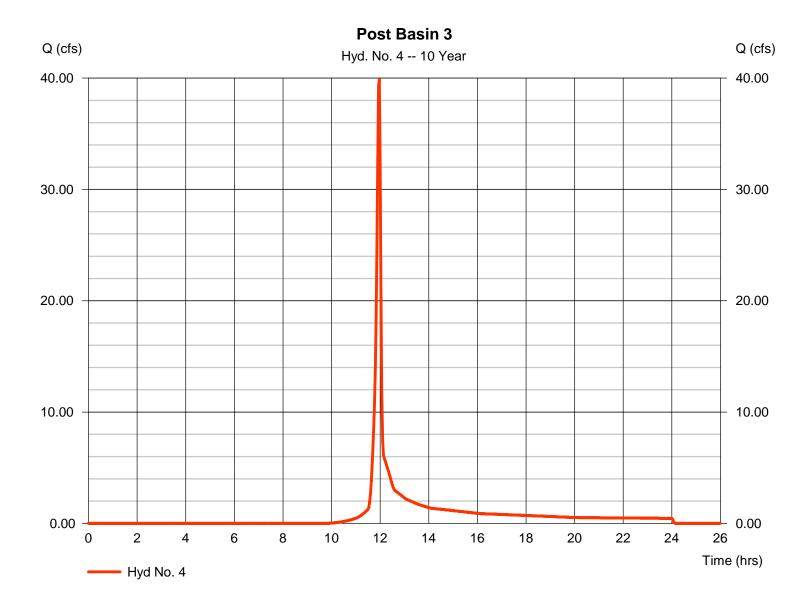

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 2

Pre Developed DP002

Hydrograph type = SCS Runoff Peak discharge = 28.64 cfsStorm frequency = 10 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 81,339 cuftDrainage area Curve number = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 4.77 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

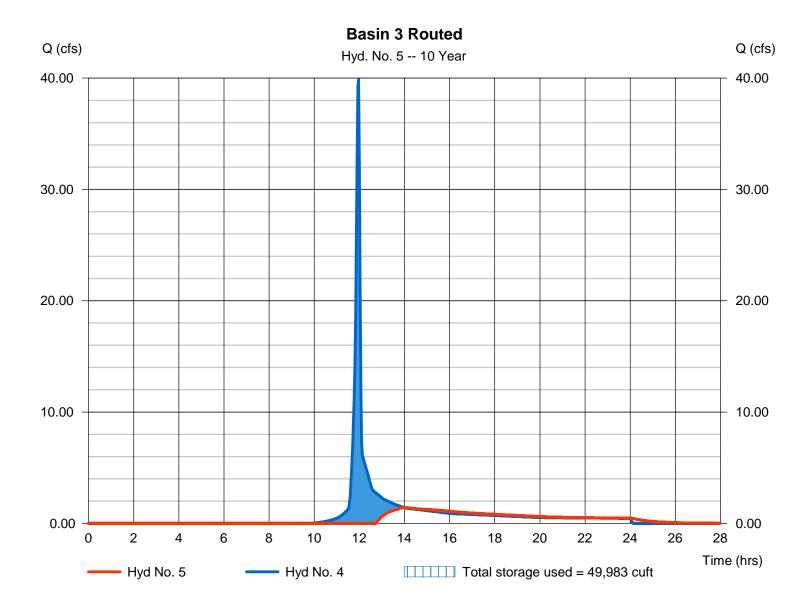

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 4

Post Basin 3

Hydrograph type = SCS Runoff Peak discharge = 39.83 cfsStorm frequency = 10 yrsTime to peak = 11.97 hrsTime interval = 2 min Hyd. volume = 79,751 cuftDrainage area Curve number = 12.150 ac= 70.8= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.77 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

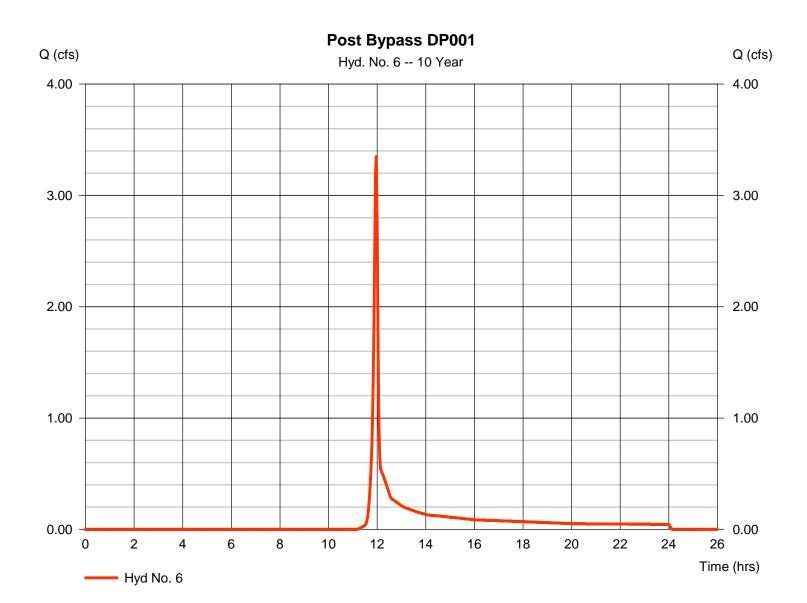

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

Hydrograph type = Reservoir Peak discharge = 1.424 cfsStorm frequency = 10 yrsTime to peak $= 13.97 \, hrs$ Time interval = 2 minHyd. volume = 34,284 cuftInflow hyd. No. Max. Elevation = 4 - Post Basin 3 = 318.61 ftReservoir name = Basin 3 Max. Storage = 49,983 cuft


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 3.349 cfsStorm frequency = 10 yrsTime to peak = 11.97 hrsTime interval = 2 min Hyd. volume = 6,757 cuftDrainage area Curve number = 1.440 ac= 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.77 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

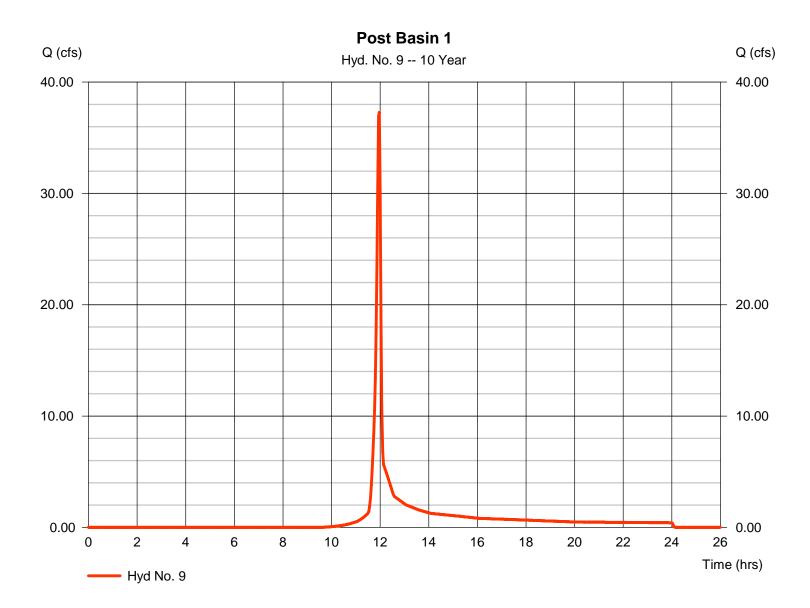
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 3.349 cfsStorm frequency = 10 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 41,040 cuftInflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

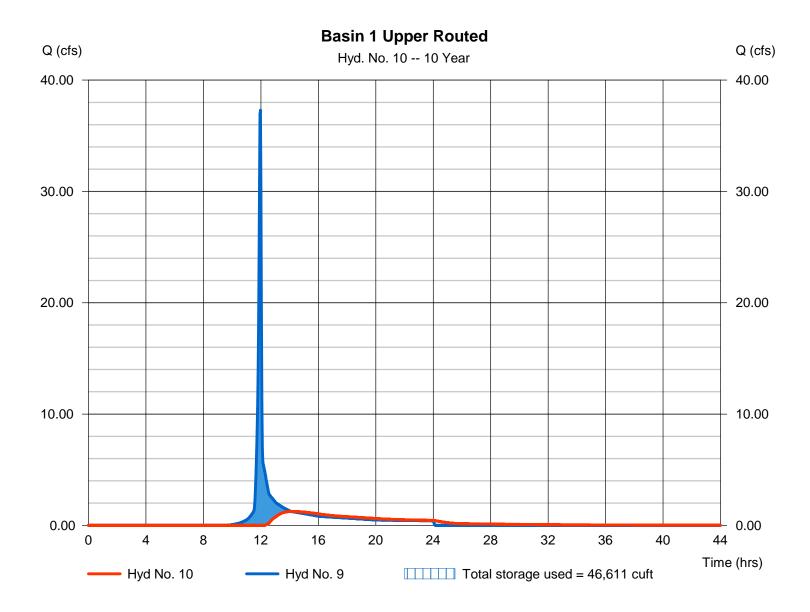

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 9

Post Basin 1

Hydrograph type = SCS Runoff Peak discharge = 37.29 cfsStorm frequency = 10 yrsTime to peak = 11.97 hrsTime interval = 2 min Hyd. volume = 74,773 cuftDrainage area Curve number = 10.950 ac= 71.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.77 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

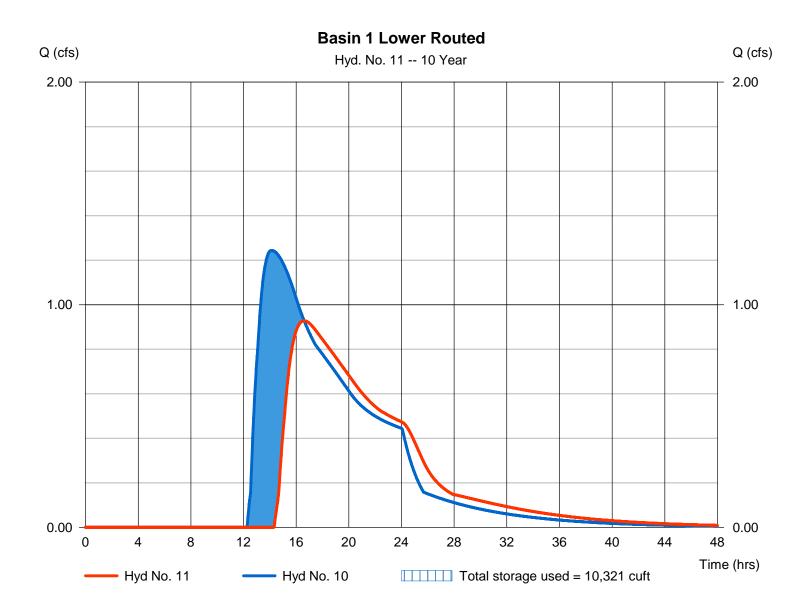

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

Hydrograph type Peak discharge = 1.244 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 14.13 \, hrs$ Time interval = 2 minHyd. volume = 37,284 cuftMax. Elevation Inflow hyd. No. = 9 - Post Basin 1 = 322.89 ftReservoir name = Basin 1 Upper Max. Storage = 46,611 cuft

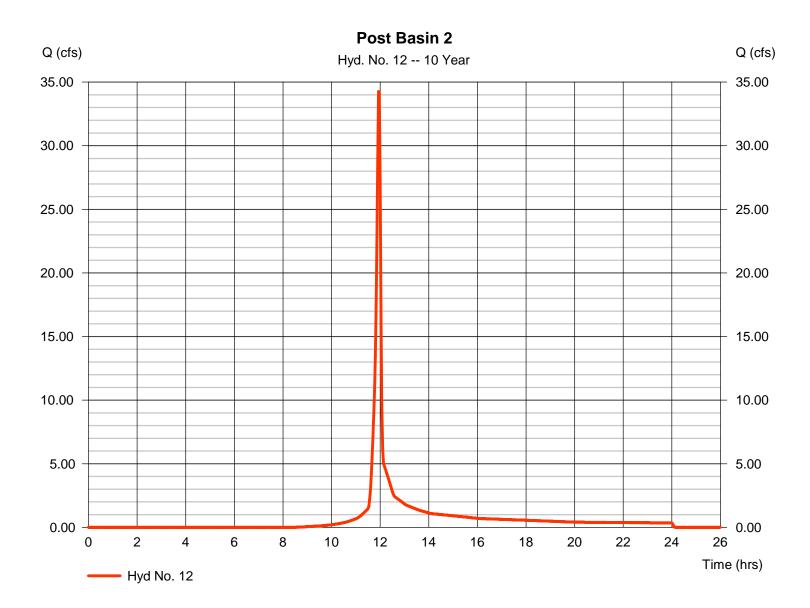

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

Hydrograph type = Reservoir Peak discharge = 0.928 cfsStorm frequency = 10 yrsTime to peak $= 16.60 \, hrs$ Time interval = 2 min Hyd. volume = 31,087 cuftMax. Elevation Inflow hyd. No. = 10 - Basin 1 Upper Routed = 304.57 ft= Basin 1 Lower Reservoir name Max. Storage = 10,321 cuft

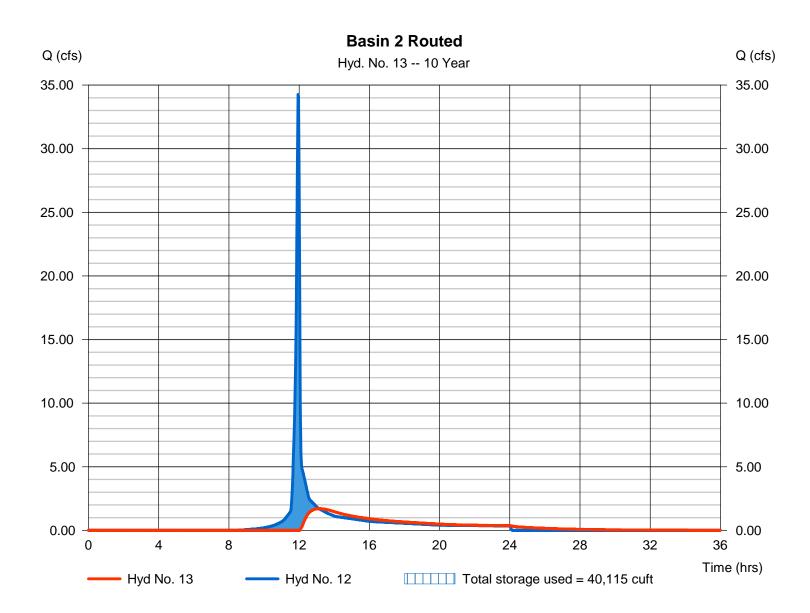

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 34.26 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 69,196 cuftDrainage area Curve number = 8.540 ac= 76.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.77 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

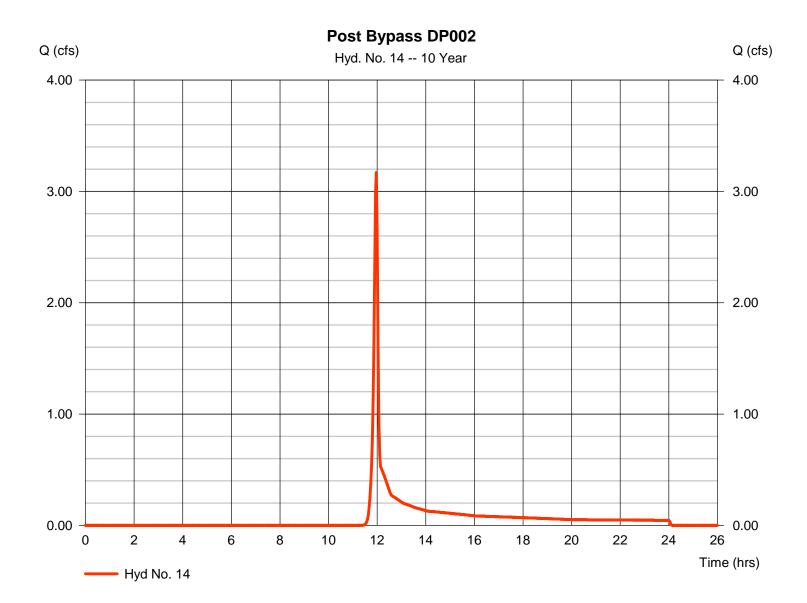

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

Hydrograph type = Reservoir Peak discharge = 1.706 cfsStorm frequency = 10 yrsTime to peak $= 13.13 \, hrs$ Time interval = 2 min Hyd. volume = 36,842 cuftInflow hyd. No. Max. Elevation = 12 - Post Basin 2 = 309.33 ftReservoir name = Basin 2 Max. Storage = 40,115 cuft

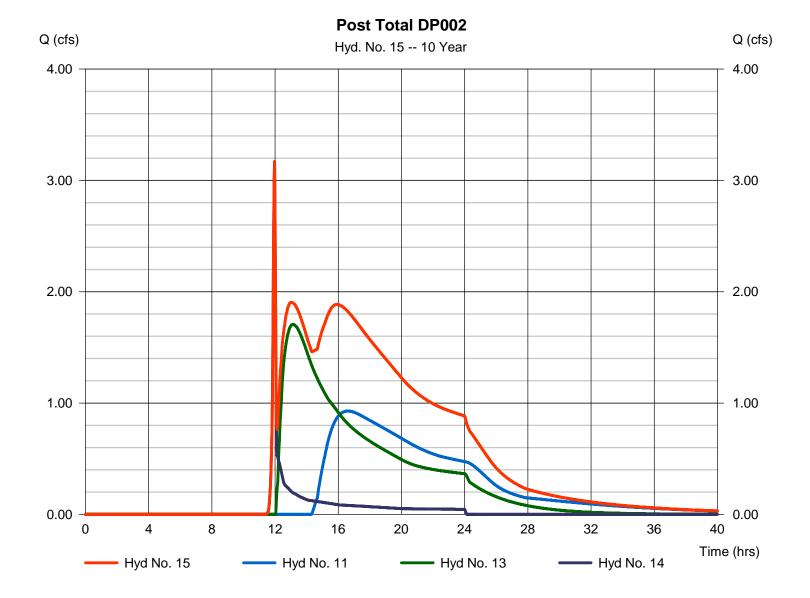

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 3.170 cfsStorm frequency = 10 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 6,463 cuftDrainage area Curve number = 1.540 ac= 61 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.77 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 15

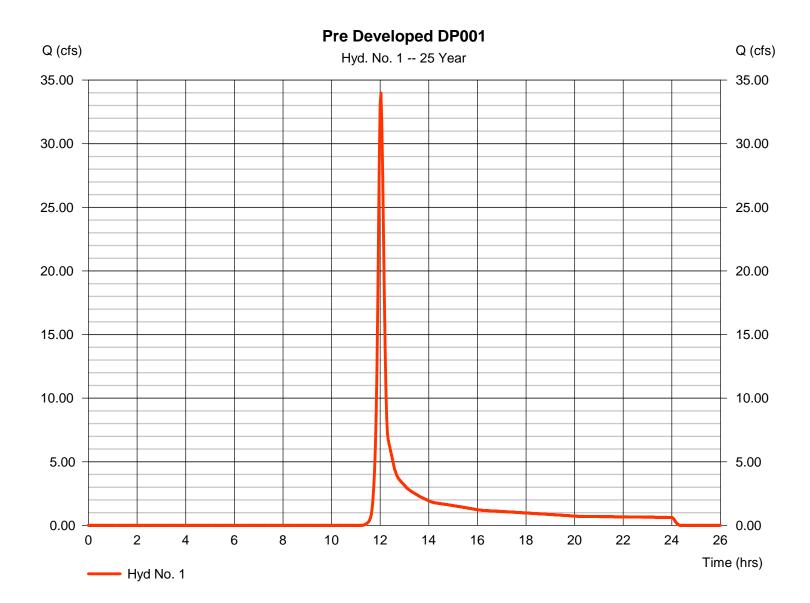
Post Total DP002

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 2 min Inflow hyds. = 11, 13, 14 Peak discharge = 3.170 cfs
Time to peak = 11.97 hrs
Hyd. volume = 74,392 cuft
Contrib. drain. area = 1.540 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

					- 1-	Hydrafi	ow Hydrograph	s Extension for Ai	nsion for Autodesk® Civil 3D® by Autodesk, Inc. v20	
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	33.98	2	722	92,948				Pre Developed DP001	
2	SCS Runoff	45.70	2	722	123,600				Pre Developed DP002	
4	SCS Runoff	55.13	2	718	111,161				Post Basin 3	
5	Reservoir	6.253	2	740	65,693	4	318.79	53,978	Basin 3 Routed	
6	SCS Runoff	4.966	2	718	9,933				Post Bypass DP001	
7	Combine	6.859	2	740	75,627	5, 6			Post Total DP001	
)	SCS Runoff	51.31	2	716	103,585				Post Basin 1	
10	Reservoir	3.633	2	756	66,096	9	323.31	54,387	Basin 1 Upper Routed	
11	Reservoir	2.071	2	874	59,899	10	305.33	15,802	Basin 1 Lower Routed	
12	SCS Runoff	46.02	2	716	93,362				Post Basin 2	
13	Reservoir	5.509	2	736	61,008	12	309.83	47,406	Basin 2 Routed	
14	SCS Runoff	4.826	2	718	9,678				Post Bypass DP002	
15	Combine	6.169	2	736	130,585	11, 13, 14			Post Total DP002	
SWM.gpw					Return F	Period: 25 Y	/ear	Thursday,	09 / 30 / 2021	

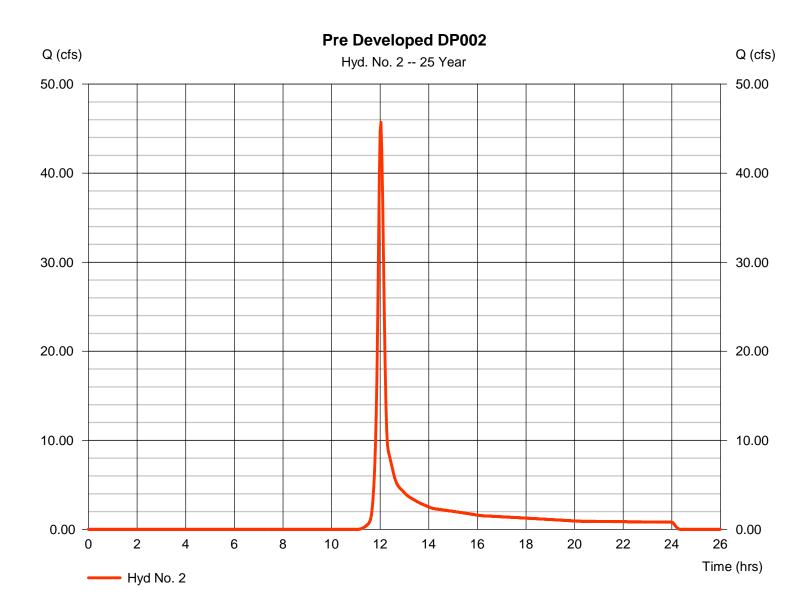

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

Hydrograph type = SCS Runoff Peak discharge = 33.98 cfsStorm frequency = 25 yrsTime to peak = 12.03 hrsTime interval = 2 minHyd. volume = 92,948 cuft Drainage area Curve number = 15.430 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 5.76 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 2

Pre Developed DP002

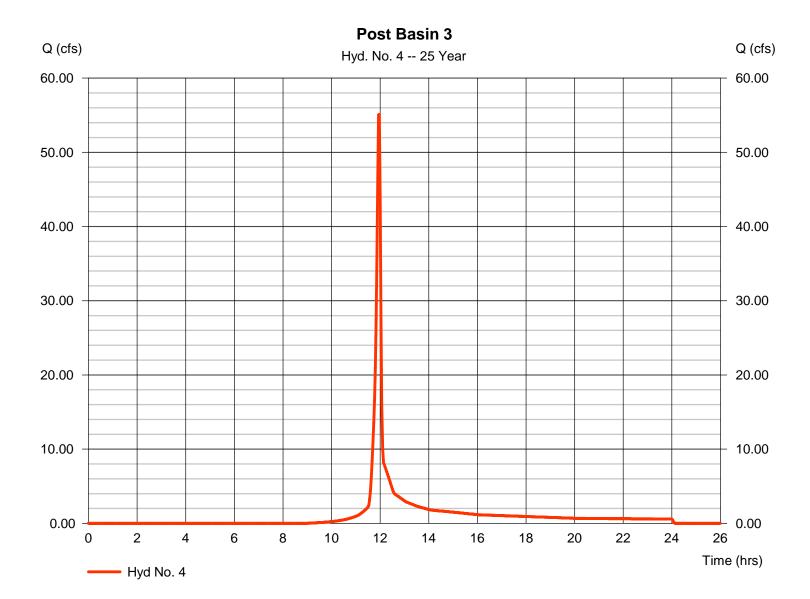
Hydrograph type = SCS Runoff Peak discharge = 45.70 cfsStorm frequency = 25 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 123,600 cuftCurve number Drainage area = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 12.00 \, \text{min}$ Tc method = TR55 Total precip. = 5.76 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

= 24 hrs

Thursday, 09 / 30 / 2021

= 484

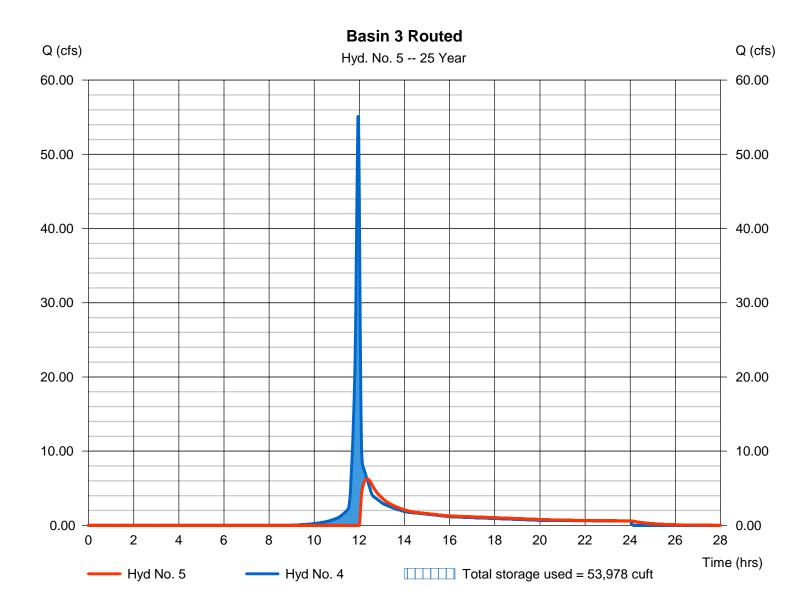

Hyd. No. 4

Post Basin 3

Storm duration

Hydrograph type = SCS Runoff Peak discharge = 55.13 cfsStorm frequency = 25 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 111,161 cuft Drainage area Curve number = 12.150 ac= 70.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.76 inDistribution = Type II

Shape factor

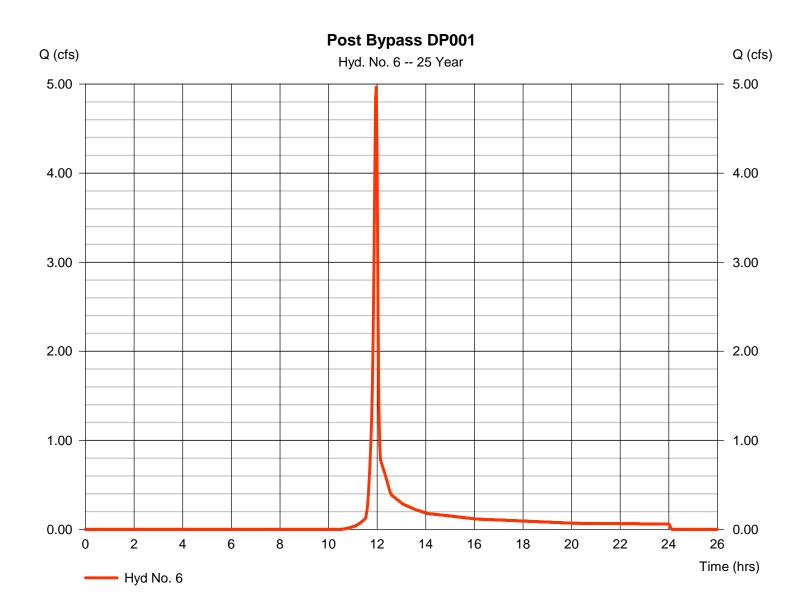

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

Hydrograph type = Reservoir Peak discharge = 6.253 cfsStorm frequency = 25 yrsTime to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 65,693 cuftMax. Elevation Inflow hyd. No. = 4 - Post Basin 3 = 318.79 ftReservoir name = Basin 3 Max. Storage = 53,978 cuft

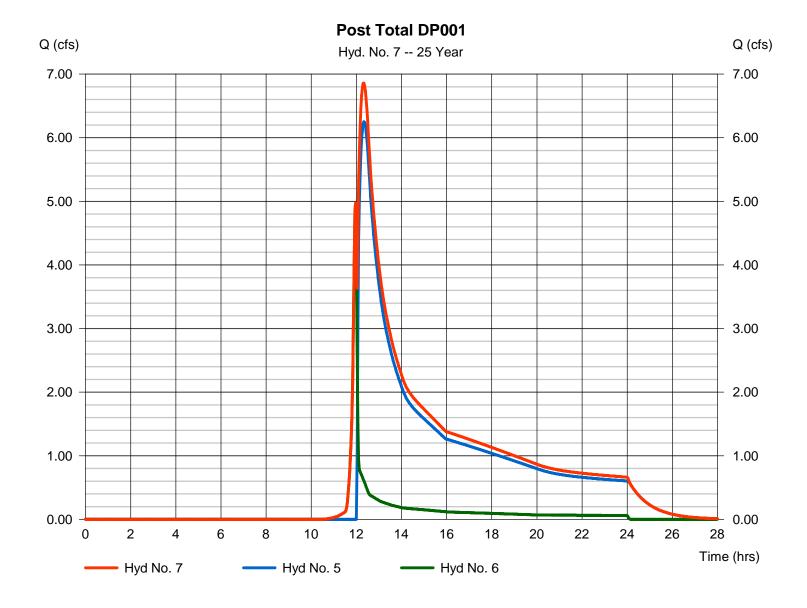

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 4.966 cfsStorm frequency = 25 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 9.933 cuftDrainage area = 1.440 acCurve number = 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 5.76 inDistribution = Type II Storm duration = 24 hrs = 484 Shape factor


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

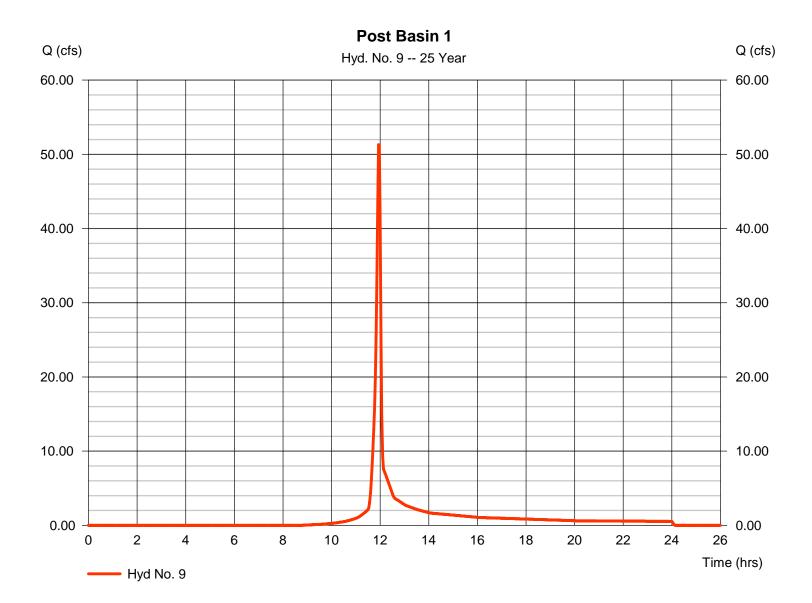
Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 6.859 cfsStorm frequency Time to peak = 25 yrs $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 75,627 cuftInflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

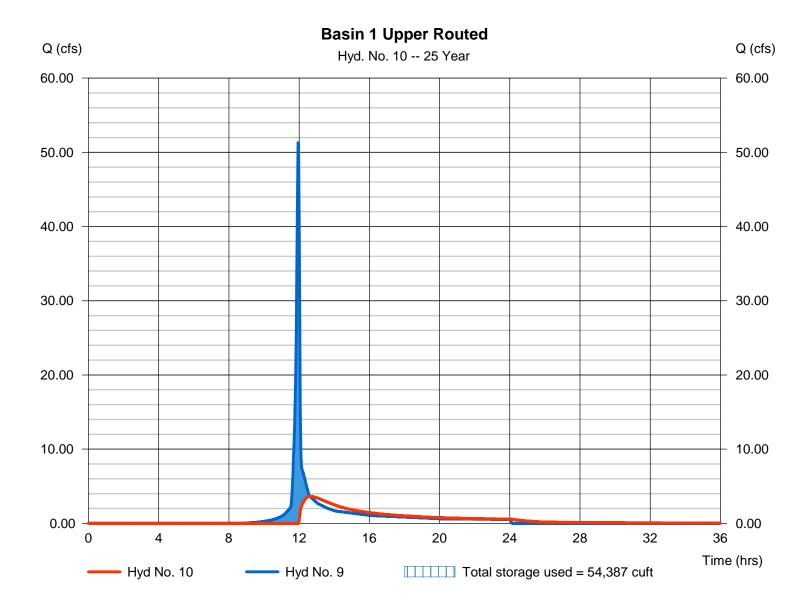

Thursday, 09 / 30 / 2021

Hyd. No. 9

Post Basin 1

Hydrograph type = SCS Runoff Peak discharge = 51.31 cfsStorm frequency = 25 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 103,585 cuftDrainage area Curve number = 10.950 ac= 71.8

Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.76 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

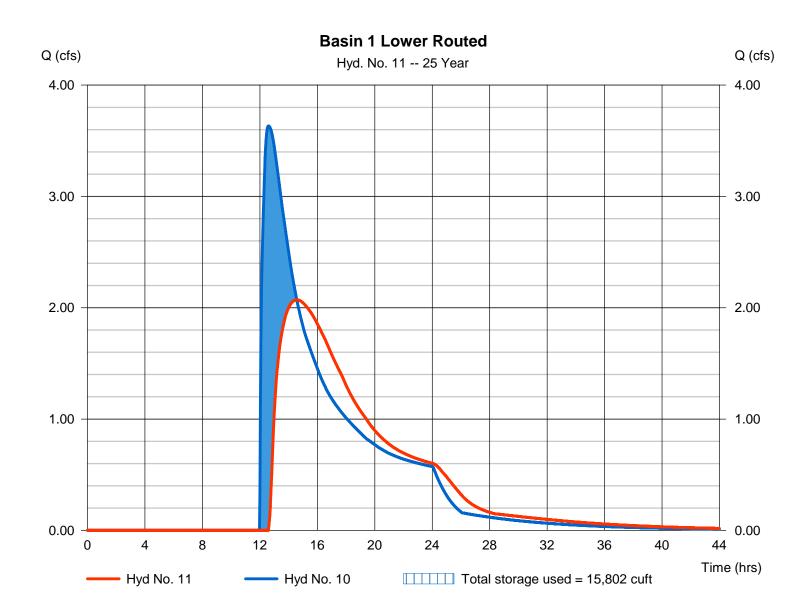

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

Hydrograph type Peak discharge = 3.633 cfs= Reservoir Storm frequency = 25 yrsTime to peak $= 12.60 \, hrs$ Time interval = 2 min Hyd. volume = 66,096 cuftInflow hyd. No. Max. Elevation = 9 - Post Basin 1 = 323.31 ftReservoir name = Basin 1 Upper Max. Storage = 54,387 cuft

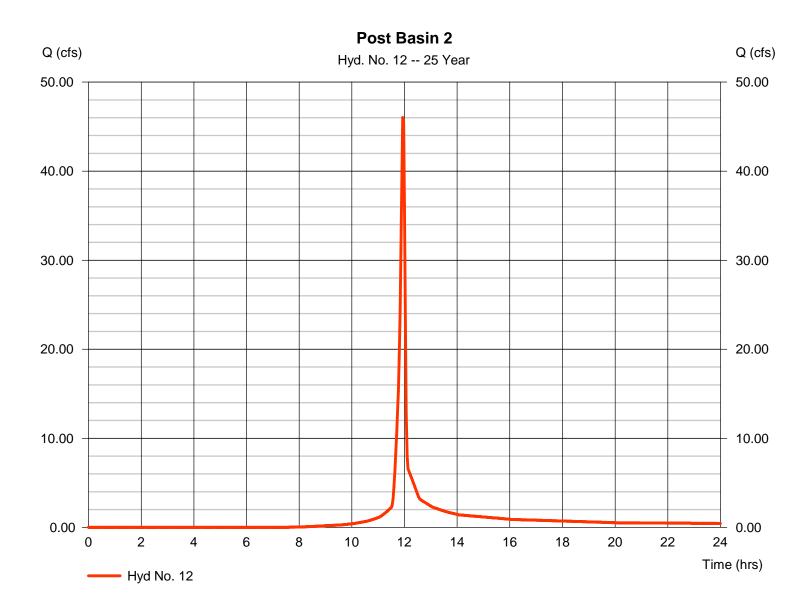

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

Hydrograph type = Reservoir Peak discharge = 2.071 cfsStorm frequency = 25 yrsTime to peak $= 14.57 \, hrs$ Time interval = 2 min Hyd. volume = 59,899 cuftInflow hyd. No. Max. Elevation = 10 - Basin 1 Upper Routed = 305.33 ft= Basin 1 Lower Reservoir name Max. Storage = 15,802 cuft

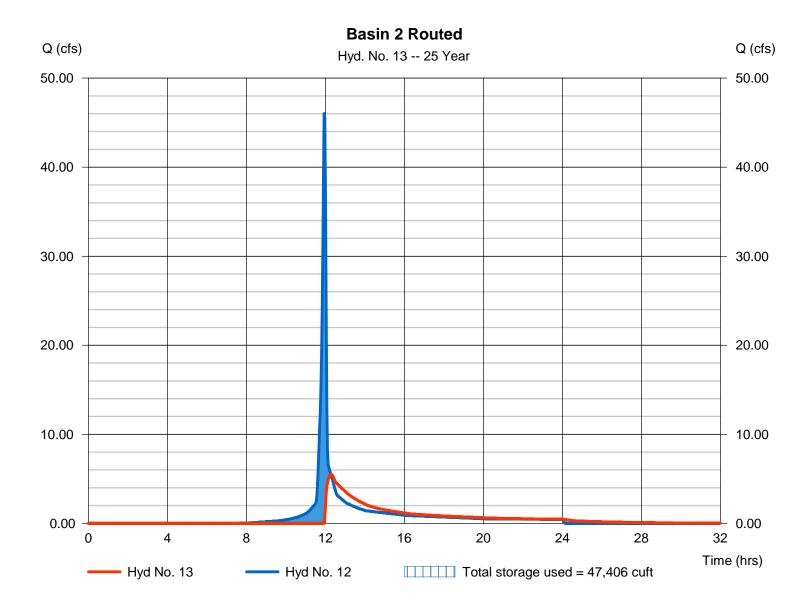

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 46.02 cfsStorm frequency = 25 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 93,362 cuftDrainage area Curve number = 8.540 ac= 76.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.76 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

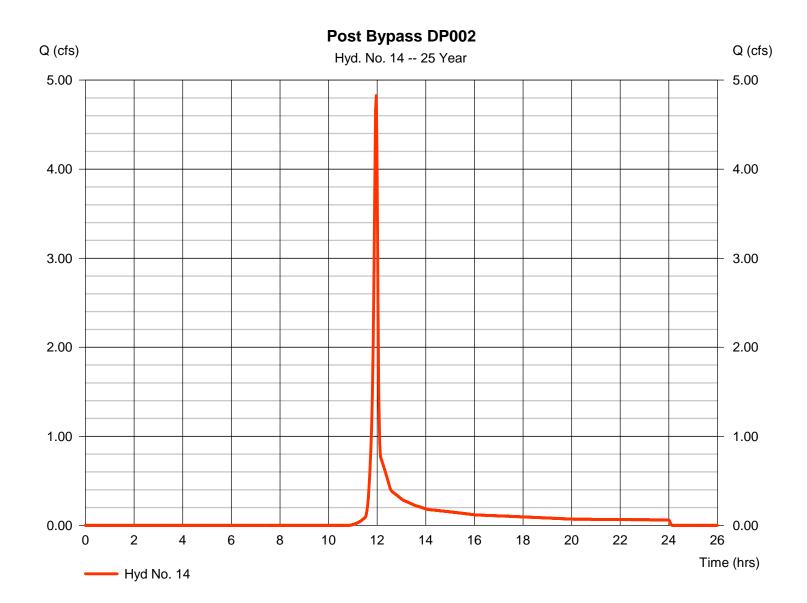

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

Hydrograph type = Reservoir Peak discharge = 5.509 cfsStorm frequency = 25 yrsTime to peak = 12.27 hrsTime interval = 2 min Hyd. volume = 61,008 cuftInflow hyd. No. Max. Elevation = 12 - Post Basin 2 = 309.83 ftReservoir name = Basin 2 Max. Storage = 47,406 cuft

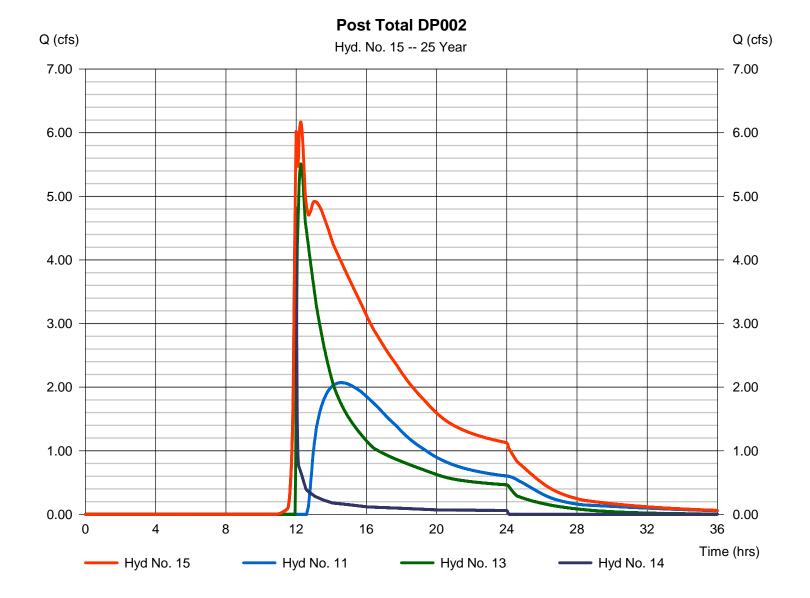

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 4.826 cfsStorm frequency = 25 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 9,678 cuftCurve number Drainage area = 1.540 ac= 61 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 5.76 inDistribution = Type II Storm duration = 24 hrs = 484 Shape factor


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 15

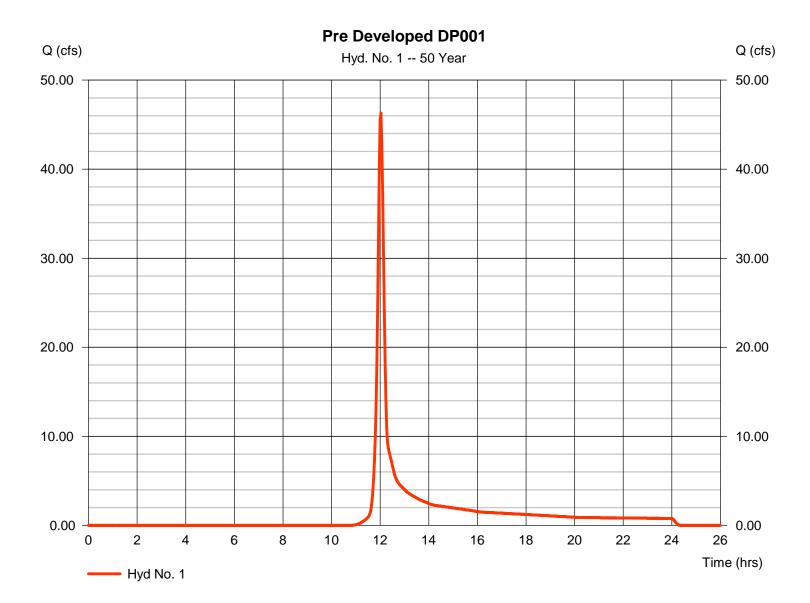
Post Total DP002

Hydrograph type = Combine Storm frequency = 25 yrs Time interval = 2 min Inflow hyds. = 11, 13, 14 Peak discharge = 6.169 cfs
Time to peak = 12.27 hrs
Hyd. volume = 130,585 cuft
Contrib. drain. area = 1.540 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	46.28	2	722	123,698				Pre Developed DP001
2	SCS Runoff	61.46	2	722	163,179				Pre Developed DP002
1	SCS Runoff	68.94	2	716	139,306				Post Basin 3
5	Reservoir	19.64	2	724	93,838	4	319.16	62,202	Basin 3 Routed
6	SCS Runoff	6.425	2	718	12,860				Post Bypass DP001
7	Combine	21.53	2	724	106,698	5, 6			Post Total DP001
)	SCS Runoff	63.94	2	716	129,319				Post Basin 1
10	Reservoir	10.69	2	726	91,830	9	323.71	61,860	Basin 1 Upper Routed
11	Reservoir	5.226	2	772	85,633	10	305.66	18,217	Basin 1 Lower Routed
12	SCS Runoff	56.20	2	716	114,655				Post Basin 2
13	Reservoir	18.98	2	724	82,300	12	310.22	53,973	Basin 2 Routed
14	SCS Runoff	6.335	2	718	12,668				Post Bypass DP002
15	Combine	21.32	2	722	180,602	11, 13, 14			Post Total DP002
 SW/	M.gpw				Return F	Period: 50 Y	/ear	Thursday	09 / 30 / 2021

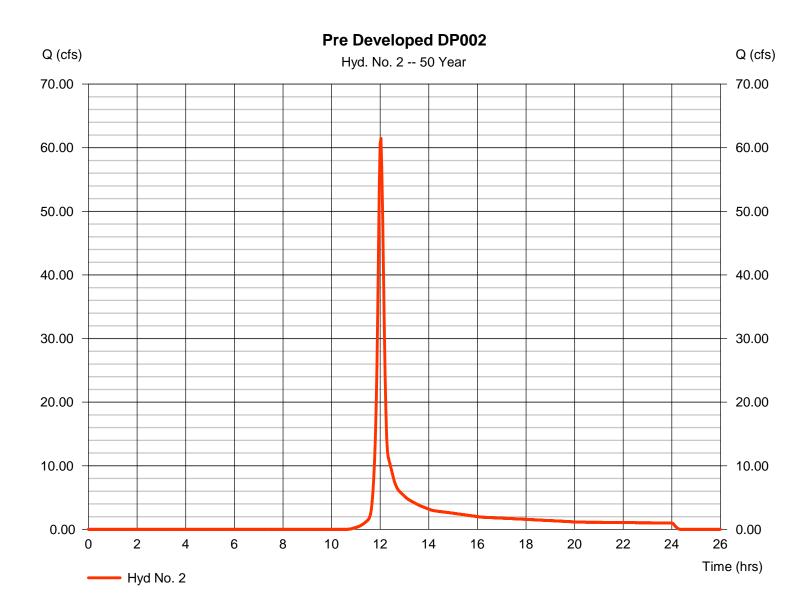

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

Hydrograph type = SCS Runoff Peak discharge = 46.28 cfsStorm frequency = 50 yrsTime to peak = 12.03 hrsTime interval = 2 minHyd. volume = 123,698 cuft Curve number Drainage area = 15.430 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 12.00 \, \text{min}$ Tc method = TR55 Total precip. = 6.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

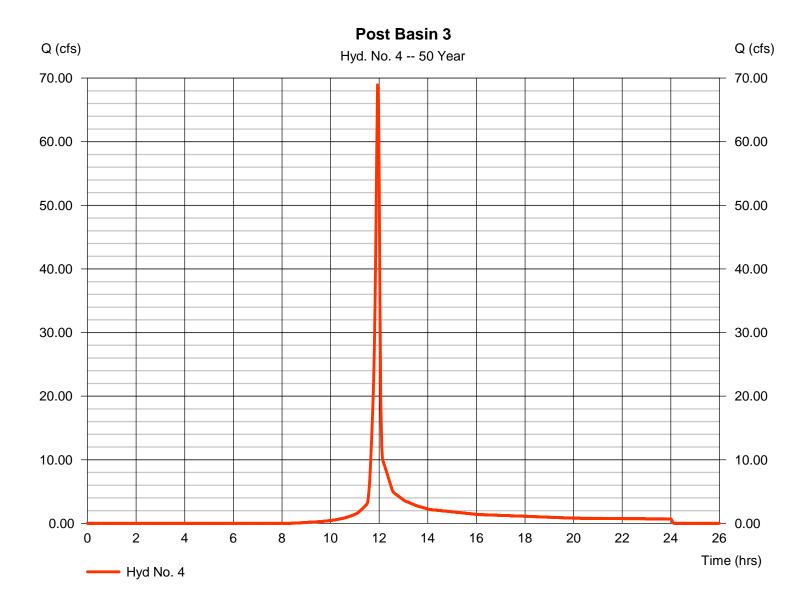
Thursday, 09 / 30 / 2021

Hyd. No. 2

Pre Developed DP002

Hydrograph type = SCS Runoff Peak discharge = 61.46 cfsStorm frequency = 50 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 163,179 cuftDrainage area Curve number = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 6.60 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

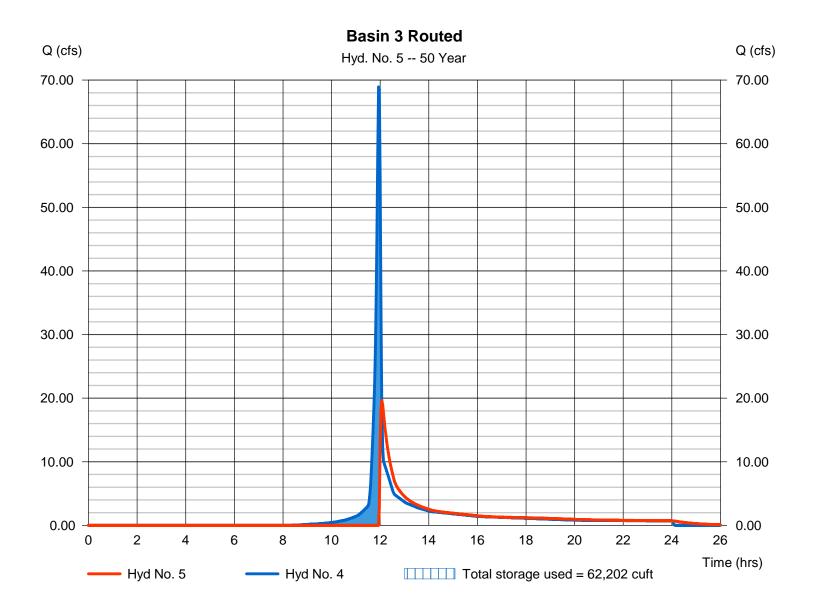

Thursday, 09 / 30 / 2021

Hyd. No. 4

Post Basin 3

Hydrograph type = SCS Runoff Peak discharge = 68.94 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 minHyd. volume = 139.306 cuft Drainage area Curve number = 12.150 ac= 70.8Basin Slope = 0.0 %Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 5.00 min
Total precip. = 6.60 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

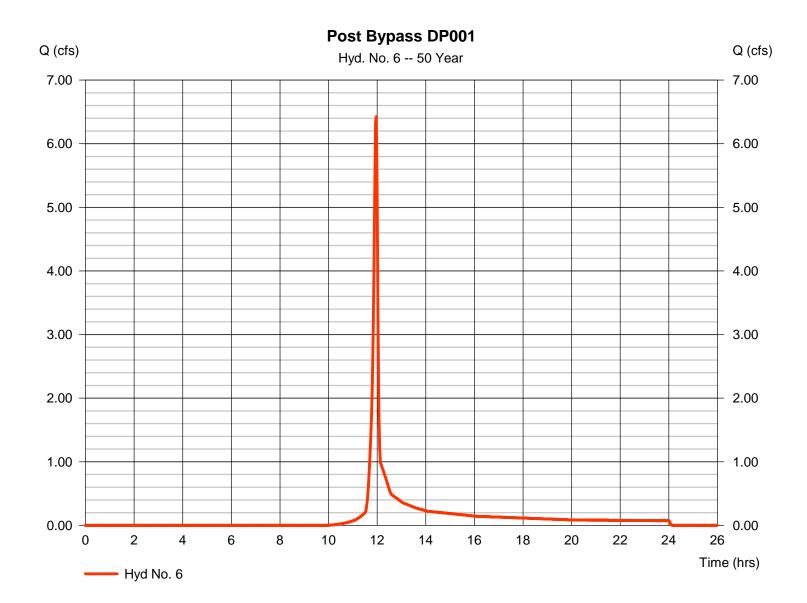

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

Hydrograph type = Reservoir Peak discharge = 19.64 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 93,838 cuft Inflow hyd. No. Max. Elevation = 4 - Post Basin 3 = 319.16 ftReservoir name = Basin 3 Max. Storage = 62,202 cuft

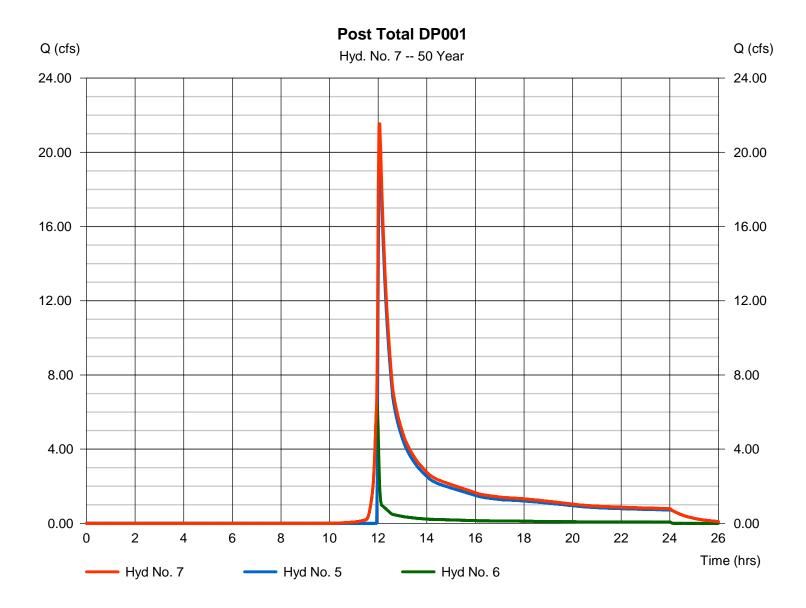

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 6.425 cfsStorm frequency = 50 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 12,860 cuftDrainage area Curve number = 1.440 ac= 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

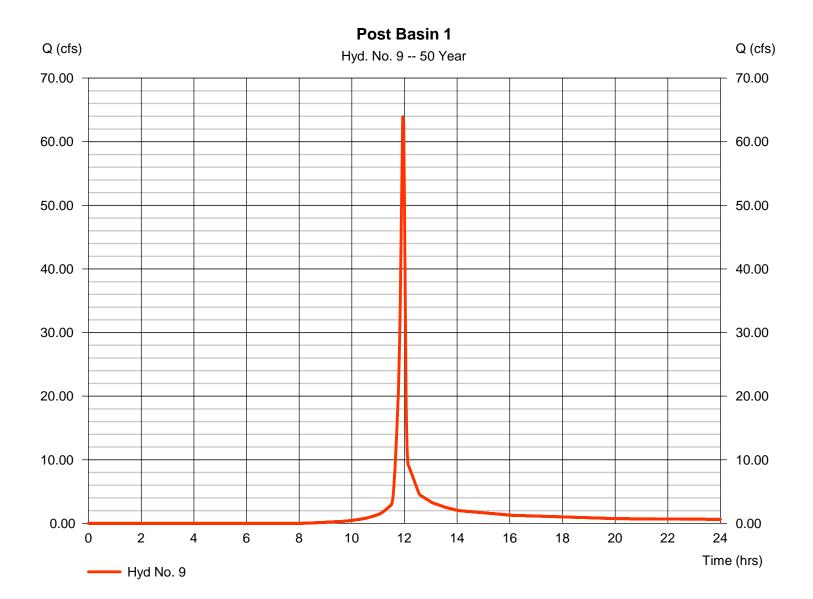
Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 21.53 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 106,698 cuft Inflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

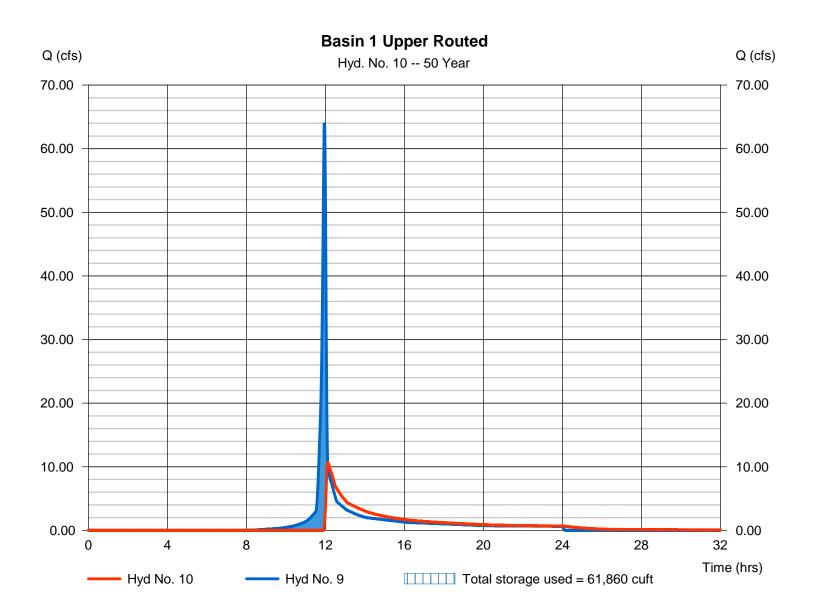

Thursday, 09 / 30 / 2021

Hyd. No. 9

Post Basin 1

Hydrograph type = SCS Runoff Peak discharge = 63.94 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 minHyd. volume = 129.319 cuft Drainage area Curve number = 10.950 ac= 71.8Basin Slope = 0.0 %Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 5.00 min
Total precip. = 6.60 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

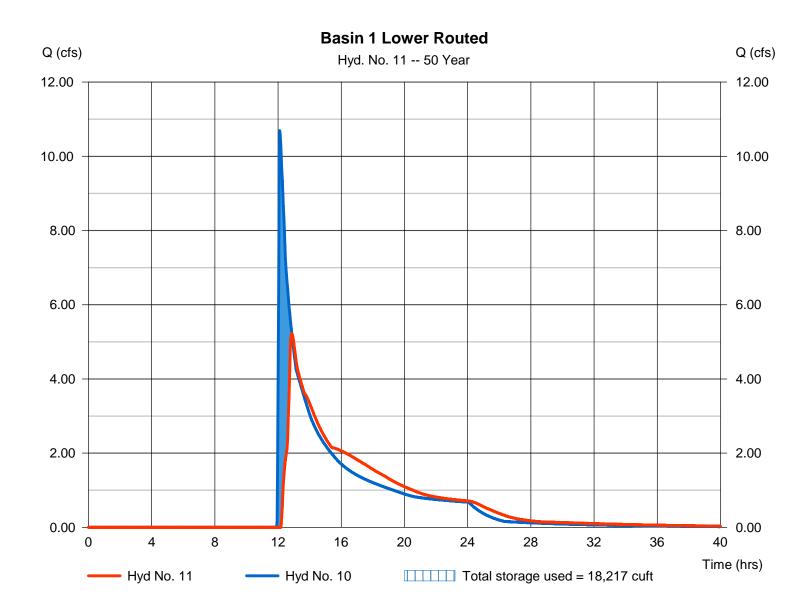

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

Hydrograph type Peak discharge = 10.69 cfs= Reservoir Storm frequency = 50 yrsTime to peak = 12.10 hrsTime interval = 2 min Hyd. volume = 91,830 cuftMax. Elevation Inflow hyd. No. = 9 - Post Basin 1 = 323.71 ftReservoir name = Basin 1 Upper Max. Storage = 61,860 cuft


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

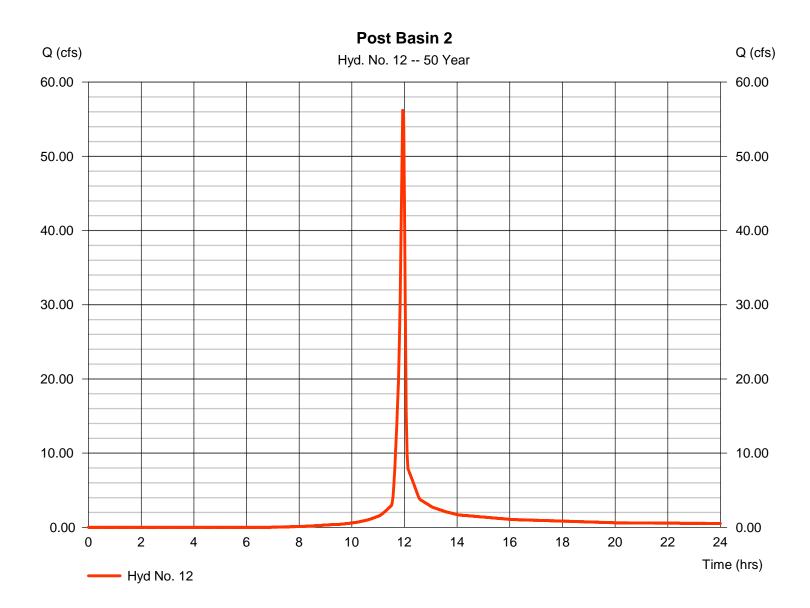
Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

Hydrograph type Peak discharge = 5.226 cfs= Reservoir Storm frequency = 50 yrsTime to peak $= 12.87 \, hrs$ Time interval = 2 min Hyd. volume = 85,633 cuftInflow hyd. No. Max. Elevation = 10 - Basin 1 Upper Routed = 305.66 ft= Basin 1 Lower Reservoir name Max. Storage = 18,217 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

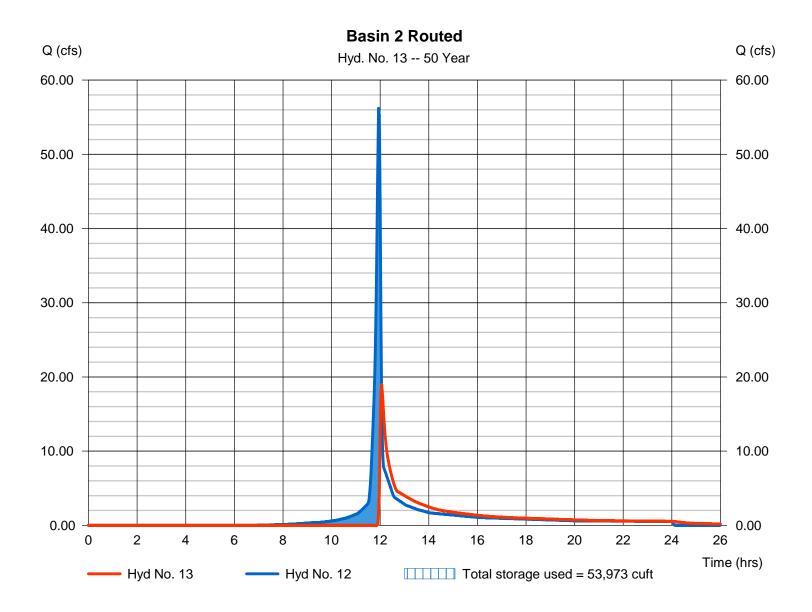

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 56.20 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 114,655 cuft Drainage area Curve number = 8.540 ac= 76.4

Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

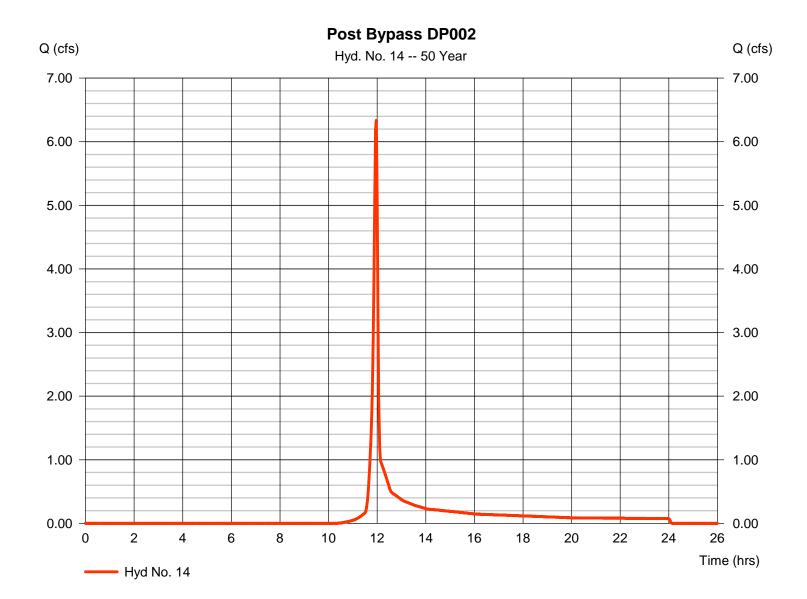

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

Hydrograph type = Reservoir Peak discharge = 18.98 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 82,300 cuftMax. Elevation Inflow hyd. No. = 12 - Post Basin 2 = 310.22 ftReservoir name = Basin 2 Max. Storage = 53,973 cuft

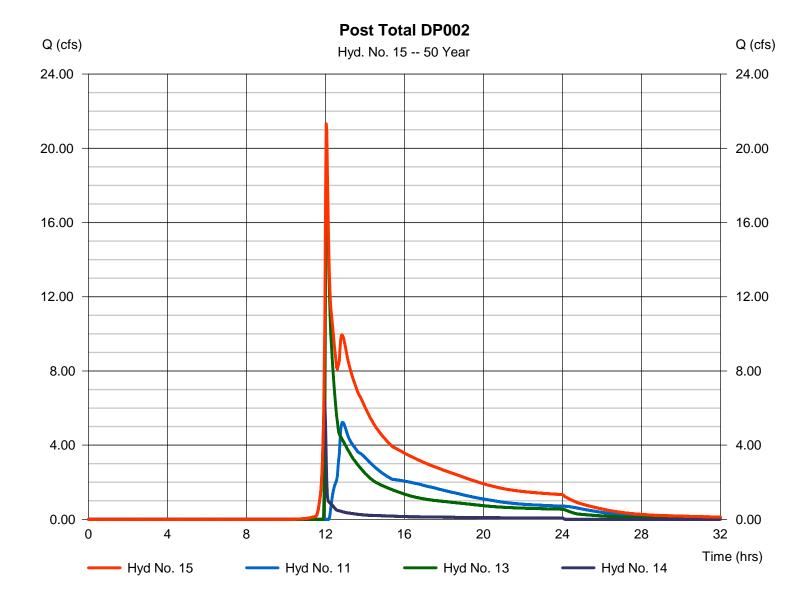

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 6.335 cfsStorm frequency = 50 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 12,668 cuftDrainage area Curve number = 1.540 ac= 61Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) $= 5.00 \, \text{min}$ Tc method = User Total precip. = 6.60 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 15

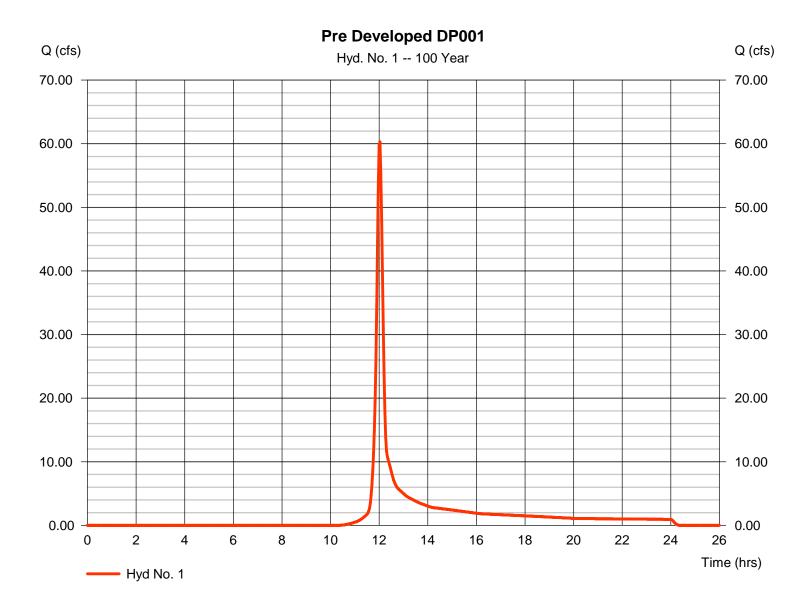
Post Total DP002

Hydrograph type = Combine Peak discharge = 21.32 cfsStorm frequency = 50 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 180,602 cuftInflow hyds. = 11, 13, 14 Contrib. drain. area = 1.540 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

łyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	60.31	2	722	159,136				Pre Developed DP001
2	SCS Runoff	79.34	2	722	208,579				Pre Developed DP002
4	SCS Runoff	84.16	2	716	170,598				Post Basin 3
5	Reservoir	24.38	2	724	125,131	4	319.74	74,844	Basin 3 Routed
6	SCS Runoff	8.052	2	718	16,178				Post Bypass DP001
7	Combine	29.04	2	718	141,309	5, 6			Post Total DP001
9	SCS Runoff	77.75	2	716	157,867				Post Basin 1
10	Reservoir	30.18	2	722	120,378	9	324.12	70,140	Basin 1 Upper Routed
11	Reservoir	13.13	2	738	114,181	10	305.96	20,385	Basin 1 Lower Routed
12	SCS Runoff	67.22	2	716	138,052				Post Basin 2
13	Reservoir	33.12	2	722	105,698	12	310.57	60,504	Basin 2 Routed
14	SCS Runoff	8.028	2	718	16,080				Post Bypass DP002
15	Combine	37.69	2	720	235,959	11, 13, 14			Post Total DP002
	M.gpw				Return F	Period: 100	Year	Thursday,	09 / 30 / 2021

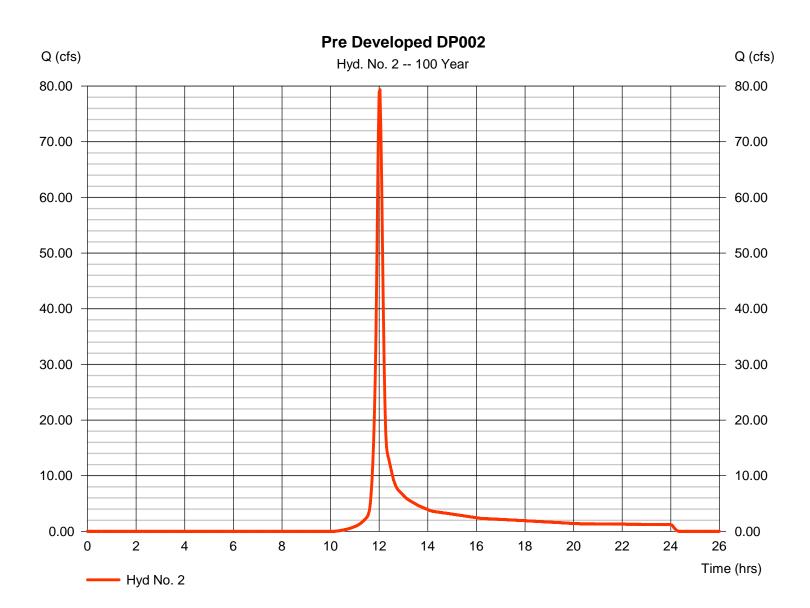

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 1

Pre Developed DP001

Hydrograph type = SCS Runoff Peak discharge = 60.31 cfsStorm frequency = 100 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 159,136 cuft Drainage area Curve number = 15.430 ac= 58 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 7.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

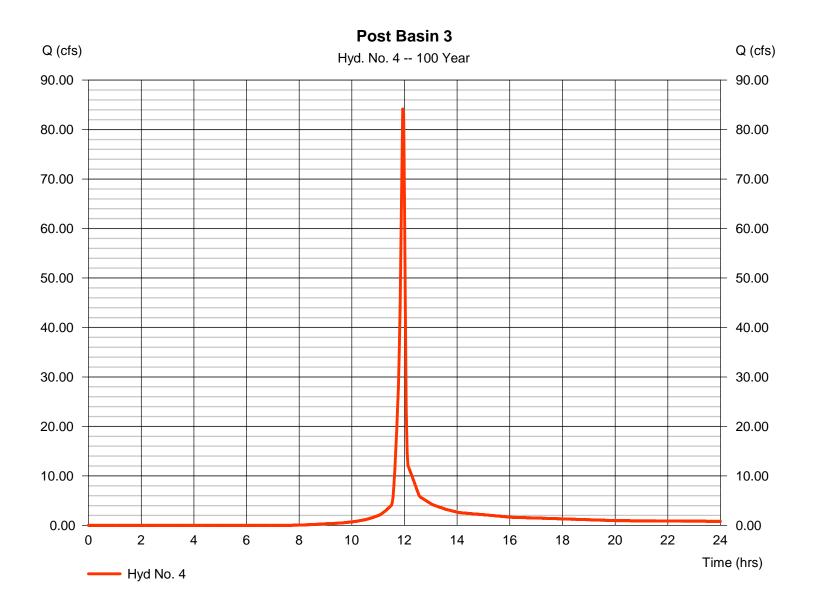
Thursday, 09 / 30 / 2021

Hyd. No. 2

Pre Developed DP002

Hydrograph type = SCS Runoff Peak discharge = 79.34 cfsStorm frequency = 100 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 208,579 cuftCurve number Drainage area = 19.210 ac= 59.4Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 12.00 \, \text{min}$ = TR55 Total precip. = 7.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

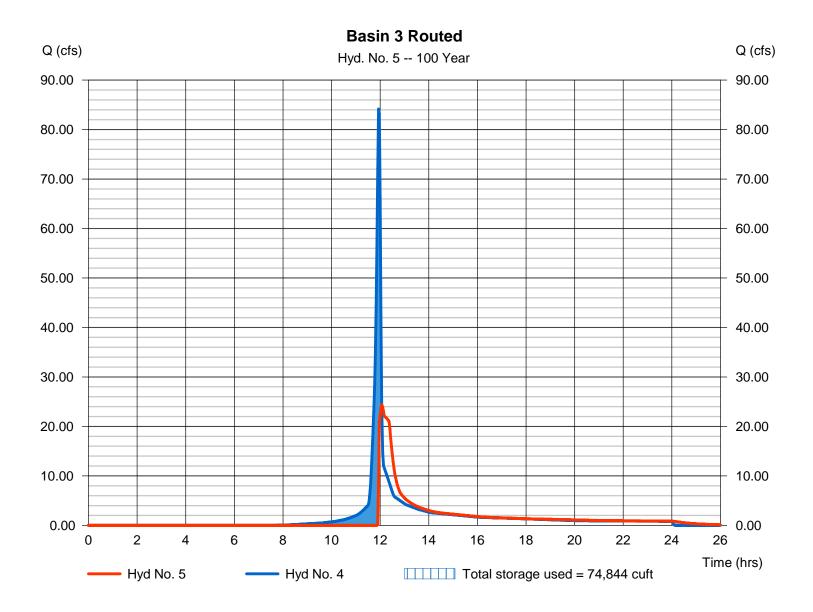

Thursday, 09 / 30 / 2021

Hyd. No. 4

Post Basin 3

Hydrograph type = SCS Runoff Peak discharge = 84.16 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 170,598 cuft Drainage area Curve number = 12.150 ac= 70.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User

Total precip. = 7.50 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484

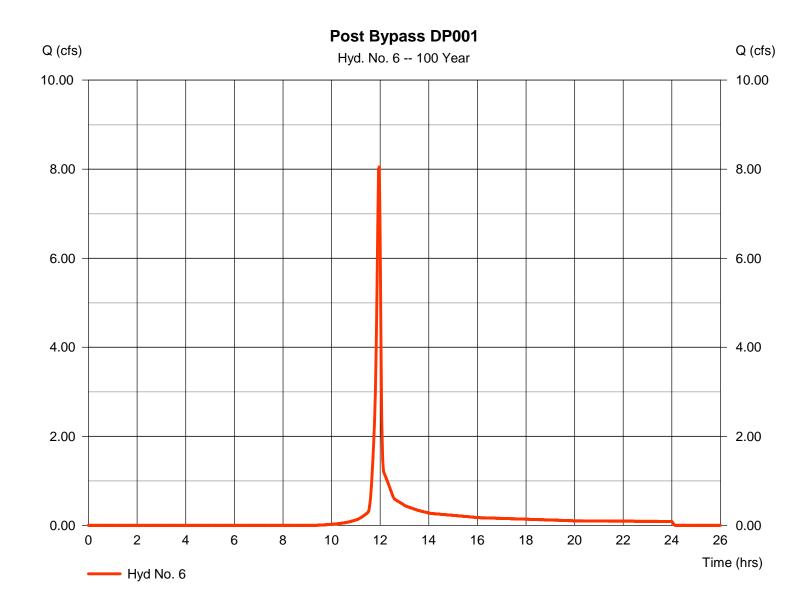

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 5

Basin 3 Routed

Hydrograph type = Reservoir Peak discharge = 24.38 cfsStorm frequency = 100 yrsTime to peak = 12.07 hrsTime interval = 2 min Hyd. volume = 125,131 cuftInflow hyd. No. Max. Elevation = 4 - Post Basin 3 = 319.74 ftReservoir name = Basin 3 Max. Storage = 74,844 cuft

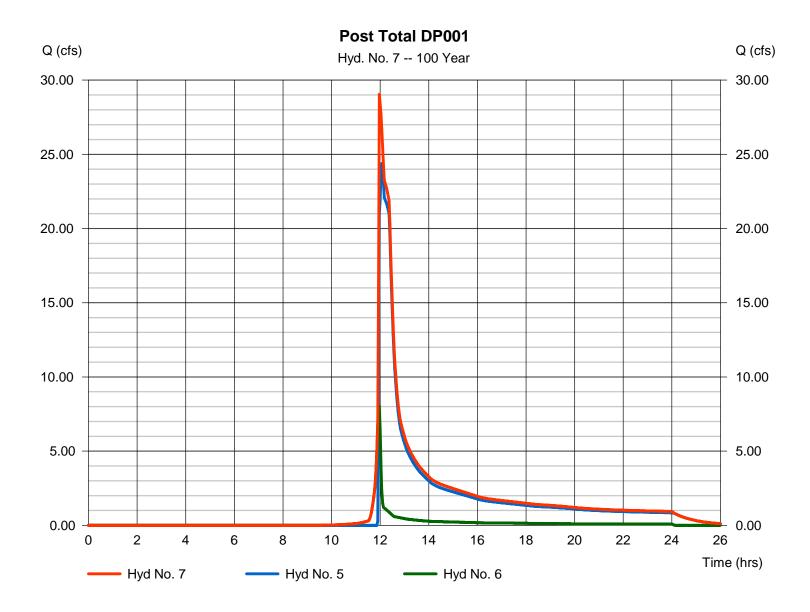

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 6

Post Bypass DP001

Hydrograph type = SCS Runoff Peak discharge = 8.052 cfsStorm frequency = 100 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 16,178 cuftDrainage area Curve number = 1.440 ac= 63.2Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 7

Post Total DP001

Hydrograph type = Combine Peak discharge = 29.04 cfsStorm frequency = 100 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 141,309 cuftInflow hyds. Contrib. drain. area = 1.440 ac= 5, 6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

= 7.50 in

= 24 hrs

Thursday, 09 / 30 / 2021

= Type II

= 484

Hyd. No. 9

Post Basin 1

Total precip.

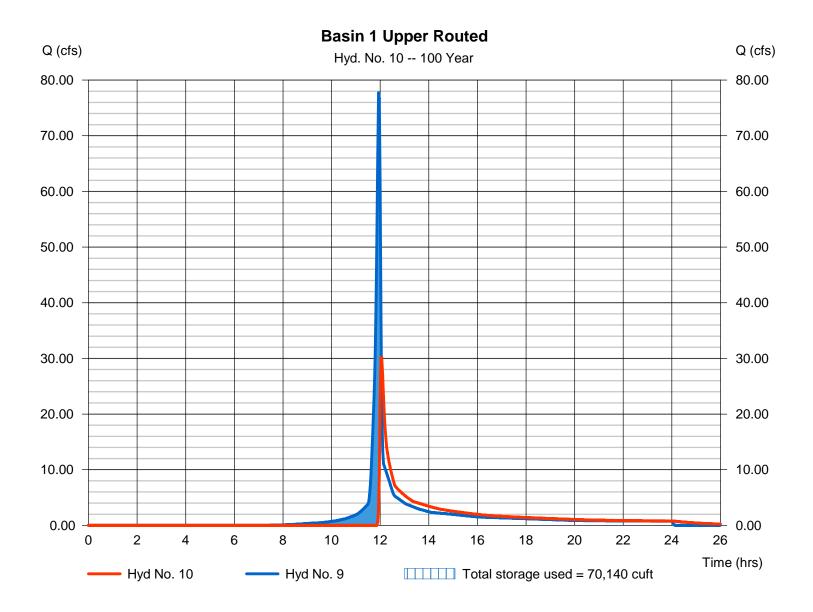
Storm duration

Hydrograph type = SCS Runoff Peak discharge = 77.75 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 157,867 cuft Drainage area Curve number = 10.950 ac= 71.8Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User

Distribution

Shape factor

Post Basin 1 Q (cfs) Q (cfs) Hyd. No. 9 -- 100 Year 80.00 80.00 70.00 70.00 60.00 60.00 50.00 50.00 40.00 40.00 30.00 30.00 20.00 20.00 10.00 10.00 0.00 0.00 2 4 6 8 10 12 14 16 18 20 22 24 Time (hrs) Hyd No. 9

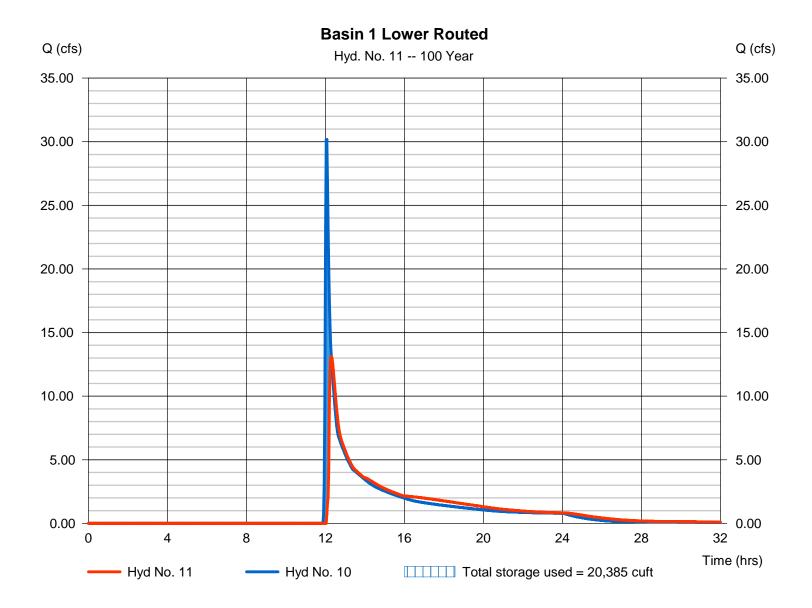

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 10

Basin 1 Upper Routed

Hydrograph type Peak discharge = 30.18 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 12.03 hrsTime interval = 2 min Hyd. volume = 120,378 cuft Inflow hyd. No. Max. Elevation = 9 - Post Basin 1 = 324.12 ftReservoir name = Basin 1 Upper Max. Storage = 70,140 cuft


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

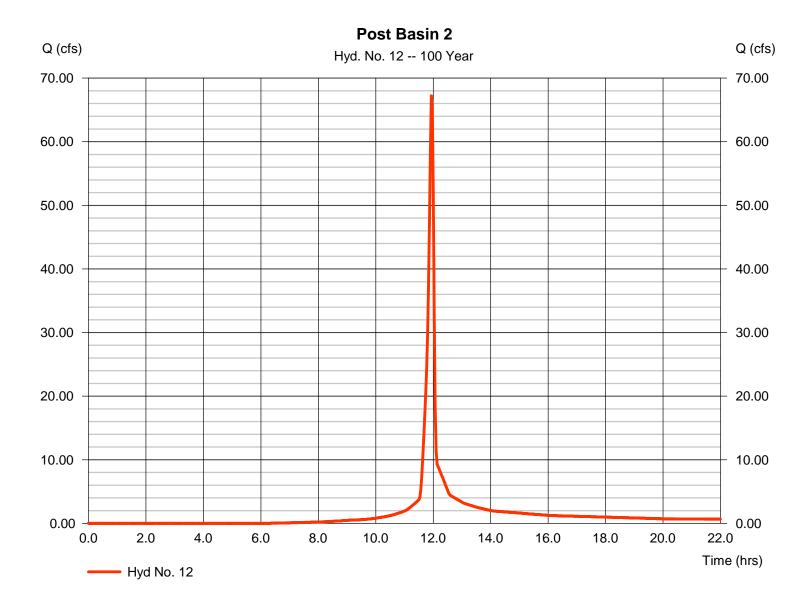
Thursday, 09 / 30 / 2021

Hyd. No. 11

Basin 1 Lower Routed

Hydrograph type Peak discharge = 13.13 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.30 \, hrs$ Time interval = 2 min Hyd. volume = 114,181 cuft Inflow hyd. No. Max. Elevation = 10 - Basin 1 Upper Routed = 305.96 ft= Basin 1 Lower Reservoir name Max. Storage = 20,385 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

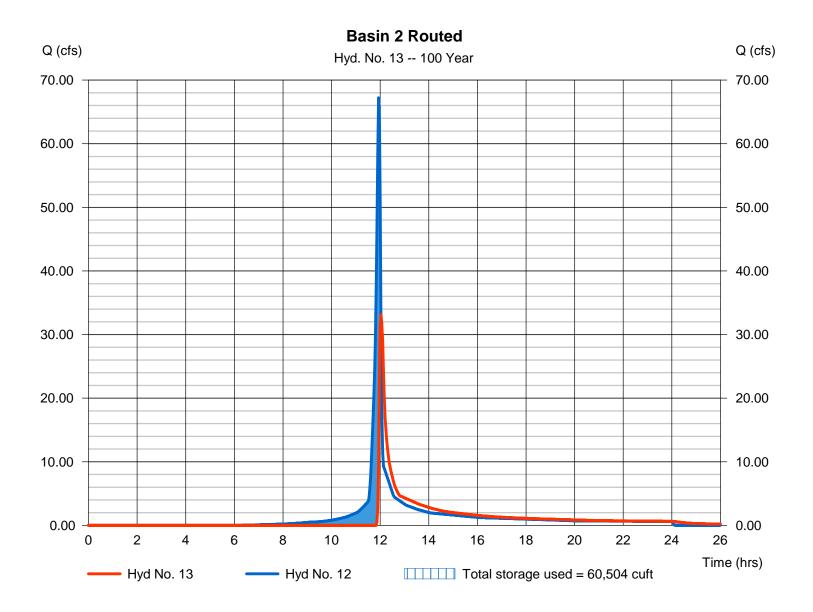

Thursday, 09 / 30 / 2021

Hyd. No. 12

Post Basin 2

Hydrograph type = SCS Runoff Peak discharge = 67.22 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 138.052 cuft Drainage area Curve number = 8.540 ac= 76.4Basin Slope = 0.0 %Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 5.00 min
Total precip. = 7.50 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

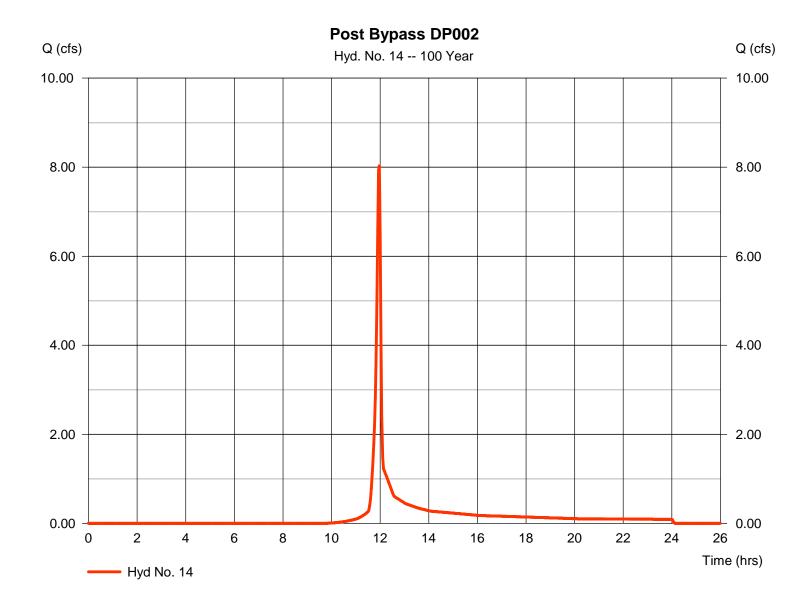

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 13

Basin 2 Routed

Hydrograph type = Reservoir Peak discharge = 33.12 cfsStorm frequency = 100 yrsTime to peak = 12.03 hrsTime interval = 2 minHyd. volume = 105,698 cuftInflow hyd. No. Max. Elevation = 12 - Post Basin 2 = 310.57 ftReservoir name = Basin 2 Max. Storage = 60,504 cuft

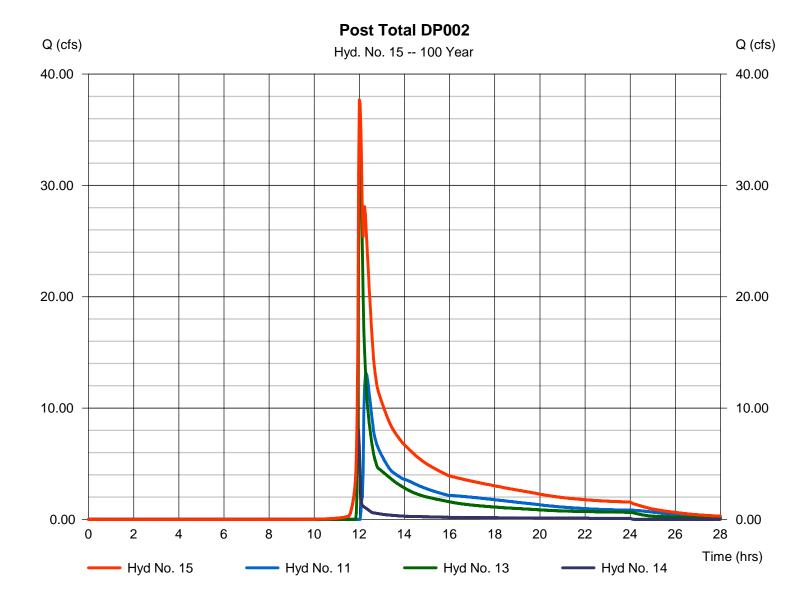

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 14

Post Bypass DP002

Hydrograph type = SCS Runoff Peak discharge = 8.028 cfsStorm frequency = 100 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 16,080 cuftDrainage area Curve number = 1.540 ac= 61Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Thursday, 09 / 30 / 2021

Hyd. No. 15

Post Total DP002

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 2 min Inflow hyds. = 11, 13, 14 Peak discharge = 37.69 cfs
Time to peak = 12.00 hrs
Hyd. volume = 235,959 cuft
Contrib. drain. area = 1.540 ac

APPENDIX E

USDA NRCS SOIL REPORT

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Chester County, Pennsylvania

Stokes

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	
Map Unit Descriptions	11
Chester County, Pennsylvania	
Ba—Baile silt loam	
Co—Codorus silt loam	14
GdB—Gladstone gravelly loam, 3 to 8 percent slopes	16
GdC—Gladstone gravelly loam, 8 to 15 percent slopes	
GfD—Gladstone gravelly loam, 8 to 25 percent slopes, very bouldery	
Ha—Hatboro silt loam	20
MaD—Manor loam, 15 to 25 percent slopes	21
UrlB—Urban land-Gladstone complex, 0 to 8 percent slopes	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(0)

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \wedge

Closed Depression

~

Gravel Pit

.

Gravelly Spot

0

Landfill Lava Flow

٨

Marsh or swamp

2

Mine or Quarry

衆

Miscellaneous Water

0

Perennial Water
Rock Outcrop

Ţ

Saline Spot

. .

Sandy Spot

_

Severely Eroded Spot

Sinkhole

&

Slide or Slip

Ø

Sodic Spot

__.._

8

Spoil Area Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

_

Streams and Canals

Transportation

ransp

Rails

~

Interstate Highways

_

US Routes

 \sim

Major Roads Local Roads

Background

10

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Chester County, Pennsylvania Survey Area Data: Version 13, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 26, 2019—Jul 10, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
Ва	Baile silt loam	11.2	16.9%	
Co	Codorus silt loam	1.1	1.6%	
GdB	Gladstone gravelly loam, 3 to 8 percent slopes	6.0	9.1%	
GdC	Gladstone gravelly loam, 8 to 15 percent slopes	32.3	49.0%	
GfD	Gladstone gravelly loam, 8 to 25 percent slopes, very bouldery	5.5	8.4%	
На	Hatboro silt loam	6.0	9.1%	
MaD	Manor loam, 15 to 25 percent slopes	3.8	5.8%	
UrlB	Urban land-Gladstone complex, 0 to 8 percent slopes	0.1	0.1%	
Totals for Area of Interest		66.0	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Chester County, Pennsylvania

Ba—Baile silt loam

Map Unit Setting

National map unit symbol: pjb7 Elevation: 200 to 2,000 feet

Mean annual precipitation: 35 to 55 inches Mean annual air temperature: 45 to 61 degrees F

Frost-free period: 110 to 235 days

Farmland classification: Not prime farmland

Map Unit Composition

Baile and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Baile

Setting

Landform: Depressions

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Parent material: Local alluvium over residuum weathered from mica schist

Typical profile

Ap - 0 to 10 inches: silt loam Btg - 10 to 40 inches: silt loam Cg - 40 to 60 inches: loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 60 to 99 inches to lithic bedrock

Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 11.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Glenville

Percent of map unit: 9 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Side slope, head slope

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Hydric soil rating: No

Manor

Percent of map unit: 2 percent

Landform: Hills

Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope, nose slope

Down-slope shape: Linear, convex Across-slope shape: Convex, linear

Hydric soil rating: No

Chester

Percent of map unit: 2 percent

Landform: Hills

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve

Down-slope shape: Linear, convex Across-slope shape: Convex, linear

Hydric soil rating: No

Glenelg

Percent of map unit: 2 percent

Landform: Hillslopes

Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Linear, convex Across-slope shape: Convex, linear

Hydric soil rating: No

Co—Codorus silt loam

Map Unit Setting

National map unit symbol: pjfx Elevation: 200 to 2,000 feet

Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 45 to 57 degrees F

Frost-free period: 120 to 220 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Codorus and similar soils: 85 percent *Minor components*: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Codorus

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from gneiss and/or alluvium derived from mica

schist

Typical profile

Ap - 0 to 12 inches: silt loam Bw - 12 to 48 inches: silt loam C - 48 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 72 to 99 inches to lithic bedrock

Drainage class: Moderately well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 18 to 36 inches Frequency of flooding: OccasionalNone

Frequency of ponding: None

Available water capacity: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Hatboro

Percent of map unit: 8 percent

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: Yes

Glenville

Percent of map unit: 4 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, head slope

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Hydric soil rating: No

Baile

Percent of map unit: 3 percent

Landform: Depressions

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Hydric soil rating: Yes

GdB—Gladstone gravelly loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2v7gk Elevation: 250 to 1,200 feet

Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F

Frost-free period: 131 to 178 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Gladstone and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gladstone

Setting

Landform: Hills

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Loamy colluvium derived from granite and gneiss and/or loamy

residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 10 inches: gravelly loam

Bt1 - 10 to 22 inches: sandy clay loam

Bt2 - 22 to 37 inches: loam C - 37 to 66 inches: sandy loam R - 66 to 76 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 60 to 80 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Califon

Percent of map unit: 5 percent

Landform: Flats

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Annandale

Percent of map unit: 5 percent

Landform: Hills

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Parker

Percent of map unit: 5 percent

Landform: Hills

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

GdC—Gladstone gravelly loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2v7gl Elevation: 250 to 1.200 feet

Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F

Frost-free period: 170 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Gladstone and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gladstone

Setting

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Loamy colluvium derived from granite and gneiss and/or loamy

residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 10 inches: gravelly loam

Bt1 - 10 to 22 inches: gravelly sandy clay loam

Bt2 - 22 to 37 inches: gravelly loam C - 37 to 66 inches: gravelly sandy loam

R - 66 to 76 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 65 to 67 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Parker

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Califon

Percent of map unit: 5 percent

Landform: Flats

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Annandale

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

GfD—Gladstone gravelly loam, 8 to 25 percent slopes, very bouldery

Map Unit Setting

National map unit symbol: wphh Elevation: 200 to 1,200 feet

Mean annual precipitation: 40 to 48 inches Mean annual air temperature: 45 to 55 degrees F

Frost-free period: 150 to 190 days

Farmland classification: Not prime farmland

Map Unit Composition

Gladstone, very bouldery, and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gladstone, Very Bouldery

Setting

Landform: Hillslopes

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Nose slope, side slope

Down-slope shape: Linear, convex Across-slope shape: Linear, convex

Parent material: Local colluvium and residuum weathered from granite and gneiss

Typical profile

A - 0 to 10 inches: gravelly loam

Bt - 10 to 42 inches: gravelly clay loam

C - 42 to 68 inches: very gravelly loam

R - 68 to 78 inches: bedrock

Properties and qualities

Slope: 8 to 25 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 60 to 100 inches to lithic bedrock

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Cokesbury

Percent of map unit: 5 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Califon

Percent of map unit: 5 percent

Landform: Hills

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Head slope

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: No

Ha—Hatboro silt loam

Map Unit Setting

National map unit symbol: 1lwqq

Elevation: 200 to 800 feet

Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 48 to 57 degrees F

Frost-free period: 140 to 200 days

Farmland classification: Not prime farmland

Map Unit Composition

Hatboro and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hatboro

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Parent material: Alluvium derived from metamorphic and sedimentary rock

Typical profile

Ap - 0 to 9 inches: silt loam Bg - 9 to 44 inches: silt loam

Cg - 44 to 56 inches: sandy clay loam

C - 56 to 70 inches: stratified gravelly sand to clay

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 60 to 99 inches to lithic bedrock

Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 0 to 6 inches Frequency of flooding: FrequentNone

Frequency of ponding: None

Available water capacity: High (about 9.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Glenville

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, head slope

Down-slope shape: Linear, concave Across-slope shape: Concave, linear

Hydric soil rating: No

MaD—Manor loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2tmcg Elevation: 250 to 1.000 feet

Mean annual precipitation: 40 to 55 inches Mean annual air temperature: 48 to 57 degrees F

Frost-free period: 150 to 192 days

Farmland classification: Not prime farmland

Map Unit Composition

Manor and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Manor

Setting

Landform: Hillslopes

Landform position (two-dimensional): Shoulder, backslope, summit

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from mica schist

Typical profile

A1 - 0 to 2 inches: loam
A2 - 2 to 6 inches: sandy loam
Bw1 - 6 to 13 inches: fine sandy loam
Bw2 - 13 to 22 inches: fine sandy loam
C1 - 22 to 30 inches: fine sandy loam
C2 - 30 to 44 inches: channery coarse sand

C3 - 44 to 53 inches: loamy sand

C4 - 53 to 83 inches: channery loamy sand

Cr - 83 to 108 inches: bedrock R - 108 to 138 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent

Surface area covered with cobbles, stones or boulders: 0.0 percent

Depth to restrictive feature: 59 to 100 inches to paralithic bedrock; 100 to 128

inches to lithic bedrock Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.01 to

0.07 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Glenville

Percent of map unit: 5 percent Landform: Drainageways, swales

Landform position (two-dimensional): Footslope, backslope

Landform position (three-dimensional): Base slope, head slope, interfluve

Down-slope shape: Linear Across-slope shape: Concave

Hydric soil rating: No

Mt. airy

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope, summit, shoulder

Landform position (three-dimensional): Nose slope

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Blocktown

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

UrlB—Urban land-Gladstone complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1r3cq Elevation: 200 to 1,200 feet

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 44 to 57 degrees F

Frost-free period: 130 to 190 days

Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 65 percent

Gladstone and similar soils: 25 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

Landform: Hills

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Pavement, buildings and other artifically covered areas

Typical profile

C - 0 to 6 inches: variable

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: 10 to 100 inches to lithic bedrock

Available water capacity: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Hydric soil rating: No

Description of Gladstone

Setting

Landform: Hillslopes

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Nose slope, side slope

Down-slope shape: Linear, convex

Across-slope shape: Linear, convex

Parent material: Local colluvium and residuum weathered from granite and gneiss

Typical profile

A - 0 to 10 inches: gravelly loam
C - 10 to 42 inches: gravelly clay loam
2Ap - 42 to 68 inches: gravelly loam
R - 68 to 78 inches: bedrock

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: 60 to 100 inches to lithic bedrock

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Cokesbury

Percent of map unit: 5 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Califon

Percent of map unit: 5 percent

Landform: Hills

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Head slope

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: No

APPENDIX E

STORMWATER INFILTRATION TESTING REPORT

STORMWATER INFILTRATION REPORT

FOR

1013 SHILOH ROAD WESTTOWN TOWNSHIP CHESTER COUNTY

PREPARED FOR:

Keystone Custom Homes

PREPARED BY:

D.L. Howell & Associates, Inc. 1250 Wrights Lane West Chester, PA 19380

March 2021

Stormwater Infiltration Test Report 1013 Shiloh Road Westtown Township Chester County

On Monday and Tuesday, March 22-23, 2021, D.L. Howell and Associates, Inc. preformed hydraulic conductivity tests for the proposed stormwater management areas for the property located at 1013 Shiloh Road in Westtown Township, Chester County. The purpose of the hydraulic conductivity testing was to determine site suitability for the proposed stormwater infiltration areas associated with proposed improvements at the site (see development plan).

Testing was conducted in general accordance with the Pennsylvania Department of Environmental Protection (PADEP)'s Pennsylvania Stormwater Best Management Practices Manual specifications, in a cased, sealed, borehole utilizing the falling head method designed to measure the vertical hydraulic conductivity of the soil. An approximate five-inch diameter borehole was hand dug to the depth of the proposed bottom elevation of the infiltration structure and a 3-inch diameter PVC casing was installed. A mixture of bentonite and soil was placed around the annulus of the casing and packed to seal the casing in place. The casing was presoaked immediately prior to the start of the test to simulate field saturated conditions. A measured amount of water was poured into the sealed casing to begin the 30-minute presoak. After the final 30-minute presoaking period, the water in the casing was adjusted to a known depth and consecutively re-adjusted after each reading and the drop of the water column is measured. The test continued until the readings became stabilized or for a maximum of eight readings. A stabilized rate of drop means a difference of ½ inch or less of drop between the highest and lowest readings of four consecutive readings.

Within the site, four hydraulic conductivity tests were conducted at the elevations associated with the proposed bottom of the infiltration structures. One deep test pit was excavated at each infiltration test location to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structures.

• Infiltration Test 3-23-1 was conducted at approximately ± 5.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 317.0. One deep test pit was excavated at this location to a depth of 7.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 7.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-1: an infiltration rate of 1.50 inches per hour shall be used.

• Infiltration Test 3-23-2 was conducted at approximately \pm 4.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 314.0. One deep test pit was excavated at this location to a depth of 6.0 feet below existing grade. No limiting conditions were identified at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-2: an infiltration rate of 1.14 inches per hour shall be used.

• Infiltration Test 3-23-3 was conducted at approximately ± 3.5 feet below existing grade, which corresponds to an approximate infiltration elevation of 303.5. One deep test pit was excavated at this location to a depth of 5.5 feet below existing grade. During excavation, rock was encountered at a depth of approximately 5.5 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-3: an infiltration rate of 1.68 inches per hour shall be used.

• Infiltration Test 3-23-4 was conducted at approximately ± 5.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 298.0. One deep test pit was excavated at this location to a depth of 7.0 feet below existing grade. During excavation, groundwater was encountered at a depth of approximately 7.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-4: an infiltration rate of 1.96 inches per hour shall be used.

• Infiltration Test 3-22-5 was conducted at approximately \pm 6.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 334.0. One deep test pit was excavated at this location to a depth of 8.0 feet below existing grade. No limiting conditions were encountered at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-5: an infiltration rate of 2.81 inches per hour shall be used.

• Infiltration Test 3-22-6 was conducted at approximately \pm 2.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 306.0. One

deep test pit was excavated at this location to a depth of 6.0 feet below existing grade. No limiting conditions were encountered at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-6: an infiltration rate of 2.93 inches per hour shall be used.

• Infiltration Test 3-22-7 was conducted at approximately ± 2.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 336.0. One deep test pit was excavated at this location to a depth of 4.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 4.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-7: an infiltration rate of 0.88 inches per hour shall be used.

• Infiltration Test 3-22-8 was conducted at approximately ± 2.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 314.0. One deep test pit was excavated at this location to a depth of 4.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 4.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-8: an infiltration rate of 0.43 inches per hour shall be used.

Please reference plan drawings for exact locations and visual representation of infiltration tests and test pits. Results of the hydraulic conductivity testing and soil horizon descriptions can be found in the enclosed attachments.

Hydraulic Conductivity Calculation

Coefficient of Permeability: $K = [A/(F*D*t)] \times \ln(h1/h2)$

Where: K = permeability (inches per hour)

A = cross sectional area of cased hole

F = shape factor (2.75 constant of flat bottom)

D = cased hole diameter

t = time for head change from h1 to h2

h1 = initial height of water column in casing

h2 = final height of water column in casing

Keystone Custom Homes	Dogo 5		Infiltration Test Rep
Soil Morphology Form for soil	profile data.	1 0777 TOT IMPREMISE	r testing data and
*Reference Soil Hydraulic Co	onductivity Analysis	Form for infiltration	n testing data and

Hydraulic Conductivity Calculations

<u>DD</u>

DATE:

BY:

JOB NO.: 3868

LOCATION: 1013 Shiloh Road

MUNICIPALITY: Westtown Township, Chester County, Pa.

DESCRIPTION: Stormwater Infiltration Testing

Field Test Results

WEATHER CONDITIONS: SUNNY TEMPERATURE: 62 °F

PRECIPITATION IN LAST 24 HOURS: <u>None</u>

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-5	72									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		15.00	14.75	14.75	14.50	14.50	n/a	n/a	n/a	n/a
Initial Water Leve	l Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-6	24									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		15.25	15.00	14.75	14.75	14.75	n/a	n/a	n/a	n/a
Initial Water Leve	el Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

Determination of Hydraulic Conductivity (Kv)

KV = [A/(F*D*t)]*ln(h1/h2)

Kv = Vertical Permeability

A = Cross-sectional area of cased hole

F =shape factor (2.75 constant for flat bottom)

D = cased hole diameter

t = time for head to change from h1 to h2h1 = initial height of water column in casing

h2 = final height of water column in casing

Test 3-22-5 Results Test 3-22-6 Results

2.8062	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
3.50	(Inches)

2.93319	(in/hour
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
3.25	(Inches)

Hydraulic Conductivity Calculations

<u>DD</u>

DATE:

BY:

JOB NO.: <u>3868</u>

LOCATION: 1013 Shiloh Road

MUNICIPALITY: Westtown Township, Chester County, Pa.

DESCRIPTION: Stormwater Infiltration Testing

Field Test Results

WEATHER CONDITIONS: SUNNY TEMPERATURE: 62 °F

PRECIPITATION IN LAST 24 HOURS: None

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-7	24									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		7.25	7.25	7.25	7.25	7.25	n/a	n/a	n/a	n/a
Initial Water Leve	l Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-8	24									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		4.25	4.00	4.00	4.00	4.00	n/a	n/a	n/a	n/a
Initial Water Leve	l Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

Determination of Hydraulic Conductivity (Kv)

KV = [A/(F*D*t)]*ln(h1/h2)

Kv = Vertical Permeability

A = Cross-sectional area of cased hole

F =shape factor (2.75 constant for flat bottom)

D = cased hole diameter

t = time for head to change from h1 to h2
 h1 = initial height of water column in casing
 h2 = final height of water column in casing

Test 3-22-7 Results

(in/hour)
(Sq.in.)
(Units)
(Inches)
(hrs.)
(Inches)
(Inches)

Test 3-22-8 Results

0.43065	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
14.00	(Inches)

Hydraulic Conductivity Calculations

<u>DD</u>

DATE:

BY:

JOB NO.: 3868

LOCATION: 1013 Shiloh Road

MUNICIPALITY: Westtown Township, Chester County, Pa. **DESCRIPTION: Stormwater Infiltration Testing**

Field Test Results

WEATHER CONDITIONS: SUNNY TEMPERATURE: 64 °F

PRECIPITATION IN LAST 24 HOURS: <u>None</u>

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-23-1	60									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		11.75	10.50	10.50	10.50	10.50	n/a	n/a	n/a	n/a
Initial Water Leve	I Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-23-2	48									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		10.50	8.75	8.75	8.75	8.75	n/a	n/a	n/a	n/a
Initial Water Leve	l Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

Determination of Hydraulic Conductivity (Kv)

KV = [A/(F*D*t)]*ln(h1/h2)

Kv = Vertical Permeability

A = Cross-sectional area of cased hole

F =shape factor (2.75 constant for flat bottom)

D = cased hole diameter

t = time for head to change from h1 to h2h1 = initial height of water column in casing h2 = final height of water column in casing

Test 3-23-1 Results Test 3-23-2 Results

1.5002	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
7.50	(Inches)

	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
9.25	(Inches)

Hydraulic Conductivity Calculations

JOB NO.: 3868

LOCATION: 1013 Shiloh Road

DATE:

BY:

<u>DD</u>

MUNICIPALITY: Westtown Township, Chester County, Pa.

DESCRIPTION: Stormwater Infiltration Testing

Field Test Results

WEATHER CONDITIONS: SUNNY TEMPERATURE: 64 °F

PRECIPITATION IN LAST 24 HOURS: <u>None</u>

					Re	adings				
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-23-3	42									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		11.75	11.25	11.25	11.25	11.25	n/a	n/a	n/a	n/a
Initial Water Leve	I Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-23-4	60									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		12.25	12.25	12.25	12.25	12.25	n/a	n/a	n/a	n/a
Initial Water Leve	el Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

Determination of Hydraulic Conductivity (Kv)

KV = [A/(F*D*t)]*ln(h1/h2)

	i est	3-23-3	Results
--	-------	--------	---------

Test	3-23-4	Results
------	--------	---------

Kv =	Vertical	Permeability
$\Delta v =$	verucai	remieability

A = Cross-sectional area of cased hole

F =shape factor (2.75 constant for flat bottom)

D = cased hole diameter

t = time for head to change from h1 to h2

h1 = initial height of water column in casing

h2 = final height of water column in casing

	-
1.68075	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)

6.75 (Inches)

1.95551	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
5.75	(Inches)
3 0.5 18	(Inches) (hrs.) (Inches)

	DII	La	الميا		PIT NUMBER:	TP 3-23-1	DLH NUM	IBER:	(3868		INVESTIG	ATOR:	DWD	
(7)	DLF	1()\/	vell		DATE: 3/2	23/2021	STATE:		РΑ			COUNTY:	CHE	STER	
					MUNICIPALITY:		WESTTOWN	TOWNSH	IIP			CLIENT:	KEYSTONE	CUSTOM HOM	ES
	Civil Engine	-		ng	SUBDIVISION:		STOKES E	STATE				SITE LOC	ATION: 101	3 SHILOH ROA	D
	www.DLHov	well.com			MORPHOLOGIC	DETERM	INATION:	SEWAG	ЭE		STO	RMWATER	R SHWT	SOILS	
	Der	oth	Boun	dary		_		0/ 05	F	REDC	X	l _a		NOTES	Т
Horizor	Upper	Lower	Distrnct		Color	I	exture	%CFs	Α	S	С	Structure	Consistence	NOTES	
	0	11	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	11	46	А	W	10 YR 5/6	SILT	ΓY CLAY	0				MA	FIRM		
	46	84			VAR	SAN	IDY SILT	0				GRAN	LO		
COMME	NTS: This D	eep Test	Pit was c	onduct	ed at Test 3-23-1.	. During exc	cavation, rock v	vas encol	unter	ed at	a de	pth of appr	oximately 84 in	ches below exis	ting

grade.

SOIL TYPE: Soil Drainage Class: Soil Scientist Signature:

LIMITING CONDITION: Rock Excessively Drained Somewhat Poorly Drained

Type: Water Rock Mottling Well Drained Poorly Drained

Depth: ~84" Moderately Well Drained Very Poorly Drained

 WEATHER:
 64° Sunny
 METHOD:
 Excavator

 SLOPE:
 EXCAVATION DEPTH:
 84"

 COVER:
 Meadow
 LANDSCAPE POSITION:
 SW

 $REDOX-Redoxymorphic \ features \ (Drainage \ Mottling) \ A/S/C-Abundance/Size/Contrast \\ Roots/Pores-f-few, \ c-common, \ m-many \ / \ f-fine, \ m-medium, \ c-coarse$

1250 Wrights Lane West Chester, PA 19380

DLHowell
Civil Engineering & Land Planning
www.DLHowell.com

CHESTER
KEYSTONE CUSTOM HOMES
ATION: 1013 SHILOH ROAD
SHWT SOILS
/

Horizon	Dep	oth	Bound	dary	Color	Color Texture %0		REDOX		Structure	Consistence	NOTES		
110112011	Upper	Lower	Distrnct	Topo	Coloi	Texture	%CFs	Α	S	C	Siluciule	Consistence	NOTES	
	0	9	А	W	10 YR 4/2	SILT LOAM	0				GRAN	FRI		
	9	35	А	IR	10 YR 5/6	SILTY CLAY	0				MA	FIRM		
	35	72			VAR	SANDY SILT	0				GRAN	FRI		

COMMENTS: This Deep Test Pit was conducted at Test 3-23-2. No limiting conditions were identified at the time of excavation.

SOIL TYPE:

LIMITING CONDITION:

Excessively Drained

Somewhat Poorly Drained

Well Drained

Poorly Drained

Depth: +72"

Moderately Well Drained

Very Poorly Drained

 WEATHER:
 64° Sunny
 METHOD:
 Excavator

 SLOPE:
 EXCAVATION DEPTH:
 72"

 COVER:
 Meadow
 LANDSCAPE POSITION:
 S

 $REDOX-Redoxymorphic \ features \ (Drainage \ Mottling) \ A/S/C-Abundance/Size/Contrast \\ Roots/Pores-f-few, \ c-common, \ m-many \ / \ f-fine, \ m-medium, \ c-coarse$

1250 Wrights Lane West Chester, PA 19380

(A) DI Hawall	PIT NUM	BER: <u>TP 3-2</u>
(*) DLHowell	DATE:	3/23/202
	MUNICIPA	ALITY:
Civil Engineering & Land Planning	SUBDIVIS	ION:
www.DLHowell.com	MORPHO	

PIT NUMBER:	TP 3-23-3 DLH NUM	BER: <u>3868</u>	INVESTIGATOR:	DWD
DATE: 3/2	3/2021 STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN 1	OWNSHIP	CLIENT: KEYS	TONE CUSTOM HOMES
SUBDIVISION:	STOKES E	STATE	SITE LOCATION:	1013 SHILOH ROAD
MORPHOLOGIC	DETERMINATION:	SEWAGE ST	ORMWATER	SHWT SOILS

Horizon	Dep	oth	Bound	dary	Color	Texture %		REDOX		Structure	Consistence	NOTES		
110112011	Upper	Lower	Distrnct	Topo	Coloi	Texture	%CFs	Α	S	C	Siluciule	Consistence	NOTES	
	0	11	Α	W	10 YR 4/2	SILT LOAM	0				GRAN	FRI		
	11	47	Α	W	10 YR 5/6	SILTY CLAY	0				MA	FIRM		
	47	66			10 YR 3/4	STONY SILT	<20				GRAN	LO		

COMMENTS: This Deep Test Pit was conducted at Test 3-23-1. During excavation, rock was encountered at a depth of approximately 66 inches below existing grade.

SOIL TYPE:	Soil Drainage Class:		Soil Scientist Signature:
LIMITING CONDITION: Rock	Excessively Drained	Somewhat Poorly Drained	
Type: Water Rock Mottling	Well Drained	Poorly Drained	
Depth: ~66"	Moderately Well Drained	Very Poorly Drained	

WEATHER:	64° Sunny	METHOD:	Excavator	
SLOPE:		EXCAVATION DEPTH:	66"	
COVER:	Meadow	LANDSCAPE POSITION:	S	

 $REDOX-Redoxymorphic \ features \ (Drainage \ Mottling) \ A/S/C-Abundance/Size/Contrast \\ Roots/Pores-f-few, \ c-common, \ m-many \ / \ f-fine, \ m-medium, \ c-coarse$

1250 Wrights Lane West Chester, PA 19380

DLHowell
Civil Engineering & Land Planning
www.DLHowell.com

Depth

31

47

Lower

8 A 31 A

47 G

84

Upper

Horizon

VAR

vell and Planning		PIT NUMBER: DATE: 3/2 MUNICIPALITY: SUBDIVISION:	23/2021	BER:	PA	3868		INVESTIG COUNTY: CLIENT: SITE LOC	CHE	CHESTER TONE CUSTOM HOME			
			STOKES ES C DETERMINATION:		SEWAC	`			RMWATER		SHWT SOILS		
		MORPHOLOGIC	DETERMIN	NATION:	SEWAC	5 E		310	KIVIVVAIE	K SHWI	SOILS		
Bound	dary	Color	Te	exture	%CFs	F	REDC		Structure	Consistence	NOTES		
Distrnct	Topo	00101		Aturo	7001 3	Α	S	С	Otractare	Consistence	NOTEO		
Α	W	10 YR 4/2	SILT	LOAM	0				GRAN	FRI			
Α	W	10 YR 4/4	SILT	Y CLAY	0		·		MA	FIRM			
G	W	10 YR 6/4	SILT	LOAM	0				МА	FRI			

GRAN

LO

COMMENTS: This Deep Test Pit was conducted at Test 3-23-4. During excavation, groundwater was encountered at a depth of approximately 84 inches below existing grade.

SANDY SILT

SOIL TYPE: Soil Drainage Class: Soil Scientist Signature: LIMITING CONDITION: Groundwater **Excessively Drained** Somewhat Poorly Drained Rock Mottling Well Drained **Poorly Drained** Type: Water Depth: ~84" Moderately Well Drained Very Poorly Drained

> WEATHER: 64° Sunny METHOD: Excavator SLOPE: EXCAVATION DEPTH: 84" COVER: Meadow LANDSCAPE POSITION:

REDOX - Redoxymorphic features (Drainage Mottling) A/S/C - Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

(A) DI Havrall	PIT NUM	BER: <u>TP 3-22-1</u>	_ DLH NUM	BER: 38	68 INVESTIGATOR	:DWD
(*) DI Howell	DATE:	3/22/2021	STATE:	PA	COUNTY:	CHESTER
O D El TOTTON	MUNICIPA	ALITY:	WESTTOWN	TOWNSHIP	CLIENT: KEY	STONE CUSTOM HOMES
Civil Engineering & Land Planning	SUBDIVIS	SION:	STOKES E	STATE	SITE LOCATION	: 1013 SHILOH ROAD
www.DLHowell.com	MORPHO	LOGIC DETERM	IINATION:	SEWAGE	STORMWATER	SHWT SOILS

Horizon	Dep Upper	th Lower	Bound Distrnct		Color	-	Texture	%CFs	A F	REDO	X C	Structure	Consistence	NOTES	
	Оррег			W	10 YR 4/2	SII	T LOAM	0		3		SBK	FRI		
			+												
	5	50	Α	W	7.5 YR 4/3	SIL	TY CLAY	0				MA	FIRM		
	50	96			VAR	SII	T LOAM	0				GRAN	FRI		
COMMENT	ΓS: This D	eep Test	Pit was c	onducte	ed at Test 3-22-5.	No limitir	ng conditions we	re identif	ied a	t the	time	of excavati	on.		
SOIL TYPE	Ē:				Soil Drainage Cl	ass:						Soil Scien	tist Signature:		
LIMITING	CONDITIC	N:			Excessively Drai	ned	Somewhat Po	orly Drair	ned						
Type: W	Vater R	ock M	lottling		Well Drained		Poorly Draine	ed							
Depth: +96	6"				Moderately Well	Drained	Very Poorly D	Prained							
		WI	EATHER:		62° Sunny			_		METI	HOD:	Ex	cavator		
			SLOPE:					EXCAVA	OITA	N DE	PTH:		96"		

REDOX - Redoxymorphic features (Drainage Mottling) A/S/C - Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

LANDSCAPE POSITION:

SW

1250 Wrights Lane West Chester, PA 19380 COVER:

Meadow

P: (610) 918-9002 F: (610) 918-9003

DLHowell
Civil Engineering & Land Planning
www.DLHowell.com

PIT NUME	BER: TP 3-22-6	DLH NUMI	BER: <u>3868</u>		INVESTIG	ATOR:	DWD
DATE:	3/22/2021	STATE:	PA		COUNTY:		CHESTER
MUNICIPA	LITY:	WESTTOWN T	OWNSHIP		CLIENT:	KEYS	STONE CUSTOM HOMES
SUBDIVISI	ON:	STOKES E	STATE		SITE LOCA	ATION:	1013 SHILOH ROAD
MORPHOL	OGIC DETERM	MINATION:	SEWAGE	ST	ORMWATER		SHWT SOILS

Depth		Boundary		Color	Toxturo	%CEc	REDOX			Structuro	Consistance	NOTES	
Upper	Lower	Distrnct	Topo	Coloi	Texture	70Cl 3	Α	S	С	Siructure	Consistence	NOTES	
0	7	Α	W	10 YR 4/2	SILT LOAM	0				MA	FRI		
7	35	Α	W	10 YR 4/3	SILTY CLAY	0				MA	FIRM		
35	72			VAR	SANDY SILT	0				GRAN	FRI		
	Upper 0 7	Upper Lower 0 7 7 35	Upper Lower Distrnct 0 7 A 7 35 A	Upper Lower Distrnct Topo 0 7 A W 7 35 A W	Upper Lower Distrnct Topo 0 7 A W 10 YR 4/2 7 35 A W 10 YR 4/3	Upper Lower Distrnct Topo Color Texture 0 7 A W 10 YR 4/2 SILT LOAM 7 35 A W 10 YR 4/3 SILTY CLAY	Upper Lower Distrnct Topo Color Texture %CFS 0 7 A W 10 YR 4/2 SILT LOAM 0 7 35 A W 10 YR 4/3 SILTY CLAY 0	Upper Lower Distrnct Topo Color Texture %CFs A 0 7 A W 10 YR 4/2 SILT LOAM 0 7 35 A W 10 YR 4/3 SILTY CLAY 0	Upper Lower Distrnct Topo Color Texture %CFs A S 0 7 A W 10 YR 4/2 SILT LOAM 0 <t< td=""><td>Upper Lower Distrnct Topo Color Texture %CFS A S C 0 7 A W 10 YR 4/2 SILT LOAM 0</td><td>Upper Lower Distrnct Topo Color Texture %CFs A S C Structure 0 7 A W 10 YR 4/2 SILT LOAM 0 MA 7 35 A W 10 YR 4/3 SILTY CLAY 0 MA</td><td>Upper Lower Distrnct Topo Color Texture %CFs A S C Structure Consistence 0 7 A W 10 YR 4/2 SILT LOAM 0 MA FRI 7 35 A W 10 YR 4/3 SILTY CLAY 0 MA FIRM</td><td>Upper Lower Distrnct Topo Color Texture %CFs A S C Structure Consistence NOTES 0 7 A W 10 YR 4/2 SILT LOAM 0 MA FRI 7 35 A W 10 YR 4/3 SILTY CLAY 0 MA FIRM</td></t<>	Upper Lower Distrnct Topo Color Texture %CFS A S C 0 7 A W 10 YR 4/2 SILT LOAM 0	Upper Lower Distrnct Topo Color Texture %CFs A S C Structure 0 7 A W 10 YR 4/2 SILT LOAM 0 MA 7 35 A W 10 YR 4/3 SILTY CLAY 0 MA	Upper Lower Distrnct Topo Color Texture %CFs A S C Structure Consistence 0 7 A W 10 YR 4/2 SILT LOAM 0 MA FRI 7 35 A W 10 YR 4/3 SILTY CLAY 0 MA FIRM	Upper Lower Distrnct Topo Color Texture %CFs A S C Structure Consistence NOTES 0 7 A W 10 YR 4/2 SILT LOAM 0 MA FRI 7 35 A W 10 YR 4/3 SILTY CLAY 0 MA FIRM

COMMENTS: This Deep Test Pit was conducted at Test 3-22-6. No limiting conditions were identified at the time of excavation.

SOIL TYPE:

LIMITING CONDITION: Rock

Type: Water Rock Mottling

Depth: ~84"

Soil Drainage Class:

Excessively Drained

Somewhat Poorly Drained

Poorly Drained

Very Poorly Drained

 WEATHER:
 62° Sunny
 METHOD:
 Excavator

 SLOPE:
 EXCAVATION DEPTH:
 84"

 COVER:
 Meadow
 LANDSCAPE POSITION:
 SW

 $REDOX-Redoxymorphic \ features \ (Drainage \ Mottling) \ A/S/C-Abundance/Size/Contrast \\ Roots/Pores-f-few, \ c-common, \ m-many \ / \ f-fine, \ m-medium, \ c-coarse$

1250 Wrights Lane West Chester, PA 19380

	DII	La	الميا		PIT NUMBER:	TP 3-22-7	DLH NU	MBER:		3868		INVESTIG	ATOR:	DWD	
(11)	DLH	1()\/	veil		DATE: <u>3/22/2021</u> STATE: <u>PA</u>					COUNTY:	CHE	STER			
					MUNICIPALITY: WESTTOWN TOWNSHIP						CLIENT: KEYSTONE CUSTOM HOMES			ES	
	Civil Engine	-		ing	SUBDIVISION: STOKES ESTATE					SITE LOCATION: 1013 SHILOH ROAD					
www.DLHowell.com					MORPHOLOGIC DETERMINATION: SI			SEWA	SEWAGE STO			ORMWATER SHWT SOILS			
Horizo	izon Depth Boundary		Color Texture		%CFs	%CFs REDOX			Structure	Consistence	NOTES	Ī			
	Upper 0	Lower 4	Distrnct A	Topo W	10 YR 4/2	SILT	LOAM	0	Α	S	C	GRAN	FRI		
	4	48			10 YR 5/4	STON	NY SILT	<20				GRAN	FRI		
grade.		eep Test	t Pit was c	onduct	ed at Test 3-22-7	. During exca	vation, rock	was enco	unter	ed at	a de	pth of appr	oximately 48 inc	ches below exis	ting
SOIL TY	PF·				Soil Drainage C	lass.						Soil Scient	tist Signature:		

SOIL TYPE:

LIMITING CONDITION: Rock

Type: Water Rock Mottling

Depth: ~48"

Soil Drainage Class:

Excessively Drained

Somewhat Poorly Drained

Poorly Drained

Very Poorly Drained

Well Drained

Very Poorly Drained

 WEATHER:
 62° Sunny
 METHOD:
 Excavator

 SLOPE:
 EXCAVATION DEPTH:
 48"

 COVER:
 Meadow
 LANDSCAPE POSITION:
 NE

 $REDOX-Redoxymorphic \ features \ (Drainage \ Mottling) \ A/S/C-Abundance/Size/Contrast \\ Roots/Pores-f-few, \ c-common, \ m-many \ / \ f-fine, \ m-medium, \ c-coarse$

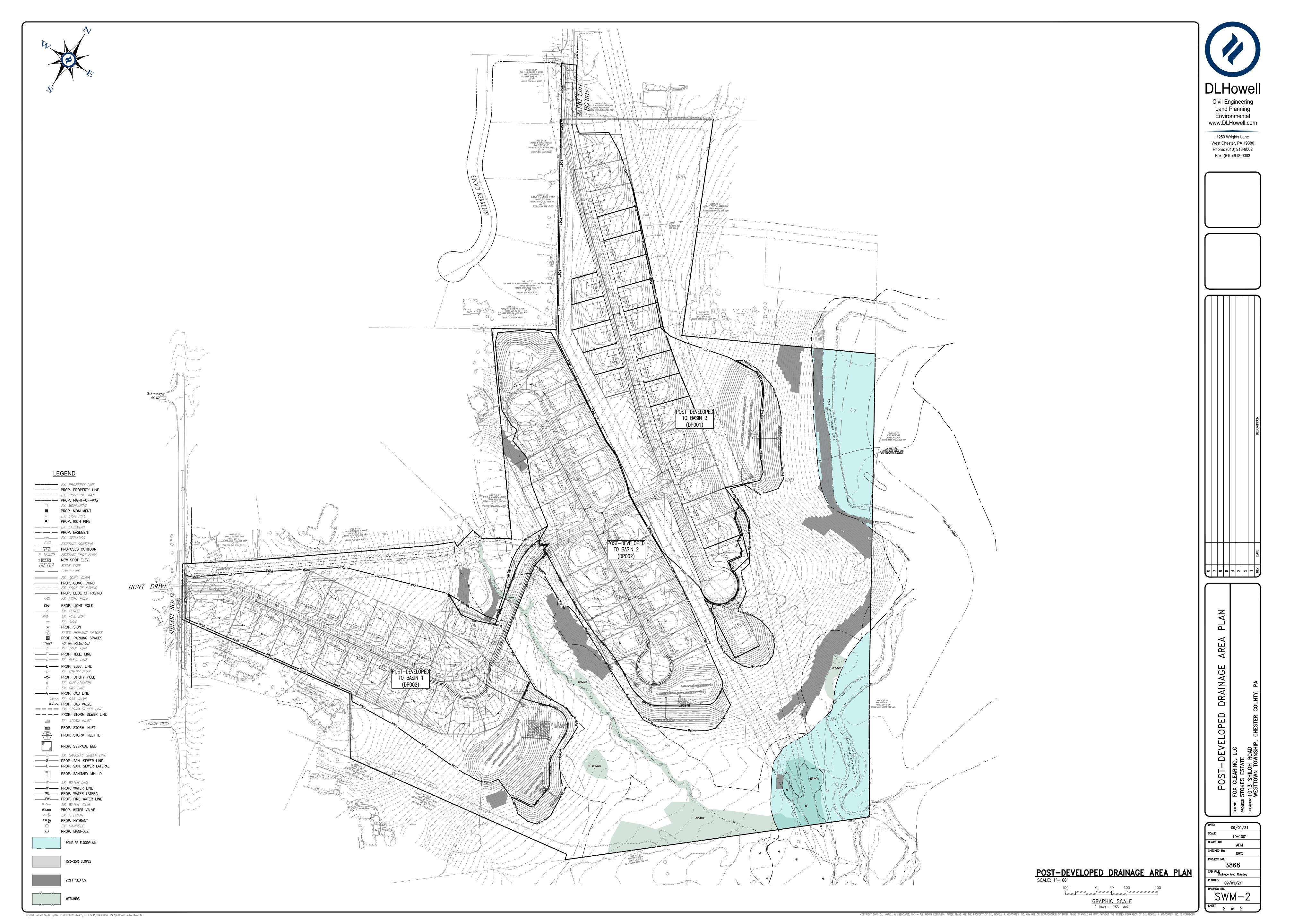
1250 Wrights Lane West Chester, PA 19380

(I) DI Hawall	PIT NUMBER
(*) DLHowell	DATE:
	MUNICIPALIT
Civil Engineering & Land Planning	SUBDIVISION
www.DLHowell.com	MORRHOLOG

Depth: ~48"

(v) DLHowell					PIT NUMBER: TP 3-22-8 DLH NUMBER: 3868					INVESTIGATOR: DWD						
					DATE: <u>3/22/2021</u> STATE: <u>PA</u>					COUNTY: CHESTER						
					MUNICIPALITY: WESTTOWN TOWNSHIP							CLIENT: KEYSTONE CUSTOM HOMES				
	Civil Engine	-	and Plann	ing	SUBDIVISION: STOKES ESTATE							SITE LOCATION: 1013 SHILOH ROAD				
1	www.DLHov	vell.com			MORPHOLOGIC DETERMINATION: SEWAGE STOR						SHWT SOILS					
Horizon Depth Boundary			Color	Texture		%CFs RE		REDC		Structure	Consistence	NOTES				
110112011	Upper	Lower	Distrnct	Торо	00101	Texture		70013	Α	S	С	Otractare	Oorisisterice	NOTEO		
	0	3	Α	W	10 YR 3/1	SILT	LOAM	0				GRAN	FRI			
	3	11	Α	W	2.5 Y 5/3	SILTY	CLAY	0				MA	FRI			
	11	31	G	W	10 YR 5/6	SILTY	CLAY	0				MA	FRI			
	31	48			10 YR 4/4	STON	IY SILT	<20				GRAN	FRI			
COMMEN grade.	ITS: This De	eep Test	Pit was o	conducte	ed at Test 3-22-8.	During exca	vation, rock v	vas enco	unter	ed at	a dep	oth of appr	oximately 48 in	ches below exis	ting	
SOIL TYP	'E:				Soil Drainage Class:						Soil Scientist Signature:					
LIMITING	CONDITIO	N: Rock			Excessively Drained Somewhat Poorly Drained											
Type: \	Water R	ock N	Mottling		Well Drained Poorly Drained											

WEATHER: _	62° Sunny	METHOD:	Excavator
SLOPE:		EXCAVATION DEPTH:	48"
COVER:	Woodlands	LANDSCAPE POSITION:	NE


Very Poorly Drained

Moderately Well Drained

REDOX - Redoxymorphic features (Drainage Mottling) A/S/C - Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

