
NPDES PCSM MODULE 2/ POST CONSTRUCTION STORM WATER MANAGEMENT REPORT

FOR

THE WESTTOWN SCHOOL OAK LANE PROJECT WESTTOWN TOWNSHIP CHESTER COUNTY, PA

PROJECT NO: 1091-001

January 27, 2023 Revised: March 17, 2023

Prepared By:

ELA GROUP, INC.

743 S. Broad Street • Lititz, PA 17543 (717) 626-7271 • Fax (717) 626-7040 Website: <u>www.elagroup.com</u> • Email: <u>staff@elagroup.com</u> Central PA Office • State College, PA Western PA Office • Butler, PA

TABLE OF CONTENTS

NPDES PCSM MODULE 2 1
APPENDIX A – STORMWATER MANAGEMENT NARRATIVE Site Description Summary of Proposed Improvements Soil Description, Limitations and Resolutions Geotechnical Assessment Narrative Description of Stormwater Management Concept BMP Design Notes Volume Management Summary Peak Rate Summary Offsite Discharge Analysis
APPENDIX B – PADEP PCSM SPREADSHEETS
APPENDIX C – REFERENCE & SUPPORTING DOCUMENTS
APPDENDIX D – SUPPORTING VOLUME CALCULATIONS
APPENDIX E – RATE CONTROL ANALYSIS
APPENDIX F – STORM SEWER CALCULATIONS
APPENDIX G – SPILLWAY/ANTI-SEEP COLLAR DESIGN CALCULATIONS
APPENDIX H – RIP RAP DESIGN CALCULATIONS
APPENDIX I – INFILTRATION REPORTS

WATERSHED MAPSBACK POCKET

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGES OF STORMWATER ASSOCIATED WITH CONSTRUCTION ACTIVITIES POST-CONSTRUCTION STORMWATER MANAGEMENT (PCSM) MODULE 2

Applicant: The Westtown School

Project Site Name: The Westtown School - Oak Lane Projects

Surface Water Name(s): East Branch Chester Creek, Unt. to East Branch Chester Creek Surface Water Use(s): **TSF, MF**

PCSM PLAN INFORMATION

1. Identify all structural and non-structural PCSM BMPs that have been selected and provide the information requested.

Discharge Point(s)	BMP ID	BMP Name	BMP Manual	Latitude	Longitude	DA Treated (ac)
001	1	Infiltration Basin	6.4.2	39.944325	-75.539241	3.35
002	2	Subsurface Infiltration Bed	6.4.3	39.944787	-75.537636	2.22
002	3	Subsurface Infiltration Bed	6.4.3	39.945473	-75.537325	2.22
002	4	Infiltration Basin	6.4.2	39.946011	-75.535373	7.24
Undetained	Areas:	3.85 acre(s)				
The Proj	ect Qualif	ies as a Site Restoration Project (25 Pa	a. Code §102.8(n))			

2. Describe the sequence of PCSM BMP implementation in relation to earth disturbance activities and a schedule of inspections for the critical stages of PCSM BMP installation.

	See plan sheet 4.
3.	Plan drawings have been developed for the project and will be available on-site.
4.	Plan drawings have been developed for the project and are attached to the NOI/application.
5.	Recycling and proper disposal of materials associated with PCSM BMPs are addressed as part of long-term operation and maintenance of the PCSM BMPs.
6.	Identify naturally occurring geologic formations or soil conditions that may have the potential to cause pollution after earth disturbance activities are completed and PCSM BMPs are operational and the applicant's plan to avoid or minimize potential pollution and its impacts.
7.	Identify whether the potential exists for thermal impacts to surface waters from post-construction stormwater. If such potential exists, identify BMPs that will be implemented to avoid, minimize, or mitigate potential thermal impacts.
	See plan sheet 4.
8.	The PCSM Plan has been planned, designed, and will be implemented to be consistent with the E&S Plan.
9.	A pre-development site characterization has been performed.

	STORMWATER ANALYSIS – RUNOFF VOLUME										
Surface Wat	er Name:	East Bra	anch Chester Cr	eek				Discha	rge Point(s):	001	
1. 🗌 The	design stand	lard is bas	ed on volume ma	inagement re	quirements in	an Act 167 P	lan approv	ved by DEP with	in the past five y	ears.	
2. 🛛 The	design stand	lard is bas	ed on managing	the net chang	ge for storms u	ip to and inclu	iding the 2	2-year/24-hour st	torm.		
3. 🗌 An a	Iternative de	sign stand	ard is being used								
4. 🛛 A pri	ntout of DEP	's PCSM \$	Spreadsheet – Vo	olume Worksl	heet is attache	ed.					
5. 2-Year/2	2-Year/24-Hour Storm Event: 3.26 inches Source of precipitation data: NOAA Atlas 14										
6. Stormwa	ter Runoff V	olume, Pre	e-Construction Co	onditions:	8,045	CF	🛛 Calcu	lations attached			
7. Stormwa	ter Runoff V	olume, Po	st-Construction C	Conditions:	18,351	I CF	🛛 Calcu	lations attached			
8. Net Char	nge (Post-Co	onstruction	– Pre-Constructi	ion Volumes)	: 10,307	7 CF					
9. Identify a	all selected s	tructural P	CSM BMPs and	provide the ir	nformation req	uested.	🛛 Calcu	lations attached			
DP No.	BMP ID	Series	Vol. Routed to BMP (CF)	Inf. Area (SF)	Inf. Rate (in/hr)	Inf. Period (hrs)	Veg?	Media Depth (ft)	Storage Vol. (CF)	Inf. Credit (CF)	ET Credit (CF)

Total Infiltration & ET Credits (CF): 15,322

Non-Structural BMP Volume Credits (CF) (Attach Calculations):

Managed Release Credits (CF) (Attach MRC Design Summary):

Volume Required to Reduce/Manage (CF): 10,307

Total Credits (CF): 15,322

INFILTRATION INFORMATION									
BMP ID: 1 Soil/geologic test results are attached.									
1. No. of infiltration tests completed: 3									
2. Method(s) used for infiltration testing: double ring infiltrometer									
3. Test Pit Identifiers (from PCSM Plan Drawings): 14A, 14B, & 16A									
4. Avg Infiltration Rate: 0.81 in/hr 5. FOS: 2 : 1									
6. Infiltration rate used for design: 0.41 in/hr									
7. Separation distance between the BMP bottom and bedrock: >3.5' feet									
8. Separation distance between the BMP bottom and seasonal high-water table: >3.5' feet									
9. Comments:									
BMP ID: Soil/geologic test results are attached.									
1. No. of infiltration tests completed:									
2. Method(s) used for infiltration testing:									
3. Test Pit Identifiers (from PCSM Plan Drawings):									
4. Avg Infiltration Rate: in/hr 5. FOS: : 1									
6. Infiltration Rate Used for Design: in/hr									
7. Separation distance between the BMP bottom and bedrock: feet									
8. Separation distance between the BMP bottom and seasonal high-water table: feet									
9. Comments:									
BMP ID: Soil/geologic test results are attached.									
1. No. of infiltration tests completed:									
2. Method(s) used for infiltration testing:									
3. Test Pit Identifiers (from PCSM Plan Drawings):									
4. Avg Infiltration Rate: in/hr 5. FOS: : 1									
6. Infiltration Rate Used for Design: in/hr									
7. Separation distance between the BMP bottom and bedrock: feet									
8. Separation distance between the BMP bottom and seasonal high-water table: feet									
9. Comments:									

	STORMWATER ANALYSIS – RUNOFF VOLUME										
Surface Wat	er Name:	Unt. to E	East Branch Che	ester Creek				Discha	rge Point(s):	002	
1. 🗌 The	design stand	ard is bas	ed on volume ma	inagement re	quirements in	an Act 167 P	an approv	ved by DEP with	n the past five y	ears.	
2. 🛛 The	design stand	ard is bas	ed on managing	the net chang	ge for storms ι	ip to and inclu	ding the 2	2-year/24-hour st	orm.		
3. 🗌 An a	Iternative de	sign stand	ard is being used								
4. 🛛 A pri	ntout of DEP	's PCSM S	Spreadsheet – Vo	olume Worksl	heet is attache	ed.					
5. 2-Year/2	5. 2-Year/24-Hour Storm Event: 3.26 inches Source of precipitation data: NOAA Atlas 14										
6. Stormwa	ter Runoff V	olume, Pre	e-Construction Co	onditions:	23,93	D CF	🛛 Calcu	lations attached			
7. Stormwa	ter Runoff V	olume, Po	st-Construction C	Conditions:	74,053	B CF	🛛 Calcu	lations attached			
8. Net Char	nge (Post-Co	onstruction	– Pre-Constructi	ion Volumes)	: 50,123	B CF					
9. Identify a	all selected s	tructural P	CSM BMPs and	provide the ir	nformation req	uested.	🛛 Calcu	lations attached			
DP No.	BMP ID	Series	Vol. Routed to BMP (CF)	Inf. Area (SF)	Inf. Rate (in/hr)	Inf. Period (hrs)	Veg?	Media Depth (ft)	Storage Vol. (CF)	Inf. Credit (CF)	ET Credit (CF)

Total Infiltration & ET Credits (CF): 67,633

Non-Structural BMP Volume Credits (CF) (Attach Calculations):

Managed Release Credits (CF) (Attach MRC Design Summary):

Volume Required to Reduce/Manage (CF): 50,123

Total Credits (CF): 67,633

INFILTRATION INFORMATION									
BMP ID: 2 Soil/geologic test results are attached.									
1. No. of infiltration tests completed: 2									
2. Method(s) used for infiltration testing: double ring infiltrometer									
3. Test Pit Identifiers (from PCSM Plan Drawings): 1A & 3B									
4. Avg Infiltration Rate: 4.65 in/hr 5. FOS: 2 : 1									
6. Infiltration rate used for design: 2.32 in/hr									
7. Separation distance between the BMP bottom and bedrock: >4' feet									
8. Separation distance between the BMP bottom and seasonal high-water table: >4' feet									
9. Comments:									
BMP ID: 3 Soil/geologic test results are attached.									
1. No. of infiltration tests completed: 2									
2. Method(s) used for infiltration testing: double ring infiltrometer									
3. Test Pit Identifiers (from PCSM Plan Drawings): 4A & 5A									
4. Avg Infiltration Rate: 2.02 in/hr 5. FOS: 2 : 1									
6. Infiltration Rate Used for Design: 1.01 in/hr									
7. Separation distance between the BMP bottom and bedrock: >4' feet									
8. Separation distance between the BMP bottom and seasonal high-water table: >4' feet									
9. Comments:									
BMP ID: 4 Soil/geologic test results are attached.									
1. No. of infiltration tests completed: 2									
2. Method(s) used for infiltration testing: double ring infiltrometer									
3. Test Pit Identifiers (from PCSM Plan Drawings): 6A & 7B									
4. Avg Infiltration Rate: 1.67 in/hr 5. FOS: 2 : 1									
6. Infiltration Rate Used for Design: 0.84 in/hr									
7. Separation distance between the BMP bottom and bedrock: >2' feet									
8. Separation distance between the BMP bottom and seasonal high-water table: 2' feet									
9. Comments:									

		STORI	MWATER A	NALYSIS -	- PEAK RA	TE			
Surface Water Name:	East Bra	nch Chester	r Creek		Dis	charge Poir	nt(s): 00 ⁻	1	
1. 🗌 The design sta	andard is base	ed on rate re	quirements	in an Act 16	7 Plan appro	ved by DEF	P within the	past five ye	ears.
2. 🛛 The design sta	andard is base	ed on manag	ging the net	change for 2	-, 10-, 50-, a	nd 100-yea	r/24-hour s	torms.	
3. An alternative	design stand	ard is being	used.						
4. A printout of D	EP's PCSM &	Spreadsheet	- Rate Wor	ksheet is att	ached.				
5. 🛛 Alternative rate	e calculations	are attache	d.						
6. Identify precipitation	on amounts.	Sourc	e of precipita	ation data:					
2-Year/24-Hour St	torm:			10-Yea	ar/24-Hour S	torm			
50-Year/24-Hour S	Storm:			100-Ye	ear/24-Hour	Storm			
7. Report peak disch	arge rates, pi	re- and post-	construction	(without BM	IPs), based	on a time of	concentrat	tion analysi	S.
Design StormPre-Construction Peak Rate (cfs)Post-Construction Peak Rate (cfs)Difference (cfs)					fs)				
2-Year/24-Hour									
10-Year/24-Hour									
50-Year/24-Hour									
100-Year/24-Hour									
8. Identify all BMPs u	used to mitiga	ite peak rate	differences	and provide	the requeste	ed information	on.		
BMP ID			Inflow to	BMP (cfs)		0	utflow from	m BMP (cfs	5)
		2-Yr	10-Yr	50-Yr	100-Yr	2-Yr	10-Yr	50-Yr	100-Yr
9. Report peak rates	for pre-const	ruction and p	oost-constru	ction with BN	VPs and ide	ntify the diffe	erences.		
Design Storm	Pre-Cons	struction Pe (cfs)	ak Rate		struction P th BMPs) (c		Di	fference (c	fs)
2-Year/24-Hour		4.26			1.23			-3.03	
10-Year/24-Hour		11.81			22.86			-8.75	
50-Year/24-Hour		22.86			7.66			-15.20	
100-Year/24-Hour		28.81			12.60			-16.21	

		STOR	MWATER A	NALYSIS -	- PEAK RA	TE			
Surface Water Name:	Unt. to Ea	ast Branch	Chester Cre	ek	Dis	charge Poir	nt(s): 00	2	
1. 🗌 The design sta	andard is base	ed on rate re	quirements	in an Act 16	7 Plan appro	ved by DEF	within the	past five y	ears.
2. 🛛 The design sta	andard is base	ed on manag	ging the net o	change for 2	-, 10-, 50-, a	nd 100-yea	r/24-hour s	torms.	
3. An alternative	design standa	ard is being	used.						
4. 🗌 A printout of D	EP's PCSM S	Spreadsheet	- Rate Wor	ksheet is att	ached.				
5. 🛛 Alternative rate	e calculations	are attache	d.						
6. Identify precipitation	on amounts.	Sourc	e of precipita	ation data:					
2-Year/24-Hour St	torm:			10-Yea	ar/24-Hour S	torm			
50-Year/24-Hour S	Storm:			100-Ye	ar/24-Hour	Storm			
7. Report peak disch	arge rates, pr	e- and post-	construction	(without BN	IPs), based	on a time of	concentra	tion analysi	S.
Design Storm Pre-Construction Peak Rate (cfs) (cfs) Difference (cfs)					fs)				
2-Year/24-Hour									
10-Year/24-Hour									
50-Year/24-Hour									
100-Year/24-Hour									
8. Identify all BMPs u	used to mitiga	te peak rate	differences	and provide	the requeste	ed information	on.		
BMP ID			Inflow to	BMP (cfs)		0	utflow fro	m BMP (cfs	5)
		2-Yr	10-Yr	50-Yr	100-Yr	2-Yr	10-Yr	50-Yr	100-Yr
9. Report peak rates	for pre-const	ruction and p	post-constru	ction with BN	/IPs and ide	ntify the diffe	erences.		
Design Storm	Pre-Cons	struction Pe (cfs)	ak Rate		struction P th BMPs) (c		Di	fference (c	fs)
2-Year/24-Hour		7.08			2.33			-4.75	
10-Year/24-Hour		22.59			6.13			-16.46	
50-Year/24-Hour		45.85			17.54			-28.31	
100-Year/24-Hour		58.42			26.76			-31.66	

	STORMWATER AN	IALYSIS – WATER	QUALITY
🛛 A printou	it of DEP's PCSM Spreadsheet – Quality Work	sheet is attached for a	all surface waters receiving discharges.
	LON	G-TERM O&M	
Describe the	e long-term operation and maintenance (O&M)	requirements for each	selected PCSM BMP.
BMP ID		O&M Requirement	S
1	See plan sheet 5		
2	See plan sheet 5		
3	See plan sheet 5		
4	See plan sheet 5		
	PCSM PI	LAN DEVELOPER	
🛛 I am trair	ned and experienced in PCSM methods.	🛛 I am a licer	sed professional.
Name:	Tyler E. Hill, PE	Title:	Project Manager
Company:	ELA Group, Inc.	Phone No.:	717-626-7271
Address:	743 S. Broad St.	Email:	tehill@elagroup.com
City, State, Z	ZIP: Lititz, PA 17543	License No.:	PE086960
License Type	e: Professional Engineer	Exp. Date	09/30/2023
	Merthel	1/9	/2023

PCSM Plan Developer Signature

Date

APPENDIX A STORMWATER MANAGEMENT NARRATIVE

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

STORMWATER MANAGEMENT NARRATIVE

SITE DESCRIPTION

The project site is located near the center of the Westtown School campus, just south of Oak Lane. The existing site is largely comprised of existing grass athletic fields which are bordered to the north by a partially forested area and the school's academic centers; to the east by a baseball field and residential area; the south by agricultural fields (i.e. row crops) and a partially forested riparian area; and to the west by the school's working farm and agricultural area.

During the past 50 years, the site's primary use has been agricultural (i.e. row crops). The site is currently utilized primarily for athletic fields, with row crops along the southeastern portion of the project site. The site has been utilized as such for at least the past five years, with no significant improvements being constructed during that time.

SUMMARY OF PROPOSED IMPROVEMENTS

The Westtown School is proposing to improve upon the existing athletic facilities on campus by constructing two new synthetic turf multipurpose fields, along with reconfiguring the remaining area to maximize field space. Additional components of the project involve the construction of a field house, parking lot and improved pedestrian access.

SOIL DESCRIPTIONS, LIMITATIONS AND RESOULTIONS

As per the USDA NRCS Web Soil Survey, the soils within the project area (Limit of Disturbance) are classified as follows:

- CaB Califon Loam (3-8% slopes, Hydrologic Soil Group "D")
- GgC Glenelg Silt Loam (8-15% slopes, Hydrologic Soil Group "B")
- MaA Manor Loam (0-3% slopes, Hydrologic Soil Group "B")
- MaB Manor Loam (3-8% slopes, Hydrologic Soil Group "B")
- MaC Manor Loam (8-15% slopes, Hydrologic Soil Group "B")

See the *Supplemental Design Information* section for a summary of the Soil Facts, Use Limitations and Resolutions.

GEOTECHNICAL ASSESSMENT

A geotechnical investigation was performed on site to evaluate the site for infiltration of postconstruction stormwater. The investigation determined that the site is underlain by the politic schist of the Glenarm Wissahickon Formation. This formation includes lenticular amphibolite bodies having ocean-floor basalt chemistry and is not considered karst. Infiltration tests performed on site found suitable infiltration rates in nearly every test pit, but not at all depths. In general, the site was found to be well drained and suitable for infiltration.

The complete Stormwater Infiltration Feasibility Report, dated October 8, 2018, and Supplemental Infiltration Feasibility Report, dated November 9, 2018, has been provided as an attachment to this report.

Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

NARRATIVE DESCRIPTION OF STORMWATER MANAGEMENT CONCEPT

The project site generally sits along a watershed drainage boundary and thus has been analyzed as two drainage areas. The south/western portion of the site generally drains to the southwest towards East Branch Chester Creek (TSF, MF). In post development there is one proposed discharge point (DP001) in this watershed. The eastern portion of the site drains to an existing riparian area consisting of wetlands, forested area and the headwaters of an unnamed tributary to East Branch Chester Creek. In post development, there is one proposed discharge point (DP002) in this watershed. See the Pre and Post Watershed Mapping in this report for watershed delineation.

In order to address rate control, volume control, and water quality requirements the following structural and non-structural BMPs are being proposed:

Infiltration Basin (BMP 1 & BMP 4)

- An infiltration basin is a constructed impoundment intended to capture and infiltrate stormwater runoff.
- Infiltration basin typically contains a layer of installed amended soils which typically contain a high percent of organic matter and additional large grained materials (such as sand) to provide an improved cation exchange rate and assure permeability.
- Infiltration basins are often planted with water-tolerant, native vegetation in order to increase water uptake via the vegetation's root system and increase pollutant removal.

Subsurface Infiltration Bed

- A subsurface detention bed is a void space, typically angular stone and/or manufactured chamber system, constructed beneath the surface on virgin material with the intent to capture and infiltrate stormwater runoff.
- Infiltration Beds B-2 and B-3 are to be installed beneath the synthetic turf fields and consist of crushed angular stone with perforated distribution pipes

BMP DESIGN NOTES

The proposed structural BMPs have been designed in general accordance with the PADEP Stormwater BMP Manual. Given the site topography and location of existing improvements, the design of Basin A required a slightly modified approach with minor deviations from the BMP Manual. First, as the only feasible location for infiltration within the East Branch Chester Creek watershed, impervious and overall loading ratios exceed the recommended values of 5:1 and 8:1, respectively. Loading ratios of approximately 7:1 and 28:1 are proposed. These loading ratios are acceptable as the contributing area does not present a high potential for pollution, the geology is not karst and thus sinkholes and groundwater contamination are not of concern, and the site is general well-drained.

Additionally, three (3) infiltration tests were performed within the infiltration footprint of BMP 1 at the infiltration invert elevation and yielded results of 0.0 in/hr, 1.0 in/hr, and 6.0 in/hr. Based on the results, and the general soil characteristics of the site the area is feasible for infiltration, however determination of a design infiltration rate is not straightforward due to the wide range and the presence of test with zero infiltration. As a result, the design infiltration rate has been determined by removing the highest and lowest recorded infiltration

Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

rates and applying a safety factor of two (2) to the remaining infiltration rate. This approach is reasonable as the recorded infiltration rates in the other proposed infiltration facilities ranged from 1.00 in/hr to 6.00 in/hr, which suggests the site as a whole consists of relatively variable soils but is generally conducive for infiltration. The recorded rates of TP-14 and TP-16 of 1.00 in/hr and 6.00 in/hr are within the range of recorded values elsewhere onsite and thus utilizing the lower of the two would produce a conservative design rate. Additionally, notes have been added to the plan regarding the potentially unsuitable soils within BMP 1 which outline in-situ testing protocol to determine the extent of unsuitable soils and a remediation plan.

VOLUME MANAGEMENT SUMMARY

A geotechnical evaluation was performed by Advantage Engineers to determine the suitability of the site for infiltration practices. Based upon the analysis, the site is generally well-drained and suitable for infiltration. See the *Stormwater Infiltration Feasibility Report*, dated October 8, 2018 and the Supplemental Infiltration Feasibility Report, dated November 9, 2018, for more information and a complete list of infiltration test pit results.

East Branch Chester Creek

The increase in runoff for the 2-year/24-hour storm for East Branch Chester Creek is being fully mitigated within the Infiltration Basin (BMP 1). A summary of the volume calculatons can be seen in the following table:

VOLUME SUMMARY East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester JOB # : 1091-001 DATE: 1/13/2023 REVISED:

	Req'd Ir	nfiltration \	/olume	10,307	CF					
	STRUCTURAL BMPS									
BMP ID	Infiltration Area (sf)	Imperv Area (sf)	ious LR	Overall Area (sf) LR		2 YR Runoff Volume (cf)	Stora Vol. (cf) @	age Elev.	Infiltration & ET Credit (CF)*	
BMP 1	11,329	53,504	4.7:1	216,893	19:1	19,880	15,585	290.50	15,626	
Total	11,329	53,504	4.7:1	216,893	19:1	19,880	15,585		15,626	

*See Infiltration Volume Worksheets

Unt. to East Branch Chester Creek

The increase in volume for the 2-year/24-hour storm for the Unnamed Tributary to East Branch Chester Creek is being controlled through two (2) subsurface infiltration beds (BMP's 2&3) and an infiltration basin (BMP 4). A summary of the volume calculatons can be seen in the following table:

Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

VOLUME SUMMARY UNT. TO EAST BRANCH CHESTER CREEK

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester JOB # : 1091-001 DATE: 1/13/2023 REVISED:

Re	eq'd Infiltration Vo	lume (from	n WS 4)	50,123	CF				
		~		STRUCTU	JRAL BM	PS			
BMP ID	Infiltration Area (sf)	Imperv Area (sf)	ious LR	Overall Area (sf) LR		2 YR Runoff Volume (cf)	Storage Vol. (cf) @ Elev.		Infiltration Volume *
2	75,725	96,824	1.3:1	96,824	1.3:1	24,426	23,035	316.75	24,426
3	26,795	96,824	3.6:1	96,824	3.6:1	24,426	21,916	321.00	24,357
4	18,641	15,823	0.8:1	424,430	22.8:1	25,095	21,724	311.00	18,850
Total	121,161	209,471	1.7:1	618,078	5:1	73,947	66,675		67,633

*See Infiltration Volume Worksheets

See Appendix B for complete volume calculations.

PEAK RATE SUMMARY CALCULATIONS

The following tables summarize the calculations for the pre-development peak flows, allowable post-development outflows, and the calculated outflow from each BMP and subdrainage area. Post development flows assume hydraulic routing through the proposed detention/infiltration facilities. All flows are in cfs. See Appendix E within this report for complete area calculations and hydrographs.

SUMMARY OF FLOWS - NRCS Rainfall-Runoff

East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester	JOB # : 1091-001 DATE: 1/13/2023 REVISED:					
WATERSHEDS	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
PRE-DEVELOPMENT	Flows (cfs)					
POI 'A'	4.26	8.16	11.81	17.58	22.86	28.81
Total Pre-Development						
POI 'A' Onsite (Reduction Factor)	3.15	6.04	8.75	13.02	16.93	21.34
50% Reduction	1.58	3.02	4.37	6.51	8.47	10.67
Allowable Post-Development Flow (Pre-Dev 50% Reduction)	2.68	5.14	7.44	11.07	14.40	18.14
POST-DEVELOPMENT						
A- Undetained	1.23	2.18	3.06	4.42	5.63	6.98
BMP 1 (Basin A)	0.13	0.54	1.41	3.93	6.91	12.69
Total Post-Development(Combined Hydrographs)	1.23	2.18	3.06	4.51	7.66	13.69

Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

SUMMARY OF FLOWS - NRCS Rainfall-Runoff

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester	JOB # : 1091-001 DATE: 1/13/2023 REVISED:					
WATERSHEDS	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
PRE-DEVELOPMENT			Flows	(cfs)		
POI 'B'	7.08	14.94	22.59	34.79	45.85	58.42
Total Pre-Development						
POI 'B' Onsite (Reduction Factor)	6.01	12.69	19.19	29.55	38.95	49.62
50% Reduction	3.01	6.35	9.60	14.78	19.48	24.81
Allowable Post-Development Flow	4.07	8.60	13.00	20.02	26.38	33.61
POST-DEVELOPMENT						
BMP 3	0.01	0.08	0.12	0.17	0.22	0.44
BMP 2	0.00	0.15	0.32	0.76	1.33	2.11
BMP 4	0.16	0.77	2.19	8.43	15.66	24.29
B- Undetained	2.33	4.30	6.13	8.99	11.55	14.48
Total Post-Development(Combined Hydrographs)	2.33	4.30	6.13	9.78	17.54	26.76

Unt. to East Branch Chester Creek

OFFSITE DISCHARGE ANALYSIS

DP001

Discharge Point (DP)001 is considered to be the proposed outfall of BMP 1. In order to reduce the risk of downstream erosion a rip-rap apron will be imployed to dissipate the energy and spread out the concentrated discharge of the endwall. The rip-rap has been designed using current design standards based on pipe size, outflow and anticipated velocity. Approximately 100 feet downslope of the discharge point the outflow enters and existing roadside swale. The flowpath between the discharge path and drainage swale is a well vegetated open area. The relatively short flowpath should reduce the amount of reconcentration of runoff. After the runoff enters the swale it continues on to an existing culvert which discharges to another reach of swale that enters the receiving surface water (refer to the Overall Drainage Map, sheet 44 of 44). Since the post-development rate and volume of runoff from the project site tributary to the existing drainage swale is being reduced from pre- to post development there is no risk of accelerated erosion to the downstream flowpath of runoff leaving the site at DP001. Further, mitigation is being provided in the form of a rip-rap apron to prevent erosion prior to runoff entering the existing drainage swale.

DP002

Discharge Point (DP)002 is considered to be the proposed outfall of BMP 4. DP002 discharges to an existing, well vegetated natural draw. This natural draw becomes the headwaters of the receiving watercourse approximately 350' downslope of DP002. In order to reduce the risk of downstream erosion a rip-rap apron will be imployed to dissipate the energy and spread out the concentrated discharge of the endwall. The rip-

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

rap has been designed using current design standards based on pipe size, outflow and anticipated velocity. Given the mild slope of the draw, quality and density of the vegetation, and the proposed outlet protection (rip-rap) there is no anticipated risk of accelerated erosion to the downstream flowpath.

١

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

APPENDIX B PADEP PCSM SPREADSHEETS

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

APPENDIX B PADEP PCSM SPREADSHEETS (EAST BRANCH CHESTER CREEK)

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

General Information

Instructions Ger	neral Volume Rat	te Quality		
Project Name:	The Westtown School - Oa	ak Lane Project	Application Type:	PAG-02 NOI
County:	Chester		Municipality:	Westtown Township
Project Type:	Other		New Project	\bigcirc Minor / Major Amendment
Area: (In Watershed)	6.44 act	res	Total Earth Disturbar (In Watershed)	nce: 4.77 acres
No. of Post-Consti	ruction Discharge Points:	1	Start DP Numbering	at: 001

Discharge Point (DP) No.	Drainage Area (DA) (acres)	Earth Disturbance in DA (acres)	Existing Impervious in DA (acres)	Proposed Impervious in DA (acres)	Receiving Waters	Ch. 93 Class	Structural BMP(s)
001	4.98	3.35	0.35	1.23	Discharge to MS4	TSF, MF	Yes
Undetained Areas	1.46	1.42	0.08	0.14	Discharge to MS4	TSF, MF	
Totals:		4.77	0.43	1.37		101,101	

Volume Management

Project: The Westtown School - Oak Lane Project

Instructions General Volume Rate Quality									
2-Year / 24-Hour Storm Event (NOAA Atlas 14): 3.26 inches	Alternative 2-Ye	ar / 24-Hour Sto	rm Event		inches				
	Alternative Sour	ce:							
Pre-Construction Conditions: No. Rows: 3 🗌 Exempt from Meadow in Good Condition 🗹 Automatically Calculate CN, Ia, Runoff and Volume									
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)			
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	0.19	В	98	0.041	3.03	2,055			
Pervious as Meadow	4.50	В	58	1.448	0.36	5,928			
Impervious as Meadow	0.05	В	58	1.448	0.36	62			
TOTAL (ACRES):	4.74				TOTAL (CF):	8,045			
Post-Construction Conditions: No. Rows: 2									
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)			
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	1.17	В	98	0.041	3.03	12,901			
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	3.20	В	61	1.279	0.47	5,450			
TOTAL (ACRES):	4.38				TOTAL (CF):	18,351			
		IET	CHANGE IN Y	VOLUME TO	MANAGE (CF):	10,307			

No. Structural BMPs: Start BMP Numbering at: 1 **Structural BMP Volume Credits:** 1 Incrementa Infiltration Volume Storage MRC? ET Credit BMP Infiltration | Infiltration | Vegeta Media Infiltration Routed to / Vegetated DP No. I BMP DA **BMP** Name Discharge Volume Rate (in/hr) Period (hrs) Depth (ft) Credit (CF) (CF) ted? No. BMP (CF) Area (SF) (CF) (acres) Infiltration Basin Off-Site 15,626 11,329 001 3.35 0.41 43 Yes 1.0 15,585 14,980 646 1 646

14,980 Totals:

INFILTRATION & ET CREDITS (CF): 15,626

TOTAL CREDITS (CF):

NET CHANGE IN VOLUME TO MANAGE (CF):

10,307 15,626

VOLUME REQUIREMENT SATISFIED

Tree Planting Credit

Other (attach calculations):

Rate Control

Project: The Westtown School - Oak Lane Project

Report Summary of Peak Rates Only

	Peo	ak Discharge Rates (d	cfs)	
	Pre-Construction	Post-Construction	Net Change	
2-Year Storm:	4.26	1.23	-3.03	R
10-Year Storm:	11.81	3.06	-8.75	R
50-Year Storm:	22.86	7.66	-15.20	R
100-Year Storm:	28.81	13.69	-15.12	R

Rate Control Satisfied Rate Control Satisfied Rate Control Satisfied Rate Control Satisfied

Water Quality

Project: The Westtown School - Oak Lane Project

PRINT

Instructions General Volume Rate Quality

Pre-Construction Pollutant Loads:

Land Cover (from Volume Worksheet)	Land Cover for Water	Area	Soil	Runoff Volume	Polluta	nt Conc.	(mg/L)	Pollutant Loads (lbs)		
	Quality	(acres)	Group	(cf)	TSS	ТР	TN	TSS	ТР	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	0.19	В	2,055	65.0	0.29	2.05	8.34	0.04	0.26
Pervious as Meadow	Grassland/Herbaceous	4.50	В	5,928	48.8	0.22	2.30	18.06	0.08	0.85
Impervious as Meadow	Grassland/Herbaceous	0.05	В	62	48.8	0.22	2.30	0.19	0.00	0.01
	TOTAL (ACRES):	4.74				тс	OTALS:	26.59	0.12	1.12

Post-Construction Pollutant Loads (without BMPs):

Land Cover (from Volume Worksheet)	Land Cover for Water	Area	Soil	Runoff Volume	Pollutant Conc. (mg/L)			Pollutant Loads (lbs)		
	Quality	(acres)	Group	(cf)	TSS	ТР	TN	TSS	ТР	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	1.17	В	12,901	65.0	0.29	2.05	52.36	0.23	1.65
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Open Space	3.20	В	5,450	78.0	0.25	1.25	26.54	0.09	0.43

TOTAL (ACRES): 4.38

TOTALS: 78.91 0.32 2.08

POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS):

52.31 0.20 0.95

Characterize Undetained Areas (for Untreated Stormwater)

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)

Non-Structural BMP Water Quality Credits:

Pervious Undetained Area Credit

Other (attach calculations)

Structural BMP Water Quality Credits:

Use default BMP Outflows and Median BMP Outflow Concentrations

DP No.	BMP	BMP Name	ARC?		Vol. Routed	BMP DA Vol. Routed			Outflow	Outflo	w Conc.	(mg/L)	Pollut	ant Load	ls (lbs)
DF NO.	No.	Divir Name	M	(acres)	to BMP (CF)	Credits (CF)	-) Credits (CF)	(CF)	TSS	ТР	ΤN	TSS	ТР	TN	
001	1	Infiltration Basin		3.35	15,626	15,626		0	10.00	0.24	0.96	0.00	0.00	0.00	

TSS	ТР	ΤN
0.00	0.00	0.00
11.72	0.05	0.31
11.72	0.05	0.31
26.59	0.12	1.12

POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS):

- POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS):
 - NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS):

NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS):

POLLUTANT LOADS FROM SITE, PRE-CONSTRUCTION (LBS):

WATER QUALITY REQUIREMENT SATISFIED

CERTIFICATION

I certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.

Tyler E. Hill, PE

1/10/2023

Spreadsheet User Name

Date

UNT. TO EAST BRANCH CHESTER CREEK

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

General Information

Instructions Ger	<mark>eral</mark> Volume F	Rate Quality		
Project Name:	The Westtown School -	Oak Lane Project	Application Type:	PAG-02 NOI
County:	Chester		Municipality:	Westtown Township
Project Type:	Other		New Project	\bigcirc Minor / Major Amendment
Area: (In Watershed)	16.93	acres	Total Earth Disturba (In Watershed)	nce: 14.43 acres
No. of Post-Consti	ruction Discharge Points:	1	Start DP Numbering	at: 002

		Earth	Existing	Proposed			
Discharge	Drainage Area	Disturbance in	Impervious in	Impervious in		Ch. 93	Structural
Point (DP) No.	(DA) (acres)	DA (acres)	DA (acres)	DA (acres)	Receiving Waters	Class	BMP(s)
					Unt. to E. Branch Chester		
002	14.19	11.69	0.01	4.81	Creek	TSF, MF	Yes
Undetained					Unt. to E. Branch Chester		
Areas	2.74	2.74	0.00	0.01	Creek	TSF, MF	
Totals:	16.93	14.43	0.01	4.82			

Volume Management

Project: The Westtown School - Oak Lane Project

Instructions General Volume Rate Quality						
2-Year / 24-Hour Storm Event (NOAA Atlas 14): 3.26 inches	Alternative 2-Ye	ar / 24-Hour Sto	rm Event		inches	
	Alternative Sour	ce:				
Pre-Construction Conditions: No. Rows: 4	from Meadow in	Good Condition	☑ Automa	itically Calcu	late CN, Ia, Runo	ff and Volume
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	0.01	В	98	0.041	3.03	88
Pervious as Meadow	12.57	В	58	1.448	0.36	16,537
Impervious as Meadow	0.00	В	58	1.448	0.36	3
Pervious as Meadow	1.53	D	78	0.564	1.32	7,303
TOTAL (ACRES):	14.10				TOTAL (CF):	23,930
Post-Construction Conditions: No. Rows: 3						
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	4.76	В	98	0.041	3.03	52,264
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	8.09	В	61	1.279	0.47	13,762
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	1.53	D	80	0.500	1.45	8,027
TOTAL (ACRES):	14.37			-	TOTAL (CF):	74,053

Non-Structural BMP Volume Credits:

Tree Planting Credit

Other (attach calculations):

Structural BMP Volume Credits: No. Stru

No. Structural BMPs: **3**

Start BMP Numbering at:

2

DP No.	BMP No.	BMP Name	MRC?	Discharge	Incrementa I BMP DA (acres)	Volume Routed to BMP (CF)	Infiltration / Vegetated Area (SF)	Infiltration	Infiltration Period (hrs)	-	Media Depth (ft)	Storage Volume (CF)	Infiltration Credit (CF)	ET Credit (CF)
002	2	Infiltration Bed		to BMP No. 4	2.22	24,426	75,725	2.32	12	No		23,035	24,426	
002	3	Infiltration Bed		to BMP No. 4	2.22	24,426	26,795	1.01	12	No		21,916	24,357	
002	4	Infiltration Basin		Off-Site	9.74	18,850	18,641	0.84	17	Yes	1.0	18,850	18,850	0

1/16/2023

Totals: 67,633

67,633

INFILTRATION & ET CREDITS (CF):

NET CHANGE IN VOLUME TO MANAGE (CF): 50,123

TOTAL CREDITS (CF): 67,633

VOLUME REQUIREMENT SATISFIED

Rate Control

Project: The Westtown School - Oak Lane Project

Report Summary of Peak Rates Only

	Peo	ak Discharge Rates (d	cfs)	
	Pre-Construction	Post-Construction	Net Change	
2-Year Storm:	7.08	2.33	-4.75	F
10-Year Storm:	22.59	6.13	-16.46	F
50-Year Storm:	45.85	17.54	-28.31	F
100-Year Storm:	58.42	26.76	-31.66	F

Rate Control Satisfied Rate Control Satisfied Rate Control Satisfied Rate Control Satisfied

Water Quality

Project: The Westtown School - Oak Lane Project

PRINT

	Instructions	General	Volume	Rate	Quality
--	--------------	---------	--------	------	---------

Pre-Construction Pollutant Loads:

Land Cover (from Volume Worksheet)	Land Cover for Water	Area Soil Runoff Pollutan			nt Conc. (mg/L)		Pollutant Loads (lbs)			
	Quality	(acres)	Group	(cf)	TSS	ТР	TN	TSS	ТР	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	0.01	В	88	65.0	0.29	2.05	0.36	0.00	0.01
Pervious as Meadow	Grassland/Herbaceous	12.57	В	16,537	48.8	0.22	2.30	50.39	0.23	2.38
Impervious as Meadow	Grassland/Herbaceous	0.00	В	3	48.8	0.22	2.30	0.01	0.00	0.00
Pervious as Meadow	Grassland/Herbaceous	1.53	D	7,303	48.8	0.22	2.30	22.25	0.10	1.05
	TOTAL (ACRES):	14.10				тс	DTALS:	73.01	0.33	3.44

Post-Construction Pollutant Loads (without BMPs):

Land Cover (from Volume Worksheet)	Land Cover for Water	Area	Area Soil		Pollutant Conc. (mg/L)			Pollutant Loads (lbs)		
	Quality	(acres) Gr	Group	Volume (cf)	TSS	ТР	ΤN	TSS	ТР	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	4.76	В	52,264	65.0	0.29	2.05	212.13	0.95	6.69

	TOTAL (ACRES):	14.37				T	DTALS:	318.25	1.29	8.39
Cover > 75%)										
Cemeteries, Etc.) - Good Condition (Grass	Open Space	1.53	D	8,027	78.0	0.25	1.25	39.10	0.13	0.63
Open Space (Lawns, Parks, Golf Courses,										
Cover > 75%)										
Cemeteries, Etc.) - Good Condition (Grass	Open Space	8.09	В	13,762	78.0	0.25	1.25	67.03	0.21	1.07
Open Space (Lawns, Parks, Golf Courses,										

POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS):

245.24 0.96 4.96

Characterize Undetained Areas (for Untreated Stormwater)

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)

Non-Structural BMP Water Quality Credits:

Pervious Undetained Area Credit

Other (attach calculations)

Structural BMP Water Quality Credits:

Use default BMP Outflows and Median BMP Outflow Concentrations

DP No.	BMP No.	BMP Name	MRC?	BMP DA (acres)	Vol. Routed to BMP (CF)	Inf. & ET Credits (CF)	Capture & Buffer Credits (CF)	Outflow (CF)	Outflow Conc. (mg/L)			Pollutant Loads (lbs)		
									TSS	ТР	TN	TSS	ТР	TN
002	2	Infiltration Bed		2.22	24,426	24,426		0	-	-	-	-	-	-
002	3	Infiltration Bed		2.22	24,426	24,357		69	-	-	-	-	-	-
002	4	Infiltration Basin		9.74	18,850	18,850		0	10.00	0.24	0.96	0.00	0.00	0.00

TSS	ТР	ΤN			
0.00	0.00	0.00			
27.59	0.11	0.73			
27.59	0.11	0.73			
73.01	0.33	3.44			

POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS): POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS): NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS): NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS): POLLUTANT LOADS FROM SITE, PRE-CONSTRUCTION (LBS):

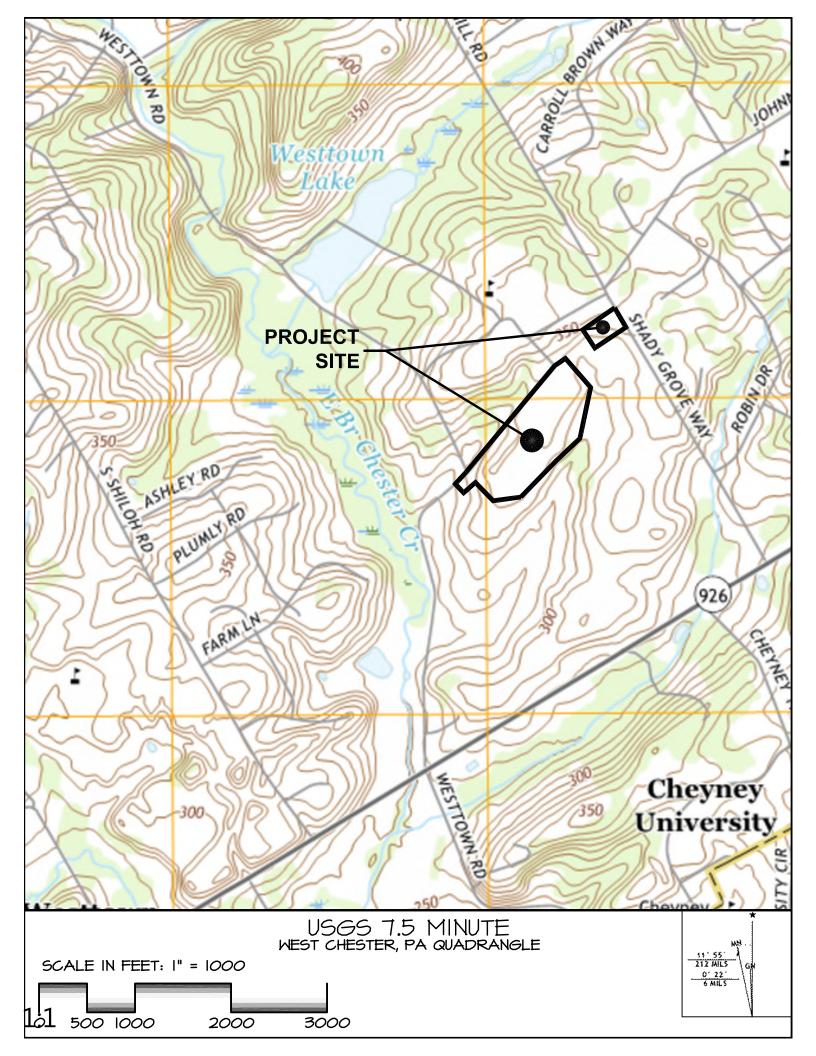
WATER QUALITY REQUIREMENT SATISFIED

CERTIFICATION

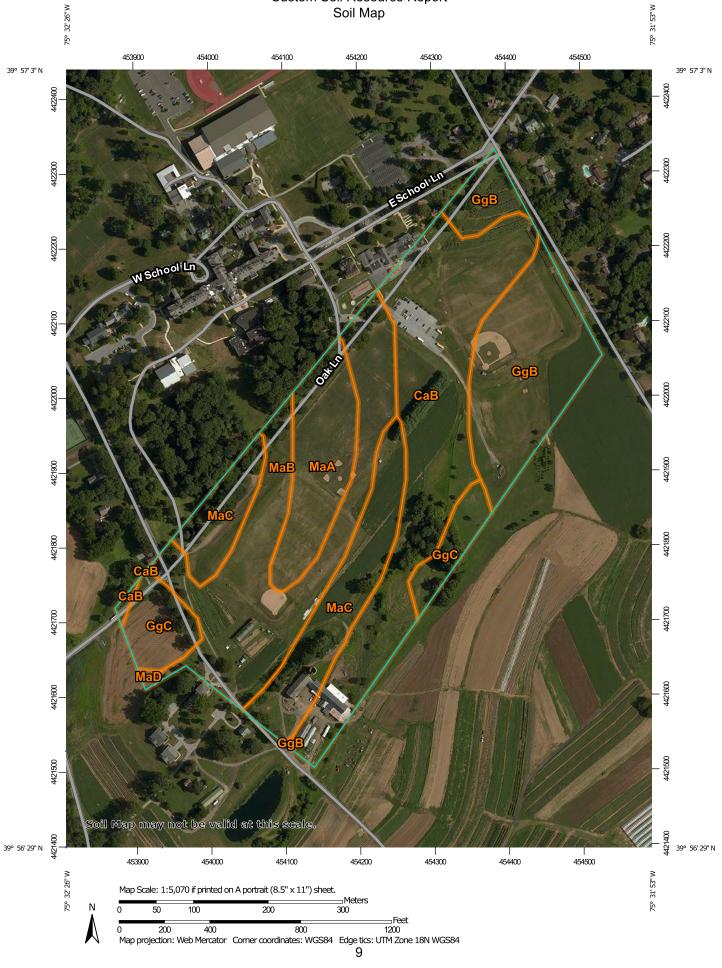
I certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.

Tyler E. Hill, PE

1/10/2023


Spreadsheet User Name

Date



APPENDIX C REFERENCE & SUPPORTING DOCUMENTS

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328

Custom Soil Resource Report Soil Map

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
СаВ	Califon loam, 3 to 8 percent slopes	16.5	28.4%
GgB	Glenelg silt loam, 3 to 8 percent slopes	10.4	17.9%
GgC	Glenelg silt loam, 8 to 15 percent slopes	4.0	6.9%
MaA	Manor loam, 0 to 3 percent slopes	5.5	9.4%
МаВ	Manor loam, 3 to 8 percent slopes	12.9	22.2%
MaC	Manor loam, 8 to 15 percent slopes	8.7	15.0%
MaD	Manor loam, 15 to 25 percent slopes	0.1	0.2%
Totals for Area of Interest		58.1	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

Job Number: 1091-001 Date: 10/25/2018

					3011.								
		SOIL					SUITA	BILITY		SOIL CON	IDITIONS FO	R CONSTRUC	TION
SYMBOL NAME	TEXTURE	SLOPE, %	HYDRO. SOIL GROUP	HYDRIC (INCLUSIONS)	ERODIBILITY (K)	DEPTH OF WATER TABLE (IN)	DEPTH TO BEDROCK (IN)	WINTER GRADING	FROST ACTION	SURFACE WATER MANAGEMENT	BUILDING SITE	ROADFILL	TOPSOIL
CaB Califon	Loam	3 to 8	D		0.32	6 to 36	72 to 99	Limited	High	Somewhat Limited	Very Limited	Fair	Fair
GgC Glenelg	Silt Loam	8 to 15	В		0.37	80+	80+	Somewhat Limited	Moderate	Very Limited	Very Limited	Fair	Fair
MaA Manor	Loam	0 to 3	В		0.28	80+	72 to 99	Somewhat Limited	Moderate	Not Limited	Somewhat Limited	Poor	Fair
MaB Manor	Loam	3 to 8	В		0.28	80+	72 to 99	Somewhat Limited	Moderate	Very Limited	Somewhat Limited	Poor	Fair
MaC Manor	Loam	8 to 15	В		0.28	80+	59 to 100	Somewhat Limited	Moderate	Very Limited	Very Limited	Poor	Poor

SOILS INFORMATION FACT SHEET

Job Number: 1091-001 Date: 10/25/2018

				ONS & RESOLUTIONS	Date: 10/25/2018
5011		1ITATIONS			COMMENTS
SOIL			CHARACTERISTICS	RESOLUTIONS	COMMENTS
CaB	Cutbanks Cave	Excavations	The walls of excavations tend to	It is imperative that appropriate precautions be taken to safeguard workers during all trenching and excavation	All applicable OSHA standards and regulations
GgC			cave in or slough	operations.	must be implemented at all times.
MaA					
MaB					
Mac					
CaB (C/S)	Corrosive to	Foundation and other	Weakening or dissolution of	Suitable precautions should be taken to protect all	Refer to the Geotechnical Report
GgC (C)	Concrete/ Steel	infrastructural materials that	concrete or uncoated steel	underground pipes, conduits, and storage tanks from	
MaA (C)		may contact the soil	caused by soil-induced electrochemical or chemical	concrete and steel corrosion. If potential corrosive properties are encountered during construction, impacted utilities in	
MaB (C)			action.	that area shall be backfilled with processed aggregate to	
MaC (C)				reduce the potential of corrosion from soil backfill.	
GgC	Erodibility	Grassed Waterways	Easily Erodible	Excavation should occur during low-rainfall periods when	See Erosion and Sediment Control Plan
MaA		Terraces	Rill and/or Gully Erosion	possible	
MaB		Slopes		Minimize duration of earth disturbance	
MaC		Stabilization		Immediately stabilize with erosion control matting, mulch, or	
		Landscaping		sod.	
				Avoid concentrating runoff in disturbed areas	
CaB	Depth to Saturated	Buildings w/ basements	High table	Suitable precautions should be taken if water is encountered	Contact Geotechnical Engineer if shallow
	Zone/ Seasonal High	Excavations	Wetness	Contractor is to utilize pumping techniques and other	groundwater is encountered
	Water Table	Stormwater Facilities	Soil mottling	methods as recommended by a Geotechnical Engineer.	
CaB	Frost Action	Winter Grading	Frost heaving or upward	Do not grade, fill, or backfill during periods of freezing	
GgC			swelling of soil during freezing	temperatures.	
MaA			conditons.	Proper precautions should be taken to prevent damage,	
MaB				especially to roadways.	
Mac					
GgC	Hydric/	unless authorized by DEP	Wetlands	Delineate and Protect Wetlands	See wetland delineation repot
	Hydric Inclusions	and /an ACOF if we then de	Wetness	Obtain all permits/authorizations	
		and/or ACOE if wetlands	wettess		
		present		Utilize pumping techniques where appropriate	
CaB	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to	
GgC		present		Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and	See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to	
GgC MaA MaB	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes.	
GgC MaA	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure	
GgC MaA MaB	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in	
GgC MaA MaB	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills	
GgC MaA MaB	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters.	
GgC MaA MaB	Low Strength/	present Steep Slopes	Low strength soils are prone	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot	geotechnical professional on record See geotechnical engineering report or consult the
GgC MaA MaB MaC	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill	Low strength soils are prone failure on steep slopes. Wetness Soil mottling	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB GgC MaA MaB	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB GgC MaA	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB GgC MaA MaB MaC	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua
GgC MaA MaB MaC CaB GgC MaA MaB MaC GgC	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Storrmwater BMP Manua See plans
GgC MaA MaB MaC CaB GgC MaA MaB MaC GgC MaA	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See plans See geotechnical engineering report or consult the
GgC MaA MaB MaC CaB GgC MaA MaB MaC MaA MaB	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Storrmwater BMP Manua See plans
GgC MaA MaB MaC CaB GgC MaA MaB MaC GgC MaA	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See plans See geotechnical engineering report or consult the
GgC MaA MaB MaC GgC MaA MaB MaC GgC MaA MaB MaC	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See plans See geotechnical engineering report or consult the
GgC MaA MaB MaC CaB GgC MaA MaB MaC MaA MaB	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by water moving through the soil	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand. Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See plans See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB GgC MaA MaB MaC GgC GgC GgC	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by water moving through the soil Low Fertility	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand. Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc. Soil Testsing and appropriate supplementation.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See plans See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB GgC MaA MaB MaC GgC MaA MaB MaC GgC MaA	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by water moving through the soil Low Fertility Droughty or Wet	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand. Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc. Soil Testsing and appropriate supplementation.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See plans See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC CaB GgC MaA MaB MaC MaA MaB MaC GgC MaA MaB MaC	Low Strength/ Landslide Prone Slow Percolation Piping Poor Source of Topsoil	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by water moving through the soil Low Fertility Droughty or Wet	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand. Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc. Soil Testsing and appropriate supplementation.	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manua See geotechnical engineering report or consult the geotechnical professional on record See plan notes
GgC MaA MaB MaC CaB GgC MaA MaB MaC GgC MaA MaB MaC GgC MaA MaB MaC CaB	Low Strength/ Landslide Prone	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities Vegetative Growth/ Stabilization Site work/grading	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by water moving through the soil Low Fertility Droughty or Wet High Acidity Slow percolation	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, remices such as over-steepening and correct staturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand. Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc. Soil Testsing and appropriate supplementation. Soil amendment/restoration practices Concrete stabilization	geotechnical professional on record See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manual See geotechnical engineering report or consult the geotechnical professional on record See plan notes See geotechnical report or consult geotechnical
GgC MaA MaB MaC GgC MaA MaB MaC GgC MaA MaB MaC GgC MaA MaB MaC	Low Strength/ Landslide Prone Slow Percolation Piping Poor Source of Topsoil	present Steep Slopes Structural Fill Stormwater Infiltration On-lot Sewage Facilities Vegetative Growth/ Stabilization	Low strength soils are prone failure on steep slopes. Wetness Soil mottling Shallow groundwater Formation of subsurface tunnels or pipelike cavities by water moving through the soil Low Fertility Droughty or Wet High Acidity	Utilize pumping techniques where appropriate Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength. Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand. Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc. Soil Testsing and appropriate supplementation. Soil amendment/restoration practices	See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manual See geotechnical engineering report or consult the geotechnical professional on record See plan notes

ORDINANCE APPENDIX C

RUNOFF COEFFICIENTS AND CURVE NUMBERS

TABLE C-1. RUNOFF CURVE NUMBERS

Source: Table 2-2a, Table 2-2b, and Table 2-2c from U. S. Department of Agriculture, Natural Resources Conservation Service, June 1986, <u>*Urban*</u> *Hydrology for Small Watersheds, Technical Release No. 55 (TR-55)*, Second Edition.

TABLE C-2. RATIONAL RUNOFF COEFFICIENTS

Source: Table F.2 from Delaware County Planning Department, December 2011, Crum Creek Watershed Act 167 Stormwater Management Plan.

TABLE C-3. MANNING'S 'n' VALUES Source: Table 3-1 from United States Army Corps of Engineers, January 2010, HEC-RAS River Analysis System, Hydraulic Reference Manual, Version 4.1.

FIGURE C-1. REDEVELOPMENT PROJECTS RUNOFF CRITERIA ADJUSTMENT FOR PRE-DEVELOPMENT CONDITIONS

Source: Figure B-3 from the Delaware County Planning Department and Chester County Planning Commission, June 2002, <u>Act 167 Stormwater Management Plan Chester Creek Watershed.</u>

TABLE C-1. RUNOFF CURVE NUMBERS (3 pages)

Source: Table 2-2a, Table 2-2b, and Table 2-2c from U. S. Department of Agriculture, Natural Resources Conservation Service, June 1986, <u>Urban</u> <u>Hydrology for Small Watersheds, Technical Release No. 55 (TR-55)</u>, Second Edition.

TABLE C-2. RATIONAL RUNOFF COEFFICIENTS (1 page)

Source: Table F.2 from Delaware County Planning Department, December 2011, Crum Creek Watershed Act 167 Stormwater Management Plan.

TABLE C-3. MANNING'S 'n' VALUES
(3 pages)

Source: Table 3-1 from United States Army Corps of Engineers, January 2010, <u>HEC-RAS River Analysis System, Hydraulic Reference Manual</u>, Version 4.1.

Table 2-2a F

Runoff curve numbers for urban areas 1/

Cover description			Curve n hydrologi	umbers for c soil group	
	Average percent		V · · · · · ·		
	pervious area 2/	А	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:		00	01	14	00
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:	•••	90	90	90	98
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	<i>8</i> 9	98 92	90 93
Gravel (including right-of-way)	•••	76	89 85	92 89	93 91
Dirt (including right-of-way)		70 72	82	89 87	
Western desert urban areas:	•••	14	04	01	89
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier,		05	((89	88
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	00	0.0	00
Urban districts:	••	90	96	96	96
Commercial and business	85	89	00	0.4	05
Industrial			92	94	95
Residential districts by average lot size:	12	81	88	91	93
1/8 acre or less (town houses)	65	77	05	00	00
1/4 acre	38	61	85 75	90	92
1/3 acre		+ -		83	87
1/2 acre		57 54	72	81	86
l acre		54	70	80	85
		51	68 67	79	84
2 acres	12	46	65	77	82
Developing urban areas					
lewly graded areas					
(pervious areas only, no vegetation) ^{5/}		77	86	91	94
a		11	00	51	94
dle lands (CN's are determined using cover types					
(accontinued nonig cover upped					

The rands (CN's are determined using cover types

similar to those in table 2-2c).

 $^{1}\,$ Average runoff condition, and I_{a} = 0.2S.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

	Cover description			Curve nur hydrologic s		
	. *	Hydrologic			on Broup	
Cover type	Treatment 2/	condition ^{3/}	А	В	С	D
Fallow	Bare soil		77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
ľ		Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	$6\hat{4}$	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	С	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	С	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

Table 2-2bRunoff curve numbers for cultivated agricultural lands agricultural lands and a set of the set

 $^{\rm 1}$ Average runoff condition, and $I_a{=}0.2{\rm S}$

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c Runoff curve numbers for other agricultural lands 1/

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	В	С	D	
Pasture, grassland, or range—continuous forage for grazing. 2/	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ^{3/}	Poor Fair Good	48 35 30 4⁄	$67 \\ 56 \\ 48$	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). ^{5/}	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods. 🖗	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.		59	74	82	86	

¹ Average runoff condition, and $I_a = 0.2S$.

² *Poor:* <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

³ *Poor*: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ *Poor:* Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. *Fair:* Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

TABLE F-2

RATIONAL RUNOFF CO	EFFICIENTS
--------------------	------------

	HYDR	OLOGIC	SOIL C	GROUP
LAND USE DESCRIPTION	A	В	С	D
Cultivated land : without conservation treatment	.49	.67	.81	.88
: with conservation treatment	.27	.43	.61	.67
Pasture or range land: poor condition	.38	.63	.78	.84
: good condition	*	.25	.51	.65
Meadow: good condition	*	*	.44	.61
Woods: thin stand, poor cover, no mulch	*	.34	.59	.70
: good cover	*	*	.45	.59
Open spaces, lawns, parks, golf courses, cemeteries				
Good condition: grass cover on 75% or more of	*	.25	.51	.65
the area				
Fair condition: grass cover on 50% to 75% of	*	.45	.63	.74
the area				
Commercial and business areas (85% impervious)	.84	.90	.93	.96
Industrial districts (72% impervious)	.67	.81	.88	.92
Residential:				
Average lot size Average % impervious				
1/8 acre or less 65	.59	.76	.86	.90
1/4 acre 38	.25	.49	.67	.78
1/3 acre 30	*	.49	.67	.78
1/2 acre 25	*	.45	.65	.76
1 acre 20	*	.41	.63	.74
Paved parking lots, roofs, driveways, etc.	.99	.99	.99	.99
Streets and roads:				
Paved with curbs and storm sewers	.99	.99	.99	.99
Gravel	.57	.76	.84	.88
Dirt	.49	.69	.80	.84

Notes: Values are based on SCS definitions and are average values. Values indicated by ---* should be determined by the design engineer based on site characteristics.

Source : New Jersey Department of Environmental Protection, Technical Manual for Stream Encroachment, August 1984

Table 3-1 Manning's 'n' Values

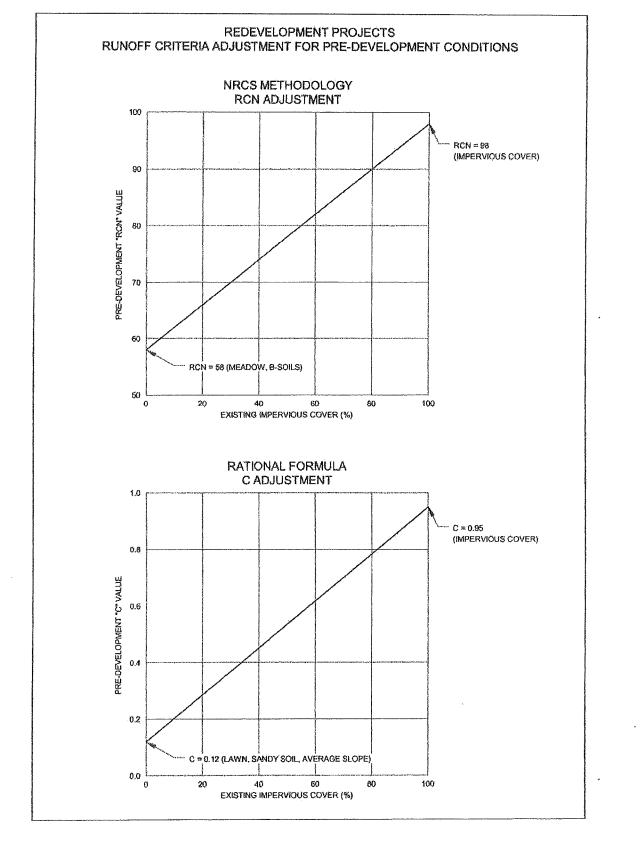
		Type of Channel and Description	Minimum	Normal	Maximum
A. Na	tural Stre	ams			
l. Ma	in Chanı	lels			
a.	. Clean, si	raight, full, no rifts or deep pools			
b.	. Same as	above, but more stones and weeds	0.025	0.030	0.033
c.	Clean, w	inding, some pools and shoals	0.030	0.035	0.040
d.	Same as	above, but some weeds and stones	0.033	0.040	0.045
e.	Same as	above, lower stages, more ineffective slopes and	0.035	0.045	0.050
se	ections	- · · · · ·	0.040	0.048	0.055
f.	Same as	"d" but more stones			
		reaches, weedy. deep pools	0.045	0.050	0.060
h.	Very we	edy reaches, deep pools, or floodways with heavy stands	0.050	0.070	0.080
of	timber a	nd brush	0.070	0.100	0.150
Floo	d Plains				
a.		e no brush			
	1.	Short grass	0.025	0.030	0.035
	2.	High grass	0.030	0.035	0.050
b.		ited areas		•	
0.	1.	No crop	0.020	0.030	0.040
	2.	Mature row crops	0.025	0.035	0.045
	3.	Mature field crops	0.030	0.040	0.050
c.	Brush	mature neid crops			01000
υ.	1.	Scattered brush, heavy weeds	0.035	0.050	0.070
	2.	Light brush and trees, in winter	0.035	0.050	0.060
	3.	Light brush and trees, in summer	0.040	0.060	0.080
	3. 4.	Medium to dense brush, in winter	0.045	0.070	0.110
	5.	Medium to dense brush, in summer	0.070	0.100	0.160
d.	Trees	We during to dense blush, in summer			0.100
u.	1.	Cleared land with tree atomne an amount	0.030	0.040	0.050
	2.	Cleared land with tree stumps, no sprouts	0.050	0.060	0.080
	2. 3.	Same as above, but heavy sprouts	0.080	0.100	0.120
	л.	Heavy stand of timber, few down trees, little			0.120
	4.	undergrowth, flow below branches	0.100	0.120	0.160
	4. 5.	Same as above, but with flow into branches		01120	0.100
	э.	Dense willows, summer, straight	0.110	0.150	0.200

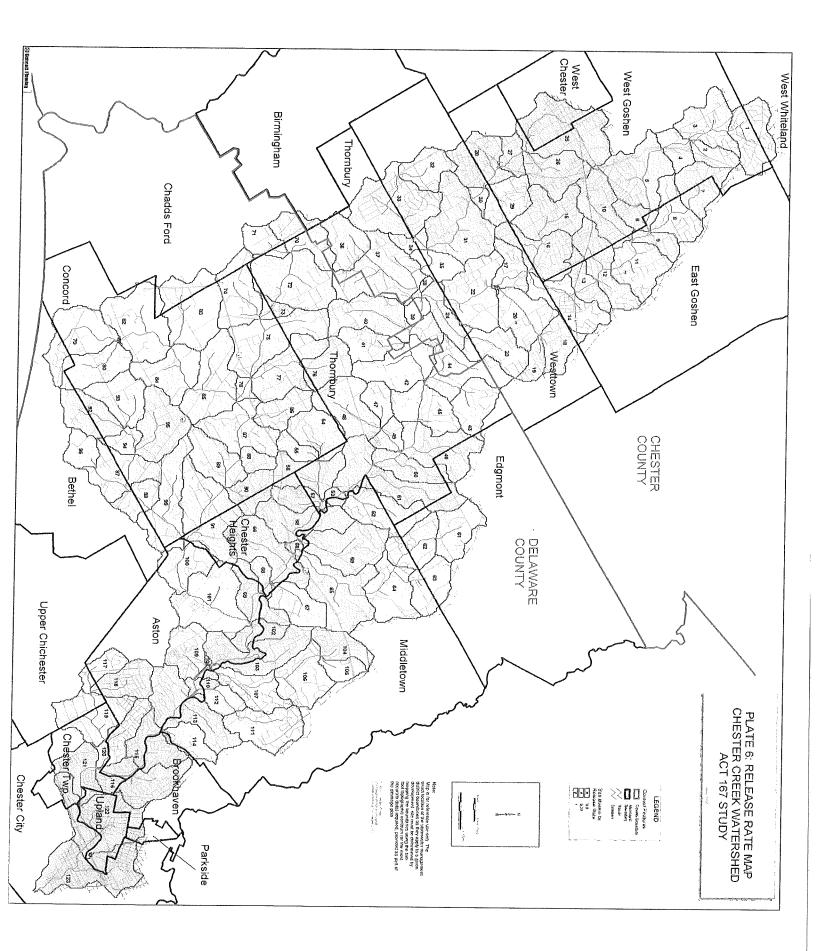
3. Mountain Streams, no vegetation in channel, banks usually steep, with trees and brush on banks submerged

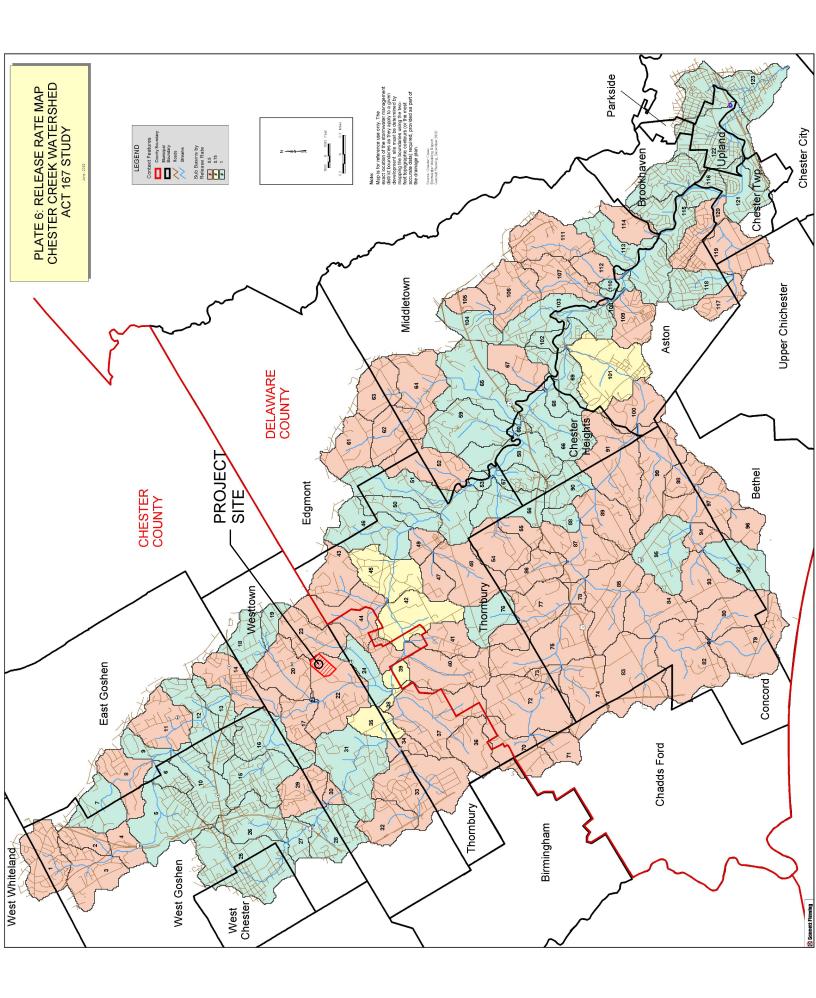
With	trees and brush on banks submerged				
a.	Bottom: gravels, cobbles, and few boulders				
b.	Bottom: cobbles with large boulders	0.030	0.040	0.050	
		0.040	0.050	0.070	
			CONTRACTOR OF THE OWNER		

Table 3-1 (Continued) Manning's 'n' Values

Type of Channel and Description	Minimum	Normal	Maximun
B. Lined or Built-Up Channels			
1. Concrete			
a. Trowel finish	0.011	0.013	0.015
b. Float Finish	0.013	0.015	0.015
c. Finished, with gravel bottom	0.015	0.017	0.020
d. Unfinished	0.015	0.017	0.020
e. Gunite, good section	0.014	0.019	0.020
f. Gunite, wavy section	0.018	0.022	0.023
g. On good excavated rock	0.013	0.022	0.025
h. On irregular excavated rock	0.022	0.020	
2. Concrete bottom float finished with sides of:			
a. Dressed stone in mortar	0.015	0.017	0.020
b. Random stone in mortar	0.017	0.020	0.020
c. Cement rubble masonry, plastered	0.016	0.020	0.024
d. Cement rubble masonry	0.020	0.025	0.030
e. Dry rubble on riprap	0.020	0.030	0.035
3. Gravel bottom with sides of:			
a. Formed concrete	0.017	0.020	0.025
b. Random stone in mortar	0.020	0.023	0.026
c. Dry rubble or riprap	0.023	0.033	0.036
4. Brick			
a. Glazed	0.011	0.013	0.015
b. In cement mortar	0.012	0.015	0.015
5. Metal			
a. Smooth steel surfaces	0.011	0.012	0.014
b. Corrugated metal	0.021	0.025	0.030
5. Asphalt			
a. Smooth	0.013	0.013	
b. Rough	0.016	0.015	
7. Vegetal lining	0.030		0.500


Table 3-1 (Continued) Manning's 'n' Values


Type of Channel and Description	Minimum	Normal	Maximum
C. Excavated or Dredged Channels			
1. Earth, straight and uniform			
a. Clean, recently completed	0.016	0.018	0.020
b. Clean, after weathering	0.018	0.022	0.025
c. Gravel, uniform section, clean	0.022	0.025	0.030
d. With short grass, few weeds	0.022	0.027	0.033
2. Earth, winding and sluggish			
a. No vegetation	0.023	0.025	0.030
b. Grass, some weeds	0.025	0.030	0.033
 Dense weeds or aquatic plants in deep channels 	0.030	0.035	0.040
d. Earth bottom and rubble side	0.028	0.030	0.035
e. Stony bottom and weedy banks	0.025	0.035	0.040
f. Cobble bottom and clean sides	0.030	0.040	0.050
Dragline-excavated or dredged			
a. No vegetation	0.025	0.028	0.033
b. Light brush on banks	0.035	0.050	0.060
. Rock cuts			
a. Smooth and uniform	0.025	0.035	0.040
b. Jagged and irregular	0.035	0.040	0.050
. Channels not maintained, weeds and brush			
a. Clean bottom, brush on sides	0.040	0.050	0.080
b. Same as above, highest stage of flow	0.045	0.070	0.110
c. Dense weeds, high as flow depth	0.050	0.080	0.120
d. Dense brush, high stage	0.080	0.100	0.120


Other sources that include pictures of selected streams as a guide to n value determination are available (Fasken, 1963; Barnes, 1967; and Hicks and Mason, 1991). In general, these references provide color photos with tables of calibrated n values for a range of flows.

Although there are many factors that affect the selection of the n value for the channel, some of the most important factors are the type and size of materials that compose the bed and banks of a channel, and the shape of the channel. Cowan (1956) developed a procedure for estimating the effects of these factors to determine the value of Manning's n of a channel. In Cowan's procedure, the value of n is computed by the following equation:

FIGURE C-1

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: West Chester, Pennsylvania, USA* Latitude: 39.9456°, Longitude: -75.5371° Elevation: 319.37 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.353 (0.323-0.385)	0.421 (0.386-0.459)	0.492 (0.450-0.537)	0.542 (0.495-0.591)	0.600 (0.546-0.655)	0.640 (0.578-0.699)	0.679 (0.611-0.742)	0.712 (0.637-0.781)	0.750 (0.665-0.825)	0.778 (0.684-0.860)
10-min	0.563 (0.517-0.615)	0.673 (0.617-0.734)	0.788 (0.720-0.859)	0.866 (0.791-0.946)	0.957 (0.870-1.04)	1.02 (0.921-1.11)	1.08 (0.971-1.18)	1.13 (1.01-1.24)	1.19 (1.05-1.31)	1.23 (1.08-1.36)
15-min	0.704 (0.646-0.769)	0.846 (0.775-0.923)	0.996 (0.911-1.09)	1.10 (1.00-1.20)	1.21 (1.10-1.32)	1.29 (1.17-1.41)	1.36 (1.23-1.49)	1.42 (1.27-1.56)	1.49 (1.32-1.64)	1.54 (1.35-1.70)
30-min	0.966 (0.885-1.06)	1.17 (1.07-1.27)	1.42 (1.30-1.54)	1.59 (1.45-1.73)	1.80 (1.63-1.96)	1.94 (1.76-2.12)	2.09 (1.88-2.28)	2.22 (1.98-2.43)	2.38 (2.11-2.62)	2.49 (2.19-2.75)
60-min	1.20 (1.10-1.32)	1.47 (1.34-1.60)	1.82 (1.66-1.98)	2.07 (1.89-2.26)	2.39 (2.17-2.61)	2.63 (2.38-2.88)	2.88 (2.59-3.15)	3.11 (2.78-3.41)	3.41 (3.02-3.75)	3.64 (3.20-4.02)
2-hr	1.44 (1.31-1.59)	1.75 (1.59-1.93)	2.17 (1.97-2.40)	2.50 (2.26-2.76)	2.93 (2.63-3.22)	3.27 (2.92-3.60)	3.60 (3.20-3.97)	3.94 (3.47-4.35)	4.39 (3.83-4.86)	4.74 (4.09-5.27)
3-hr	1.56 (1.42-1.73)	1.90 (1.73-2.09)	2.37 (2.15-2.61)	2.73 (2.47-3.01)	3.20 (2.88-3.53)	3.58 (3.20-3.94)	3.96 (3.52-4.36)	4.34 (3.82-4.79)	4.86 (4.22-5.38)	5.25 (4.51-5.83)
6-hr	1.93 (1.75-2.14)	2.33 (2.12-2.58)	2.90 (2.63-3.21)	3.36 (3.03-3.71)	3.99 (3.58-4.41)	4.51 (4.01-4.97)	5.05 (4.45-5.57)	5.61 (4.89-6.19)	6.39 (5.48-7.09)	7.01 (5.93-7.82)
12-hr	2.35 (2.13-2.62)	2.83 (2.57-3.16)	3.55 (3.21-3.95)	4.14 (3.73-4.60)	4.99 (4.45-5.54)	5.71 (5.05-6.33)	6.48 (5.66-7.19)	7.32 (6.30-8.14)	8.53 (7.19-9.51)	9.53 (7.89-10.7)
24-hr	2.71 (2.49-2.96)	3.26 (3.00-3.56)	4.10 (3.76-4.48)	4.80 (4.39-5.23)	5.81 (5.29-6.33)	6.66 (6.03-7.24)	7.58 (6.82-8.23)	8.57 (7.67-9.30)	10.0 (8.87-10.9)	11.2 (9.85-12.2)
2-day	3.13 (2.87-3.43)	3.78 (3.47-4.14)	4.76 (4.36-5.20)	5.55 (5.08-6.07)	6.69 (6.09-7.31)	7.63 (6.92-8.33)	8.64 (7.79-9.42)	9.71 (8.70-10.6)	11.3 (9.99-12.3)	12.5 (11.0-13.7)
3-day	3.30 (3.03-3.62)	3.98 (3.66-4.36)	5.00 (4.59-5.46)	5.83 (5.33-6.37)	7.00 (6.38-7.65)	7.98 (7.24-8.70)	9.02 (8.14-9.83)	10.1 (9.08-11.0)	11.7 (10.4-12.8)	13.0 (11.5-14.2)
4-day	3.47 (3.19-3.80)	4.19 (3.85-4.58)	5.24 (4.81-5.73)	6.10 (5.59-6.66)	7.32 (6.67-7.99)	8.33 (7.56-9.08)	9.40 (8.49-10.2)	10.5 (9.46-11.5)	12.2 (10.8-13.3)	13.5 (11.9-14.7)
7-day	4.06 (3.77-4.41)	4.87 (4.51-5.29)	6.03 (5.58-6.55)	6.98 (6.45-7.57)	8.34 (7.68-9.04)	9.47 (8.67-10.2)	10.7 (9.72-11.5)	12.0 (10.8-12.9)	13.8 (12.4-14.9)	15.3 (13.6-16.6)
10-day	4.62 (4.30-4.98)	5.52 (5.14-5.95)	6.73 (6.26-7.26)	7.71 (7.16-8.31)	9.08 (8.40-9.77)	10.2 (9.40-11.0)	11.3 (10.4-12.2)	12.5 (11.4-13.5)	14.2 (12.9-15.3)	15.6 (14.0-16.8)
20-day	6.24 (5.84-6.69)	7.41 (6.94-7.93)	8.84 (8.27-9.47)	9.97 (9.31-10.7)	11.5 (10.7-12.3)	12.7 (11.8-13.6)	13.9 (12.9-14.9)	15.1 (13.9-16.2)	16.8 (15.4-18.0)	18.0 (16.4-19.4)
30-day	7.77 (7.32-8.24)	9.16 (8.63-9.72)	10.7 (10.1-11.3)	11.9 (11.2-12.6)	13.4 (12.6-14.3)	14.6 (13.7-15.5)	15.8 (14.8-16.8)	17.0 (15.8-18.0)	18.5 (17.1-19.6)	19.6 (18.1-20.9)
45-day	9.86 (9.35-10.4)	11.6 (11.0-12.2)	13.3 (12.6-14.1)	14.6 (13.9-15.5)	16.3 (15.4-17.2)	17.6 (16.6-18.5)	18.7 (17.7-19.8)	19.8 (18.7-21.0)	21.2 (19.9-22.4)	22.2 (20.8-23.5)
60-day	11.8 (11.2-12.4)	13.8 (13.2-14.6)	15.8 (15.0-16.6)	17.3 (16.4-18.2)	19.1 (18.1-20.1)	20.4 (19.4-21.5)	21.7 (20.5-22.8)	22.8 (21.6-24.0)	24.2 (22.9-25.5)	25.2 (23.8-26.6)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: West Chester, Pennsylvania, USA* Latitude: 39.9456°, Longitude: -75.5371° Elevation: 319.37 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹									
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.24 (3.88-4.62)	5.05 (4.63-5.51)	5.90 (5.40-6.44)	6.50 (5.94-7.09)	7.20 (6.55-7.86)	7.68 (6.94-8.39)	8.15 (7.33-8.90)	8.54 (7.64-9.37)	9.00 (7.98-9.90)	9.34 (8.21-10.3)
10-min	3.38 (3.10-3.69)	4.04 (3.70-4.40)	4.73 (4.32-5.15)	5.20 (4.75-5.68)	5.74 (5.22-6.26)	6.11 (5.53-6.68)	6.47 (5.83-7.08)	6.77 (6.06-7.43)	7.12 (6.31-7.84)	7.35 (6.46-8.13)
15-min	2.82 (2.58-3.08)	3.38 (3.10-3.69)	3.98 (3.64-4.35)	4.38 (4.00-4.78)	4.85 (4.41-5.29)	5.16 (4.66-5.64)	5.46 (4.91-5.96)	5.70 (5.10-6.25)	5.97 (5.29-6.57)	6.15 (5.41-6.80)
30-min	1.93 (1.77-2.11)	2.34 (2.14-2.55)	2.83 (2.59-3.09)	3.17 (2.90-3.47)	3.59 (3.27-3.92)	3.89 (3.51-4.24)	4.18 (3.76-4.57)	4.43 (3.97-4.86)	4.75 (4.21-5.23)	4.98 (4.38-5.51)
60-min	1.20 (1.10-1.32)	1.47 (1.34-1.60)	1.82 (1.66-1.98)	2.07 (1.89-2.26)	2.39 (2.17-2.61)	2.63 (2.38-2.88)	2.88 (2.59-3.15)	3.11 (2.78-3.41)	3.41 (3.02-3.75)	3.64 (3.20-4.02)
2-hr	0.719 (0.652-0.792)	0.874 (0.794-0.964)	1.09 (0.986-1.20)	1.25 (1.13-1.38)	1.47 (1.32-1.61)	1.63 (1.46-1.80)	1.80 (1.60-1.99)	1.97 (1.74-2.17)	2.20 (1.91-2.43)	2.37 (2.04-2.63)
3-hr	0.521 (0.474-0.575)	0.632 (0.575-0.697)	0.789 (0.716-0.869)	0.908 (0.822-1.00)	1.07 (0.959-1.17)	1.19 (1.07-1.31)	1.32 (1.17-1.45)	1.45 (1.27-1.60)	1.62 (1.40-1.79)	1.75 (1.50-1.94)
6-hr	0.322 (0.293-0.357)	0.389 (0.354-0.431)	0.484 (0.439-0.536)	0.560 (0.507-0.620)	0.667 (0.598-0.736)	0.752 (0.670-0.830)	0.843 (0.743-0.930)	0.937 (0.817-1.03)	1.07 (0.915-1.18)	1.17 (0.990-1.31)
12-hr	0.195 (0.177-0.218)	0.235 (0.213-0.262)	0.294 (0.267-0.328)	0.343 (0.309-0.382)	0.415 (0.370-0.460)	0.474 (0.419-0.525)	0.538 (0.470-0.597)	0.607 (0.523-0.675)	0.708 (0.597-0.789)	0.791 (0.655-0.885)
24-hr	0.113 (0.104-0.123)	0.136 (0.125-0.149)	0.171 (0.157-0.187)	0.200 (0.183-0.218)	0.242 (0.220-0.264)	0.277 (0.251-0.302)	0.316 (0.284-0.343)	0.357 (0.319-0.388)	0.418 (0.370-0.453)	0.468 (0.410-0.508)
2-day	0.065 (0.060-0.071)	0.079 (0.072-0.086)	0.099 (0.091-0.108)	0.116 (0.106-0.127)	0.139 (0.127-0.152)	0.159 (0.144-0.173)	0.180 (0.162-0.196)	0.202 (0.181-0.221)	0.234 (0.208-0.256)	0.261 (0.230-0.284)
3-day	0.046 (0.042-0.050)	0.055 (0.051-0.061)	0.069 (0.064-0.076)	0.081 (0.074-0.088)	0.097 (0.089-0.106)	0.111 (0.101-0.121)	0.125 (0.113-0.137)	0.141 (0.126-0.153)	0.163 (0.145-0.177)	0.181 (0.159-0.197)
4-day	0.036 (0.033-0.040)	0.044 (0.040-0.048)	0.055 (0.050-0.060)	0.064 (0.058-0.069)	0.076 (0.070-0.083)	0.087 (0.079-0.095)	0.098 (0.088-0.107)	0.110 (0.099-0.120)	0.127 (0.113-0.138)	0.141 (0.124-0.153)
7-day	0.024 (0.022-0.026)	0.029 (0.027-0.031)	0.036 (0.033-0.039)	0.042 (0.038-0.045)	0.050 (0.046-0.054)	0.056 (0.052-0.061)	0.064 (0.058-0.069)	0.071 (0.064-0.077)	0.082 (0.074-0.089)	0.091 (0.081-0.099)
10-day	0.019 (0.018-0.021)	0.023 (0.021-0.025)	0.028 (0.026-0.030)	0.032 (0.030-0.035)	0.038 (0.035-0.041)	0.042 (0.039-0.046)	0.047 (0.043-0.051)	0.052 (0.048-0.056)	0.059 (0.054-0.064)	0.065 (0.058-0.070)
20-day	0.013 (0.012-0.014)	0.015 (0.014-0.017)	0.018 (0.017-0.020)	0.021 (0.019-0.022)	0.024 (0.022-0.026)	0.026 (0.025-0.028)	0.029 (0.027-0.031)	0.032 (0.029-0.034)	0.035 (0.032-0.037)	0.038 (0.034-0.040)
30-day	0.011 (0.010-0.011)	0.013 (0.012-0.013)	0.015 (0.014-0.016)	0.016 (0.016-0.017)	0.019 (0.018-0.020)	0.020 (0.019-0.022)	0.022 (0.020-0.023)	0.024 (0.022-0.025)	0.026 (0.024-0.027)	0.027 (0.025-0.029)
45-day	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.012 (0.012-0.013)	0.014 (0.013-0.014)	0.015 (0.014-0.016)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.018 (0.017-0.019)	0.020 (0.018-0.021)	0.021 (0.019-0.022)
60-day	0.008 (0.008-0.009)	0.010 (0.009-0.010)	0.011 (0.010-0.012)	0.012 (0.011-0.013)	0.013 (0.013-0.014)	0.014 (0.013-0.015)	0.015 (0.014-0.016)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.018 (0.016-0.018)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

APPENDIX D SUPPORTING VOLUME CALCULATIONS (EAST BRANCH CHESTER CREEK)

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

BMP Volume Calculation Worksheet

PROJECT:

The Westtown School - Oak Lane Project

2-Year Rainfall:

3.26 in

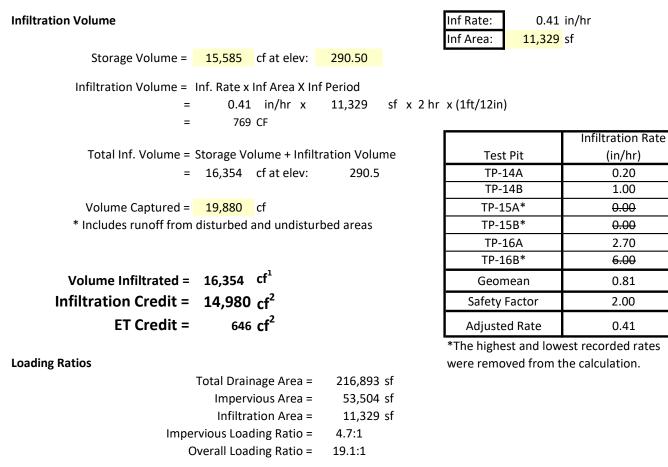
Drainage Area Name:	Infiltration	BMP 1						
Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn (Good condition)	В	99155	2.28	61	6.39	1.28	0.47	3,873
Paved/Impervious Areas	В	46588	1.07	98	0.20	0.04	3.03	11,753
TOTAL ONSITE:		145743	3.35					15,626
Undisturbed Area								
Lawn (Good condition)	В	64234	1.47	61	6.39	1.28	0.47	2,509
Paved/Impervious Areas	В	6916	0.16	98	0.20	0.04	3.03	1,745
TOTAL:		216893	4.98					19,880

Drainage Area Name:

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
Undisturbed Area								
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
TOTAL:		0	0.00				6.99	0

Drainage Area Name:

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
Undisturbed Area								
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
TOTAL:		0	0.00				6.99	0


1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in) S=(1000 / CN) - 10

```
2. Runoff Volume (CF) = Q \times Area \times 1/12
```

Q=Runoff (in)

Infiltration BMP 1 Calculations

Dewatering Time (After Rainfall Event)

T= Infiltration Volume/ (Inf. Rate/12 x Inf. Area)

42.5 hrs _

¹ For dewatering calculation analysis

² See PADEP PCSM Volume Spreadsheet

11 150	0.00					
TP-16A	2.70					
TP-16B*	6.00					
Geomean	0.81					
Safety Factor	2.00					
Adjusted Rate	0.41					
*The highest and lowest recorded rates						

were removed from the calculation.

UNT. TO EAST BRANCH CHESTER CREEK

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

BMP Volume Calculation Worksheet

PROJECT:

The Westtown School - Oak Lane Project

2-Year Rainfall:

3.26 in

Drainage Area Name:	Infiltration	Bed - BMP 2	2					
Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В	96824	2.22	98	0.20	0.04	3.03	24,426
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Lawn (Good condition)	D			80	2.50	0.50	1.45	0
TOTAL ONSITE:		96824	2.22					24,426

Drainage Area Name:	Infiltration Bed - BMP 3
---------------------	--------------------------

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В	96824	2.22	98	0.20	0.04	3.03	24,426
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Lawn (Good condition)	D			80	2.50	0.50	1.45	0
TOTAL ONSITE:		96824	2.22					24,426
			Vol	ume Infiltra	ted (from D	EP PCSM Sp	readsheet)	24,357
					Ove	rflow volum	e to BMP 4	69

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in) S=(1000 / CN) - 10

BMP Volume Calculation Worksheet

PROJECT:

The Westtown School - Oak Lane Project

2-Year Rainfall:

3.26 in

Drainage Area Name:	Infiltratior	i Basin - BMF	P 4					
Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В	15823	0.36	98	0.20	0.04	3.03	3,992
Lawn (Good condition)	В	261948	6.01	61	6.39	1.28	0.47	10,232
Lawn (Good condition)	D	37761	0.87	80	2.50	0.50	1.45	4,557
TOTAL ONSITE:		315532	7.24					18,781
					Addition	nal Volume f	rom BMP 3	69
					,	Volume Rou	ted to BMP	18,850
Undisturbed Area								
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
Lawn (Good condition)	В	84498	1.94	61	6.39	1.28	0.47	3,301
Lawn (Good condition)	D	24400	0.56	80	2.50	0.50	1.45	2,945
TOTAL:		424430	9.74					25,026

Drainage Area Name:

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
Lawn (Good condition)	В	0	0.00	61	6.39	1.28	0.47	0
Lawn (Good condition)	D			80	2.50	0.50	1.45	0
TOTAL ONSITE:		0	0.00					0
Undisturbed Area								
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
Lawn (Good condition)	В	0	0.00	61	6.39	1.28	0.47	0
Lawn (Good condition)	D			80	2.50	0.50	1.45	0
TOTAL:		0	0.00					0

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S=(1000 / CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12

Q=Runoff (in)

Area = Land use area (sq. ft)

 $S=(1000 \ / \ CN) - 10$ 2. Runoff Volume (CF) = Q x Area x 1/12 Q=Runoff (in) Area = Land use area (sq. ft)

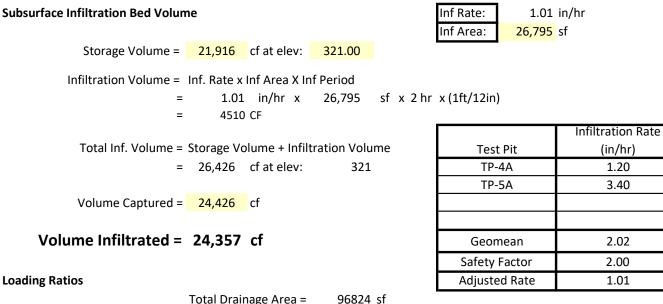
Infiltration Bed - BMP 2 Calculations

Subsurface Infiltration Bed Volume Inf Rate: 2.32 in/hr Inf Area: 75,725 sf Storage Volume = 23,035 cf at elev: 316.75 Infiltration Volume = Inf. Rate x Inf Area X Inf Period 2.32 in/hr x 75,725 sf x 2 hr x (1ft/12in) = = 29328 CF Infiltration Rate Total Inf. Volume = Storage Volume + Infiltration Volume Test Pit (in/hr) = 52,363 cf at elev: 316.75 TP-1A 1.80 TP-3B 12.00 Volume Captured = 24,426 cf Volume Infiltrated = 24,426 cf Geomean 4.65 Safety Factor 2.00 **Loading Ratios** 2.32 Adjusted Rate

Total Drainage Area =	96824 sf
Impervious Area =	96824 sf
Infiltration Area =	75,725 sf
Impervious Loading Ratio =	1.3:1
Overall Loading Ratio =	1.3:1

Dewatering Time (After Rainfall Event)

T= Infiltration Volume/ (Inf. Rate/12 x Inf. Area)


= 1.7 hrs

Synthetic Turf Field Storage Calculations

WATER SURFACE	SUBGRADE	AVERAGE	Δ		0.40		
ELEVATION	AREA	AREA	ELEV.	STORAGE	x 0.40 (40% Void		
(FEET)	(SQ.FT.)	(SQ.FT.)	(FEET)	VOLUME	space)	Σ (CU.FT.)	(AC. FT.)
316	75725					0	0
		75725	0.67	50,736	20294		
316.67	75725					20,294	0.4659
		85638	0.08	6,851	2740		
316.75	95550					23,035	0.5288
		95550	0.75	71,663	28665		
317.5	95550					51,700	1.1869
		0	0.00	0	0		
						0	0.0000
		0	0.00	0	0		
						0	0.0000
		0	0.00	0	0		
						0	0.0000

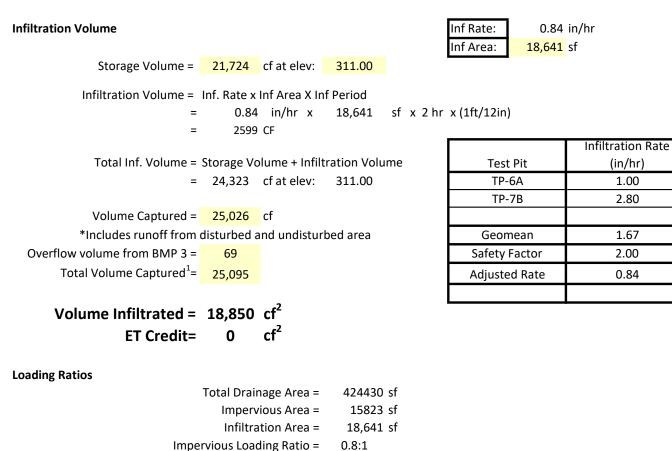
<u>BMP 2</u>

Infiltration Bed - BMP 3 Calculations

Total Drainage Area =	96824 st
Impervious Area =	96824 sf
Infiltration Area =	26,795 sf
Impervious Loading Ratio =	3.6:1
Overall Loading Ratio =	3.6:1

Dewatering Time (After Rainfall Event)

T= Infiltration Volume/ (Inf. Rate/12 x Inf. Area)


= 10.8 hrs

Synthetic Turf Field Storage Calculations

WATER SURFACE	SUBGRADE	AVERAGE	Δ				
ELEVATION	AREA	AREA	ELEV.	STORAGE	x 0.40 (40% Void		
(FEET)	(SQ.FT.)	(SQ.FT.)	(FEET)	VOLUME	space)	Σ (CU.FT.)	(AC. FT.)
319	26795					0	0
		27195	1.00	27,195	10878		
320	27595					10,878	0.2497
		27595	1.00	27,595	11038		
321	27595					21,916	0.5031
		56028	0.65	36,418	14567		
321.65	84460					36,483	0.8375
		90005	0.10	9,001	3600		
321.75	95550					40,083	0.9202
		95550	0.75	71,663	28665		
322.5	95550					68,748	1.5782
		0	0.00	0	0		
						0	0.0000

<u>BMP 3</u>

Infiltration Basin - BMP 4 Calculations

Dewatering Time (After Rainfall Event)

T= Storage Volume/ (Inf. Rate/12 x Inf. Area)

22.8:1

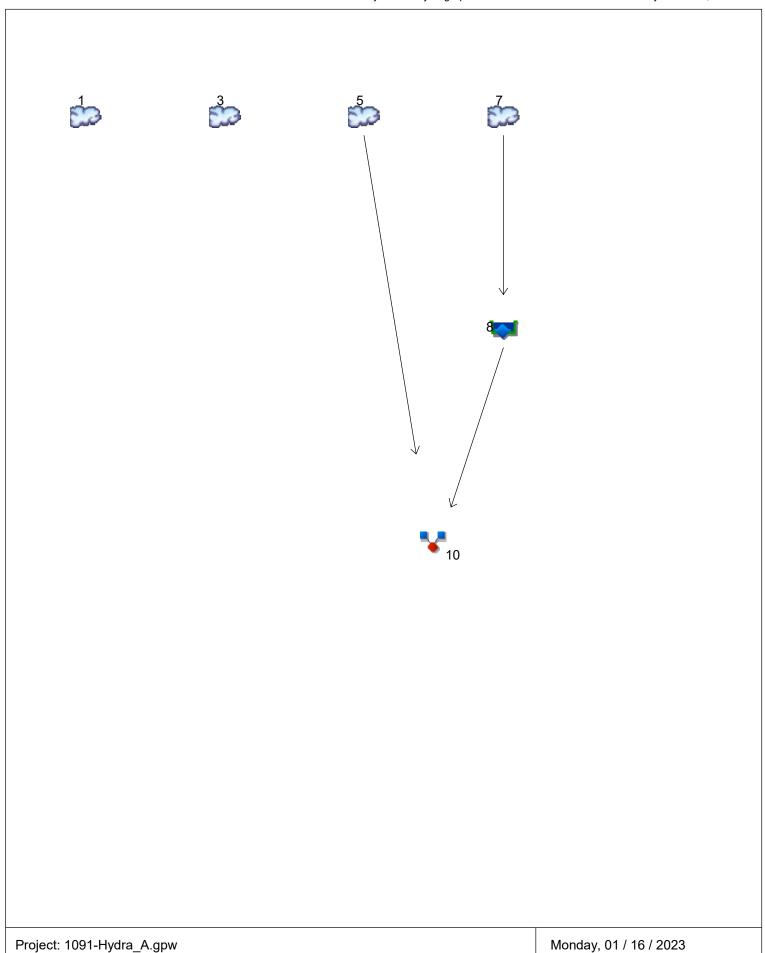
= 16.7 hrs

Overall Loading Ratio =

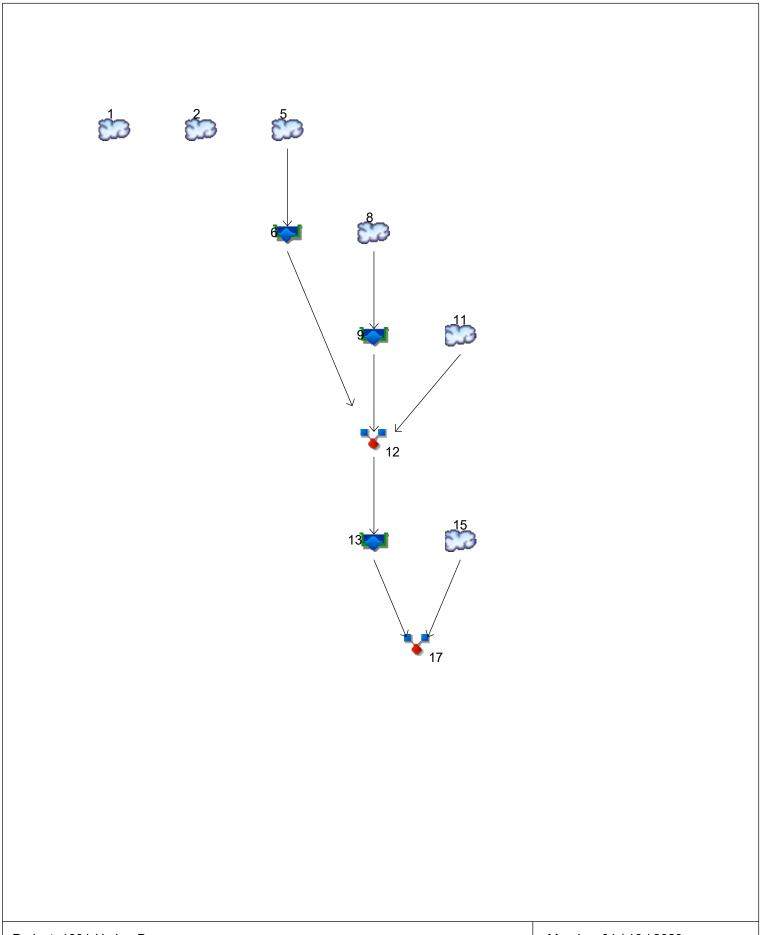
¹ For dewatering calculation analysis

² See PADEP PCSM Volume Spreadsheet

APPENDIX E RATE CONTROL ANALYSIS


Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

OVERALL HYDROLOGY


Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

Watershed Model Schematic

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

	Hydrograph	Inflow				Peak Out	tflow (cfs))			Hydrograph
о.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		2.123	4.257		8.156	11.81	17.58	22.86	28.81	Pre-Dev. Area A
3	SCS Runoff		1.573	3.153		6.041	8.748	13.02	16.93	21.34	Area 'A-ONSITE'
5	SCS Runoff		0.683	1.225		2.179	3.059	4.420	5.626	6.983	A-Undetained
7	SCS Runoff		3.512	5.820		9.799	13.41	19.00	23.98	29.52	BMP 1 (Basin A)
8	Reservoir	7	0.000	0.134		0.542	1.405	3.929	6.906	12.69	Basin A Routed
10	Combine	5, 8,	0.683	1.225		2.179	3.059	4.506	7.657	13.69	A-COMBINED

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

No. type (origin) tyde(s) type zyr zyr		Hydrograph	Inflow				Peak Outflow (cfs)				Hydrograph	
2 SCS Runoff 2.726 6.014 12.69 19.19 29.55 38.95 49.62 B-Onsite (Reduction) 5 SCS Runoff 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 3 IN 6 Reservoir 5 0.000 0.006 0.076 0.116 0.165 0.219 0.435 BMP 3 Routed 8 SCS Runoff 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 2 IN 9 Reservoir 8 0.000 0.000 12.34 14.48 17.55 20.14 22.94 BMP 2 IN 9 Reservoir 8 0.000 0.000 0.148 0.319 0.762 1.333 2.110 BMP 2 Routed 11 SCS Runoff 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 IN 12 Combine 6, 9, 11 2.582 5.1	0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
5 SCS Runoff 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 3 IN 6 Reservoir 5 0.000 0.006 0.076 0.116 0.165 0.219 0.435 BMP 3 IN 8 SCS Runoff 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 3 IN 9 Reservoir 8 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 3 IN 9 Reservoir 8 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 2 IN 9 Reservoir 8 0.000 0.000 0.148 0.319 0.762 1.333 2.110 BMP 4 DA 11 SCS Runoff 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 IN 12 Combine 6.9,11 2.582 5.169	1	SCS Runoff		3.209	7.080		14.94	22.59	34.79	45.85	58.42	Pre-Dev. POI B
6 Reservoir 5 0.000 0.006 0.076 0.116 0.165 0.219 0.435 BMP 3 Routed 8 SCS Runoff 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 2 IN 9 Reservoir 8 0.000 0.000 0.148 0.319 0.762 1.333 2.110 BMP 2 Routed 11 SCS Runoff 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 DA 12 Combine 6,9,11 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 DA 13 Reservoir 12 0.000 0.155 0.772 2.194 8.434 15.66 24.29 BMP 4 Routed 15 SCS Runoff 1.22 2.328 4.298 6.130 8.988 11.55 14.48 B-Undetained	2	SCS Runoff		2.726	6.014		12.69	19.19	29.55	38.95	49.62	B-Onsite (Reduction)
8 SCS Runoff 8.084 9.771 12.34 14.48 17.55 20.14 22.94 BMP 2 IN 9 Reservoir 8 0.000 0.000 0.148 0.319 0.762 1.333 2.110 BMP 2 IN 11 SCS Runoff 2.582 5.169 10.17 14.91 22.37 29.07 36.71 BMP 4 DA 12 Combine 6.9,11 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 DA 13 Reservoir 12 0.000 0.155 0.772 2.194 8.434 15.66 24.29 BMP 4 IN 15 SCS Runoff 1.222 2.194 8.434 15.66 24.29 BMP 4 Routed	5	SCS Runoff		8.084	9.771		12.34	14.48	17.55	20.14	22.94	BMP 3 IN
9 Reservoir 8 0.000 0.000 0.148 0.319 0.762 1.333 2.110 BMP 2 Routed 11 SCS Runoff 2.582 5.169 10.17 14.91 22.37 29.07 36.71 BMP 4 DA 12 Combine 6,9,11 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 IN 13 Reservoir 12 0.000 0.155 0.772 2.194 8.434 15.66 24.29 BMP 4 Routed 15 SCS Runoff 1.222 2.328 4.298 6.130 8.988 11.55 14.48 B-Undetained	6	Reservoir	5	0.000	0.006		0.076	0.116	0.165	0.219	0.435	BMP 3 Routed
11SCS Runoff2.5825.16910.1714.9122.3729.0736.71BMP 4 DA12Combine6, 9, 112.5825.16910.1714.9122.9230.3438.87BMP 4 IN13Reservoir120.0000.1550.7722.1948.43415.6624.29BMP 4 Routed15SCS Runoff1.2222.3284.2986.1308.98811.5514.48B-Undetained	8	SCS Runoff		8.084	9.771		12.34	14.48	17.55	20.14	22.94	BMP 2 IN
12 Combine 6, 9, 11 2.582 5.169 10.17 14.91 22.92 30.34 38.87 BMP 4 IN 13 Reservoir 12 0.000 0.155 0.772 2.194 8.434 15.66 24.29 BMP 4 Routed 15 SCS Runoff 1.222 2.328 4.298 6.130 8.988 11.55 14.48 B-Undetained	9	Reservoir	8	0.000	0.000		0.148	0.319	0.762	1.333	2.110	BMP 2 Routed
13 Reservoir 12 0.000 0.155 0.772 2.194 8.434 15.66 24.29 BMP 4 Routed 15 SCS Runoff 1.222 2.328 4.298 6.130 8.988 11.55 14.48 B-Undetained	11	SCS Runoff		2.582	5.169		10.17	14.91	22.37	29.07	36.71	BMP 4 DA
15 SCS Runoff 1.222 2.328 4.298 6.130 8.988 11.55 14.48 B-Undetained	12	Combine	6, 9, 11		5.169		10.17	14.91	22.92	30.34	38.87	BMP 4 IN
	13	Reservoir	12	0.000	0.155		0.772	2.194	8.434	15.66	24.29	BMP 4 Routed
17 Combine 13, 15, 1.222 2.328 4.298 6.130 9.782 17.54 26.76 B-Combined	15	SCS Runoff		1.222	2.328		4.298	6.130	8.988	11.55	14.48	B-Undetained
	17	Combine	13, 15,	1.222	2.328		4.298	6.130	9.782	17.54	26.76	B-Combined
		 i. file: 1091-ŀ										/ 16 / 2023

PRE-DEVELOPMENT HYDROLOGY (EAST BRANCH CHESTER CREEK)

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

ATHERS RESIDUAR CONSULTING	

ELA SPORT

NRCS (SCS) TR-55- WATERSHED WEIGHTED

PRE-DEVELOPMENT SUMMARY

CURVE NUMBER

ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township

				Tc Min.	15	15	
			Composite	'CN' Value	65	65	
			Total	Area (ac.)	6.44	4.77	
	Woods/Forest	D	77		0.00	0.00	
	Woods/Forest	в	55		0.00	0.00	
COUNTY: Chester	əɔɛq² nəqO	٥	80		0.00	0.00	
	əɔɛq² nəqO	в	61	Area (ac)	5.25	3.77	
	Row Crops (C+CR)	٥	85		0.00	0.00	
C	Row Crops (C+CR)	в	74		0.77	0.77	
	Parking, Other Impervious	В	98		0.42	0.23	
	IAND USE	HSG	"CN" Value			actor)	
				WATERSHED	, V, IOd	POI 'A-Onsite' (Reduction Factor)	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-

DEVELOPMENT CONDITIONS

ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester

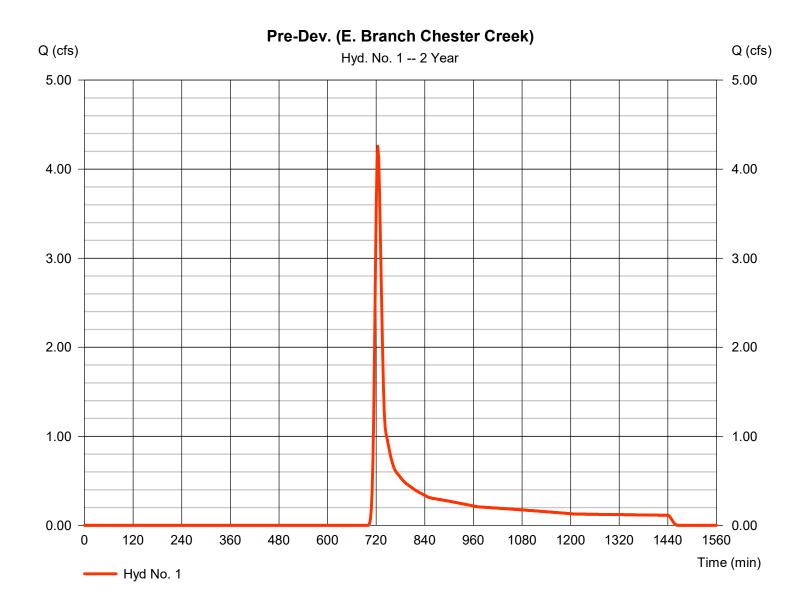
-			_						
	Total	Σ Τc	Hrs.						
	Ĭ	-1 3							
		ţΤ	Min.	0	0	0	0	0.0	
		^ɛ ๅ կֈɓuəๅ	ft.						
	oipe	n s'gninnsM	ч						
(Tt)	Channel or Pipe	Slope S ₃	ft./ft.						
ne	anr	Pipe Diameter	in.						
el tir	C	Wetted Perimeter	ft.	0.00	00.0	0.00	0.00	0.00	
Time of concentration (Tc) or travel time (Tt)		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00	
		Pipe Channel or	C/P						
	Shallow Concentrated	ţΤ	Min.	0.0	0.8	0	0	0	
		Average Velocity	ft./s	0	4.8	0	0	0	
		Slope S2	ft./ft.		0.090				
		²⊐ dîbnə⊐	ft.		234				
		Flow Path Cover	U/P		⊃				
		сΤ	Min.	14	0	0	0	0	
	pu	2 yr rainfall	in.	3.26					
	overland	n s'gninneM	u	0.24					
)	rS ∍qolS	ft./ft.	0.017					
		لد max. 100 ft. max.	ft.	89					
		Watershed		A					

0.25

15

0.0

0.8

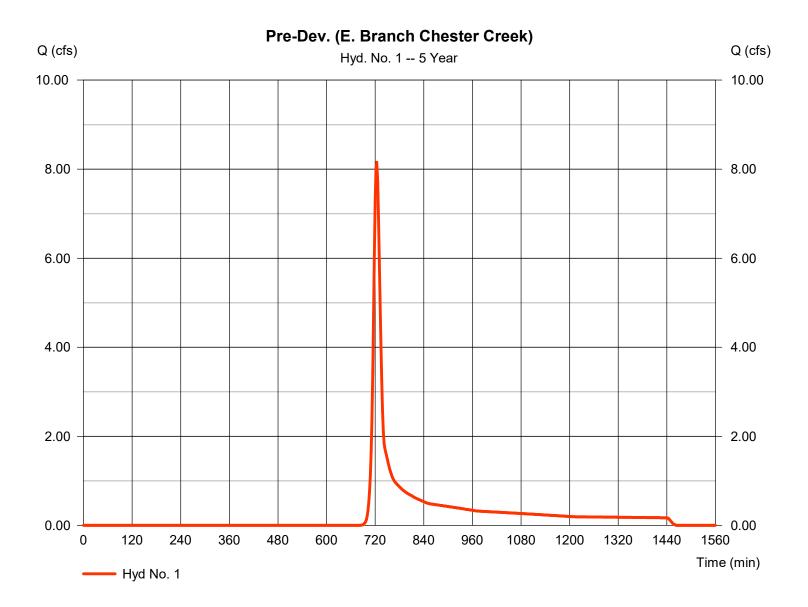

13.7

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

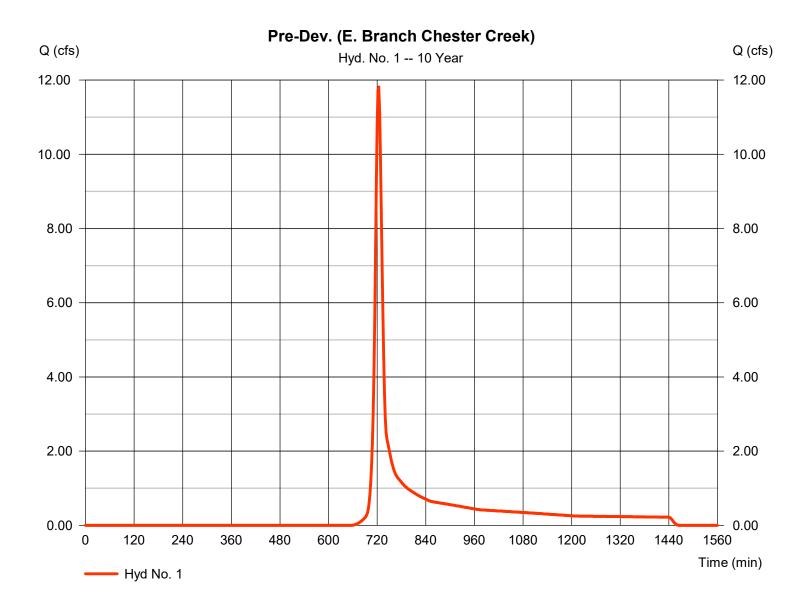
Hydrograph type Storm frequency	= SCS Runoff = 2 yrs	Peak discharge Time to peak	= 4.257 cfs = 724 min
Time interval	= 2 min	Hyd. volume	= 14,353 cuft
Drainage area	= 6.440 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

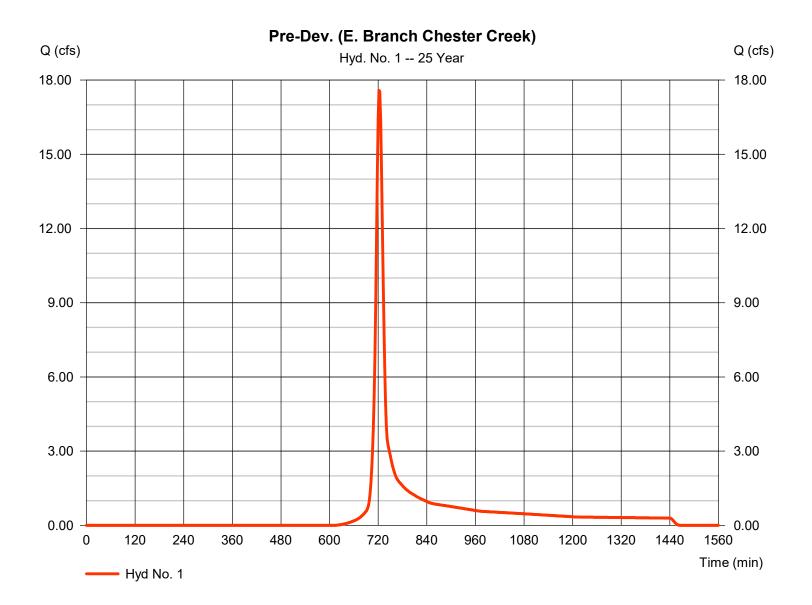
Hyd. No. 1


Hydrograph type	= SCS Runoff	Peak discharge	= 8.156 cfs
Storm frequency	= 5 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 24,775 cuft
Drainage area	= 6.440 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 11.81 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 34,689 cuft
Drainage area	= 6.440 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

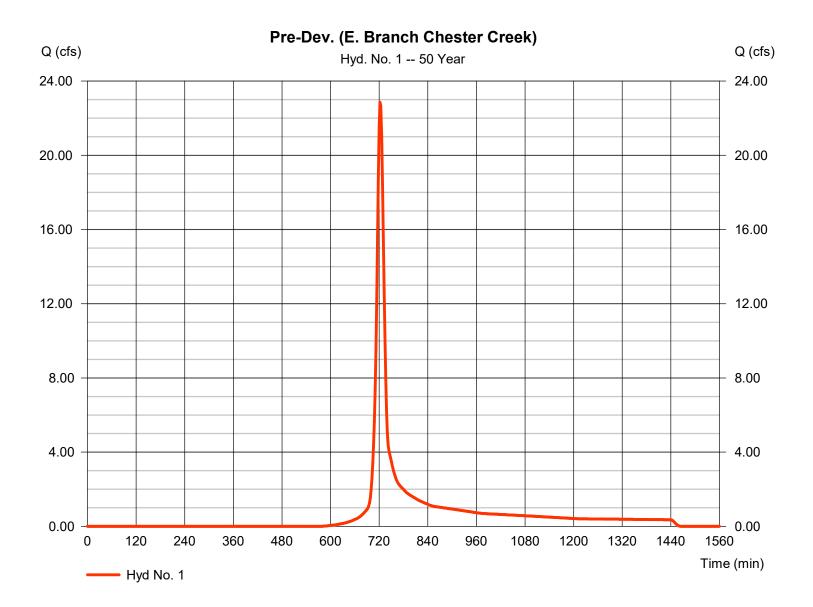


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 1

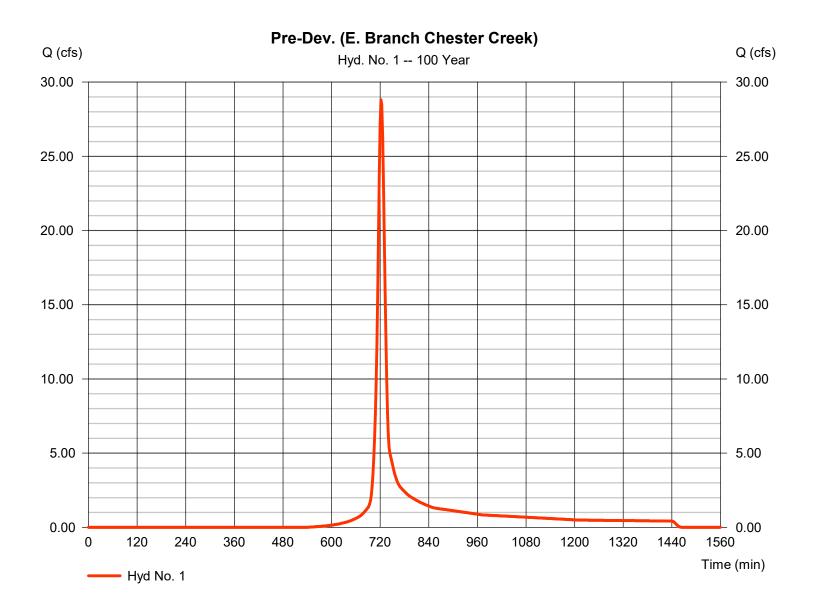
Hydrograph type	= SCS Runoff	Peak discharge	= 17.58 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 50,466 cuft
Drainage area	= 6.440 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

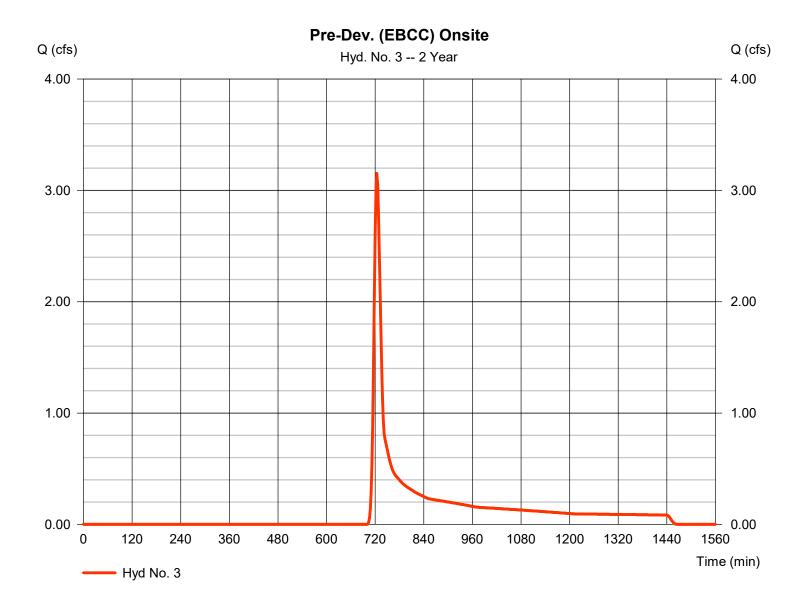
Hyd. No. 1


Hydrograph type	= SCS Runoff	Peak discharge	= 22.86 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 64,778 cuft
Drainage area	= 6.440 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 100 yrs 2 min 6.440 ac 0.0 % User 7.58 in 24 hrs 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	 = 28.81 cfs = 722 min = 81,084 cuft = 65 = 0 ft = 15.00 min = Type II = 484
Storm duration	= 24 hrs	Shape factor	= 484

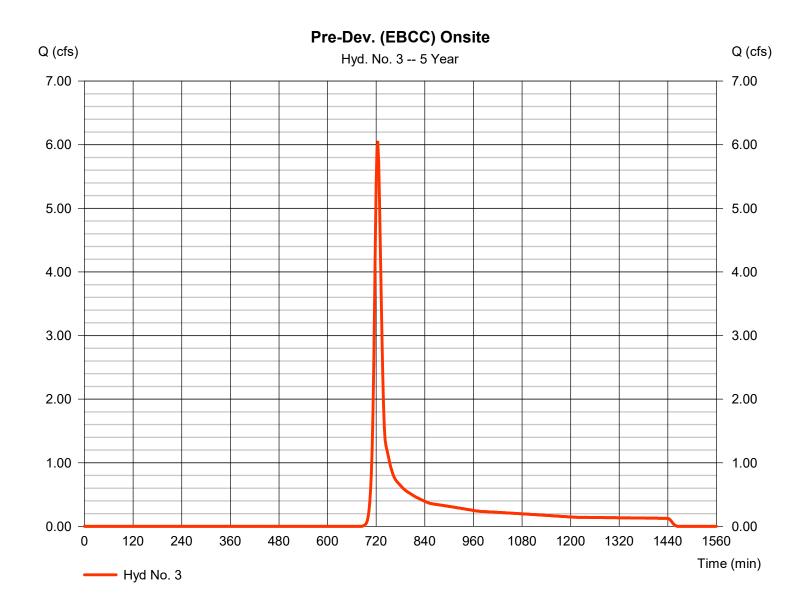


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 3.153 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 10,631 cuft
Drainage area	= 4.770 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

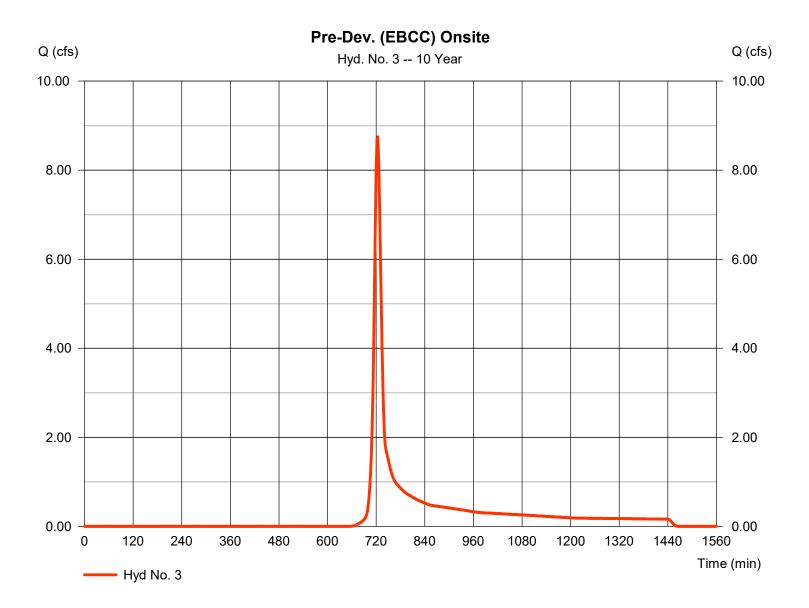


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 6.041 cfs
Storm frequency	= 5 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 18,350 cuft
Drainage area	= 4.770 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

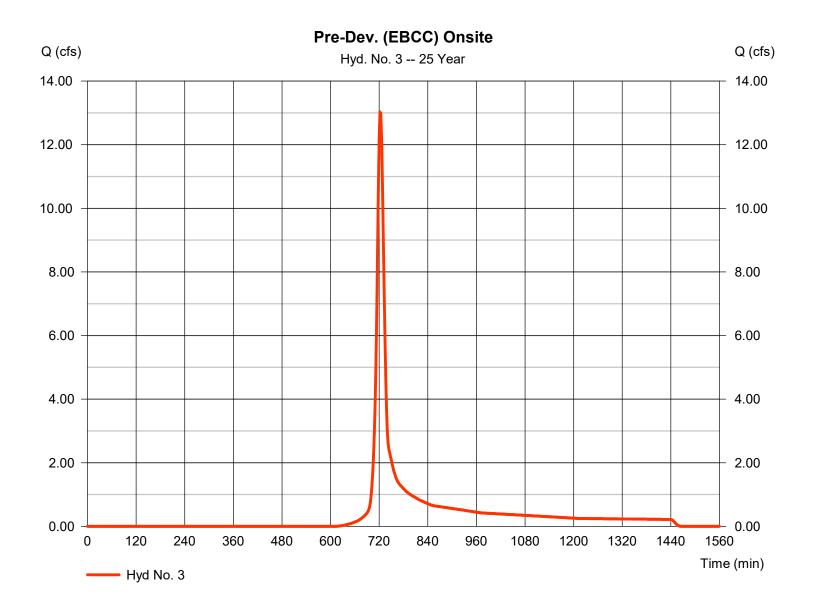


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 8.748 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 25,694 cuft
Drainage area	= 4.770 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

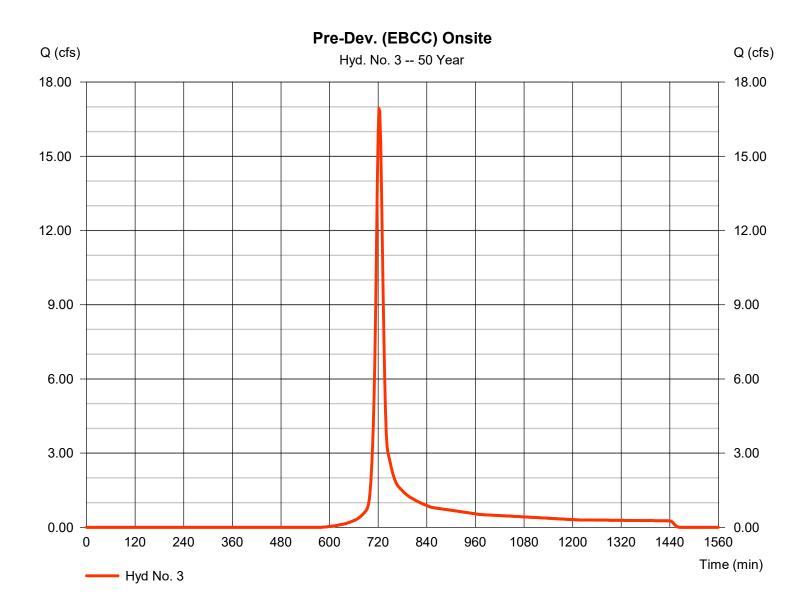


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 13.02 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 37,380 cuft
Drainage area	= 4.770 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

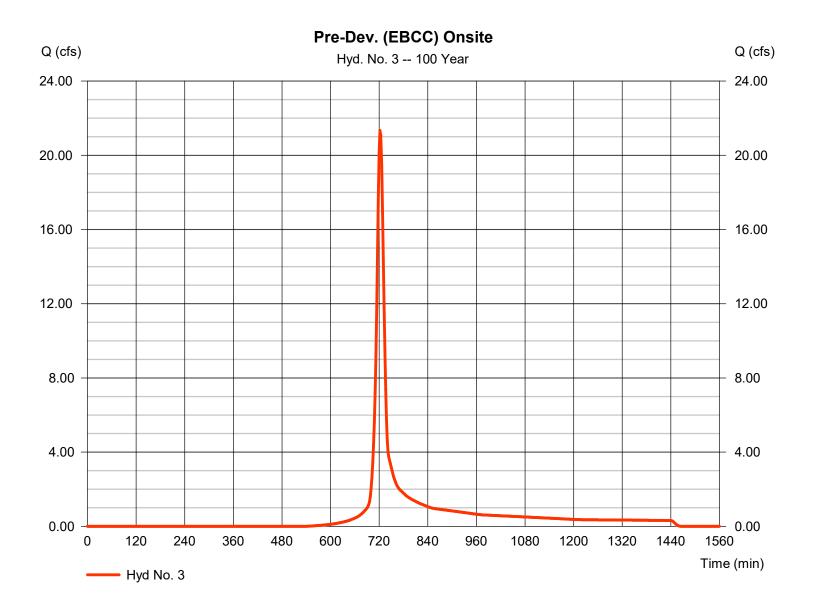


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 16.93 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 47,980 cuft
Drainage area	= 4.770 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type	= SCS Runoff	Peak discharge	= 21.34 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 60,058 cuft
Drainage area	= 4.770 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

UNT. TO EAST BRANCH CHESTER CREEK

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

Q					Min.	22	22	
Ē				دە د	e Tc			
NRCS (SCS) TR-55- WATERSHED WEIGHTED CURVE NUMBER PRE-DEVELOPMENT SUMMARY				Composite	'CN' Value	63	63	
R-55- WATERSHEI CURVE NUMBER VELOPMENT SUM	roject			Total	Area (ac.)	16.60	14.10	
WATF E NUI	ak Lane I	Woods/Forest	۵	77		0.00	0.00	
k-55- V CURV /ELOF	PROJECT: The Westtown School - Oak Lane Project JCATION: Westtown Township COUNTY: Chester	Voods/Forest	в	55		0.00	0.00	
SS) TR (PROJECT: The Westtown Schoo LOCATION: Westtown Township COUNTY: Chester	əɔɛq² nəqO	D	80		2.09	1.53	
CS (SC PRI	The Wes Westtov Chester	əɔɛq² nəqO	в	61	Area (ac)	14.50	12.57	
NR	PROJECT: The We DCATION: Westtor COUNTY: Chester	Row Crops (С+СR)	D	85	1	0.00	0.00	
DESIGN	LO P	Row Crops (C+CR)	в	74		0.00	0.00	
ORT CILITIES I IG STREET	13	Parking, Other Impervious	В	98		0.01	0.01	
ELA SPORT ATHLETIC FACILITIES DESIGN & CONSULTING 737 S. BROAD STREET	LITITZ, PA 17543 (717) 626-72713	IAND USE	HSG	"CN" Value		Creek	n Factor)	
	ATHLETIC FAQLITIES DESIGN & CONSULTING				WATERSHED	Unt. to East Branch Chester Creek	Unt. to EBCC Onsite (Reduction Factor)	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-**DEVELOPMENT CONDITIONS**

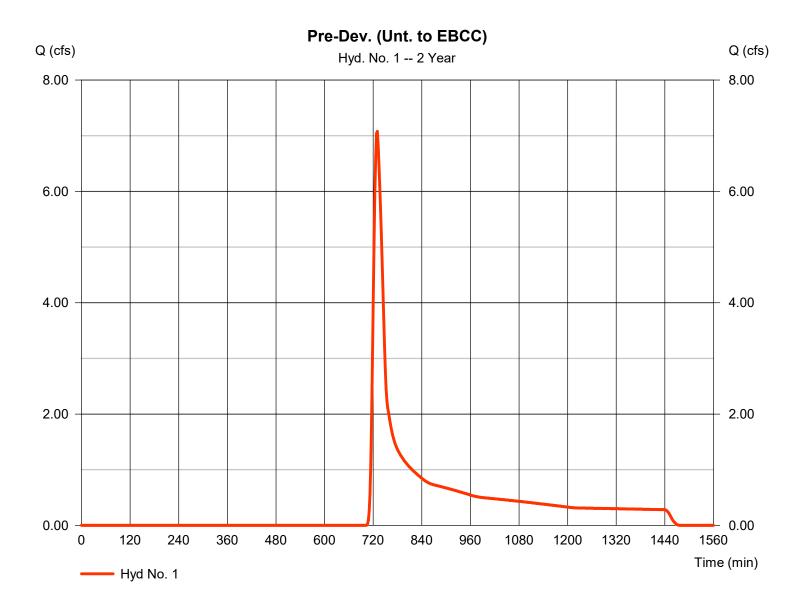
> ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township

COUNTY: Chester

	Total	oT ∡	Hrs.										0.37
	Ţ		Min.										22
		łΤ	Min.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
		^ɛ ๅ կֈɓuəๅ	ft.										
	Pipe	n s'gninneM	ч										
(Tt)	Channel or Pipe	Slope S ₃	ft./ft.										
ne	anr	Pipe Diameter	Ľ										
el tir	Сr	Wetted Perimeter	ft.	00.0	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	
trav		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
) or		Pipe Channel or	C/P										
(Tc	ted	Ĵ⊥	Min.	0.0	3.1	0.3	0	0	0	0		0	3.4
tion	entra	Average Velocity	ft./s	0	1.6	9	0	0	0	0		0	
Time of concentration (Tc) or travel time (Tt)	hallow Concentrated	Slope S ₂	ft./ft.		0.010	0.140							
onc	allow	²ר qĵβu∋⊐	ft.		293	108							
of c	Sh	Flow Path	d/N		⊃	⊃							
'ime		эΤ	Min.	18.7	0	0	0	0	0	0		0	18.7
		2 yr rainfall	in.	3.26									
	overland	n s'gninneM	u	0.24									
	•	1 S əqol	ft./ft.	0.010									
		Length L ₁ 100 ft. max.	ft.	100									
		Watershed		В									

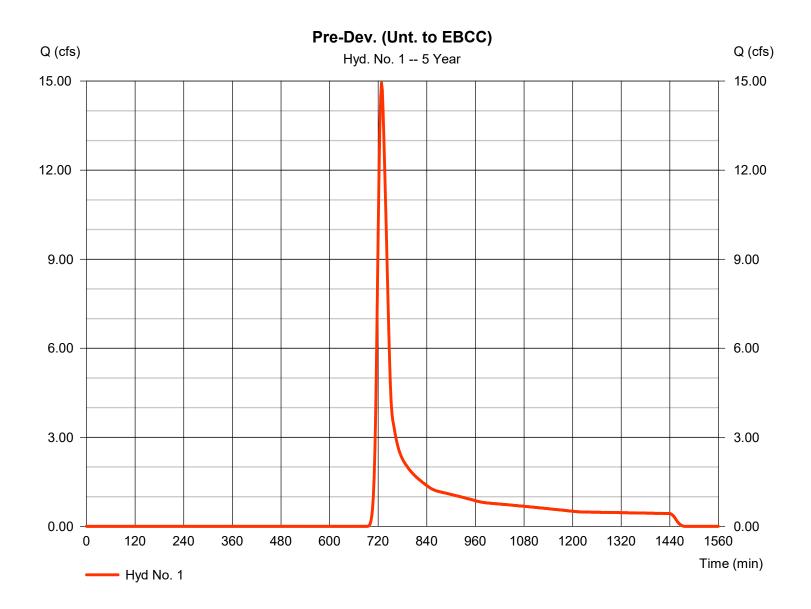

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.080 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 33,512 cuft
Drainage area	= 16.600 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

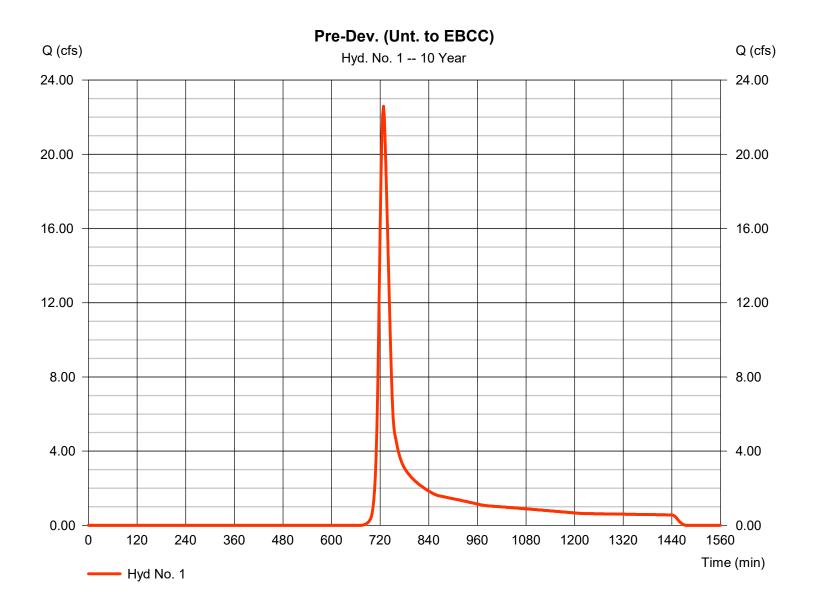

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type	= SCS Runoff	Peak discharge	= 14.94 cfs
Storm frequency	= 5 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 59,657 cuft
Drainage area	= 16.600 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

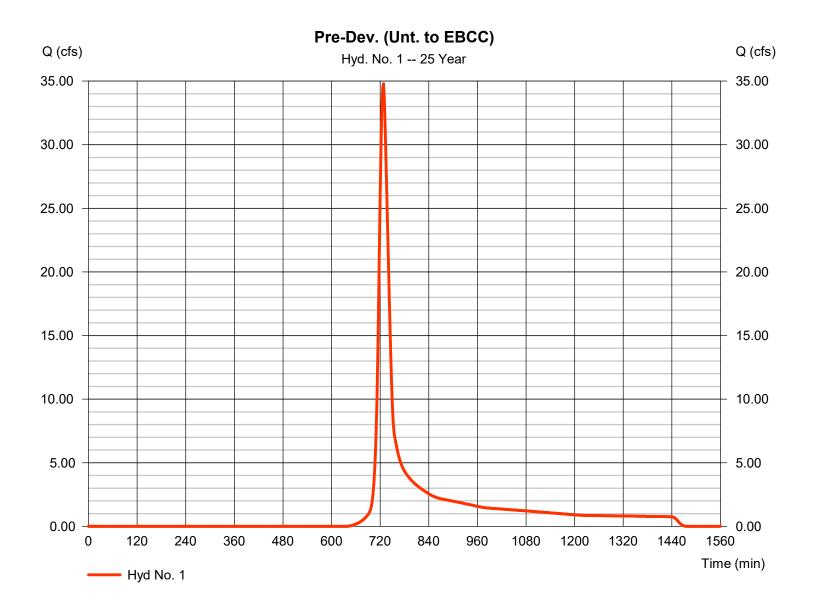


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type	= SCS Runoff	Peak discharge	= 22.59 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 84,871 cuft
Drainage area	= 16.600 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

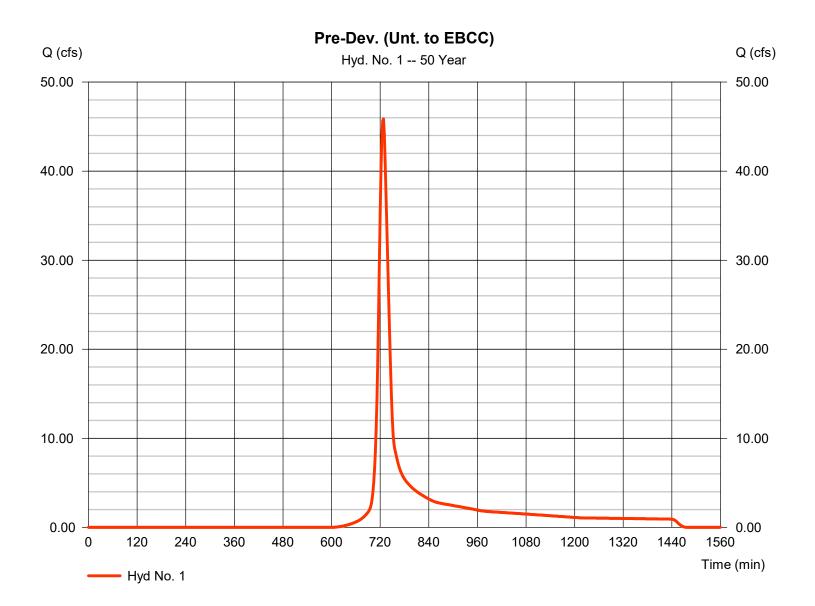


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type	= SCS Runoff	Peak discharge	= 34.79 cfs
Storm frequency	= 25 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 125,412 cuft
Drainage area	= 16.600 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

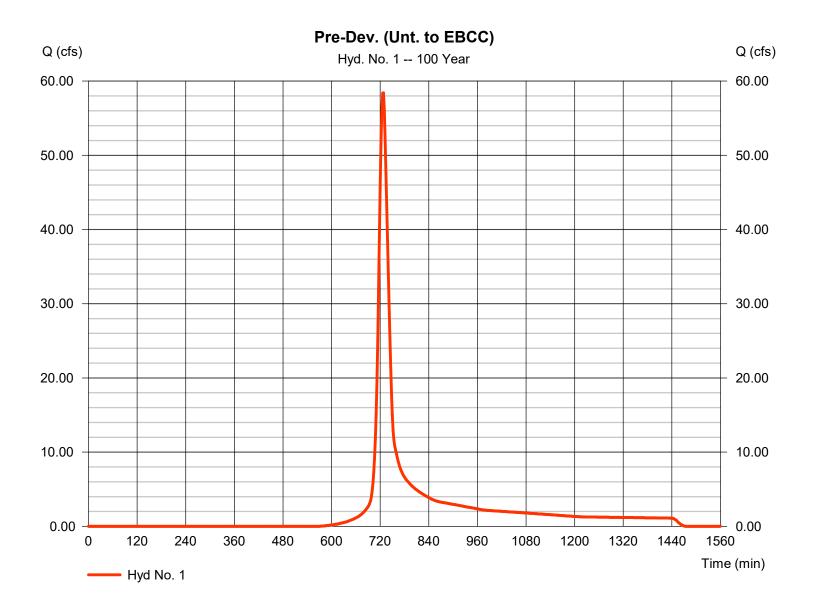


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type	= SCS Runoff	Peak discharge	= 45.85 cfs
Storm frequency	= 50 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 162,480 cuft
Drainage area	= 16.600 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

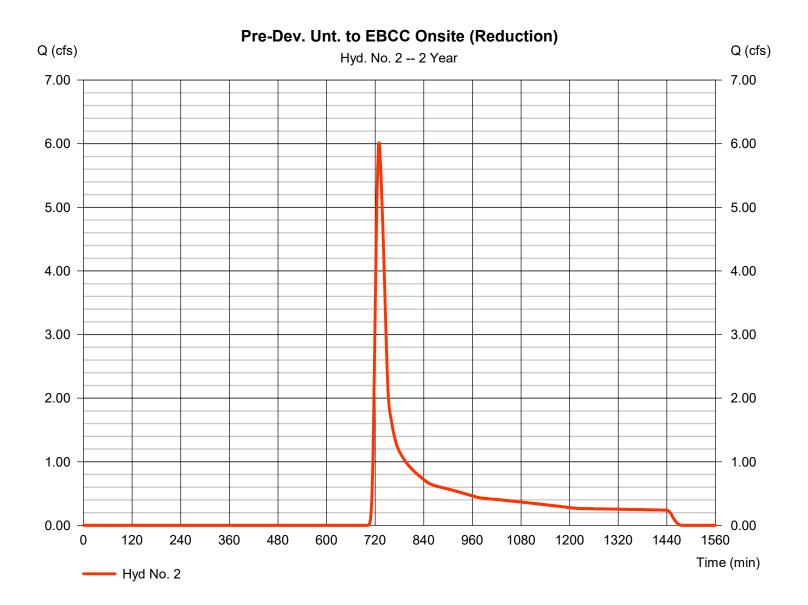


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type	= SCS Runoff	Peak discharge	= 58.42 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 204,952 cuft
Drainage area	= 16.600 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

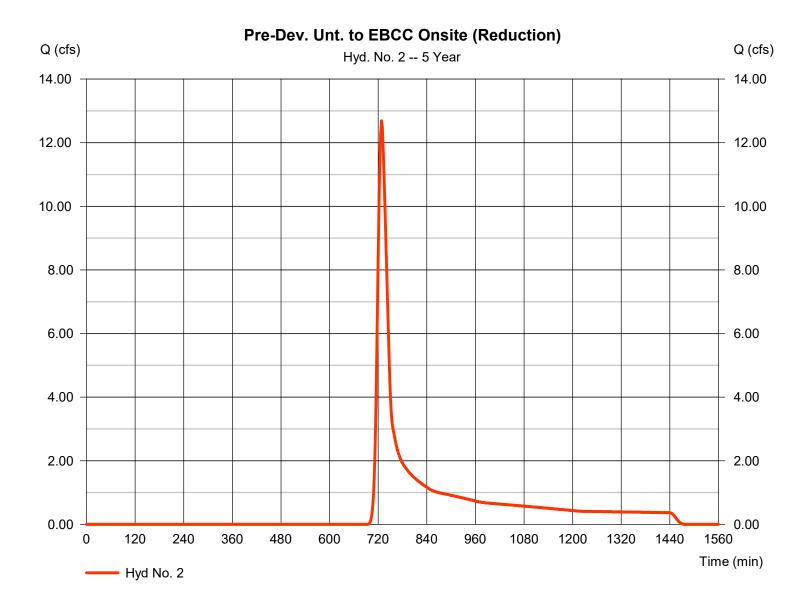


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 6.014 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 28,465 cuft
Drainage area	= 14.100 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

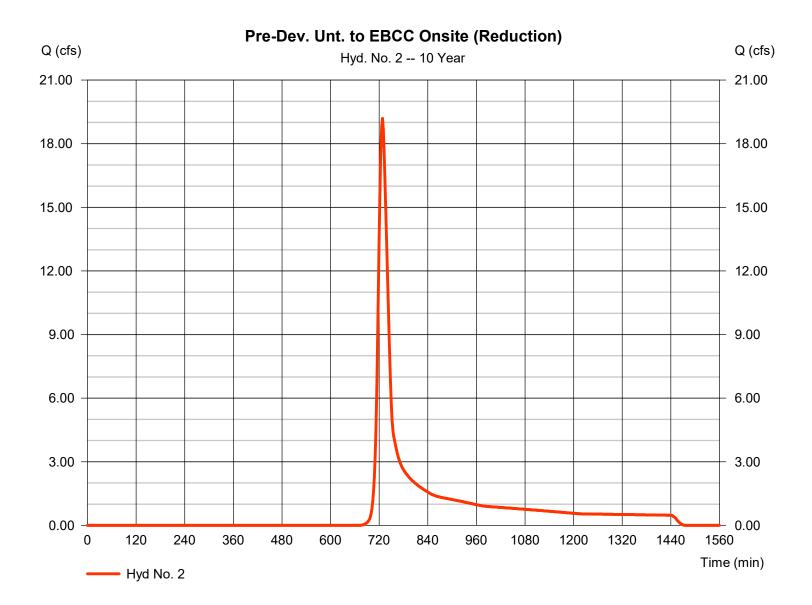


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 12.69 cfs
Storm frequency	= 5 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 50,673 cuft
Drainage area	= 14.100 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

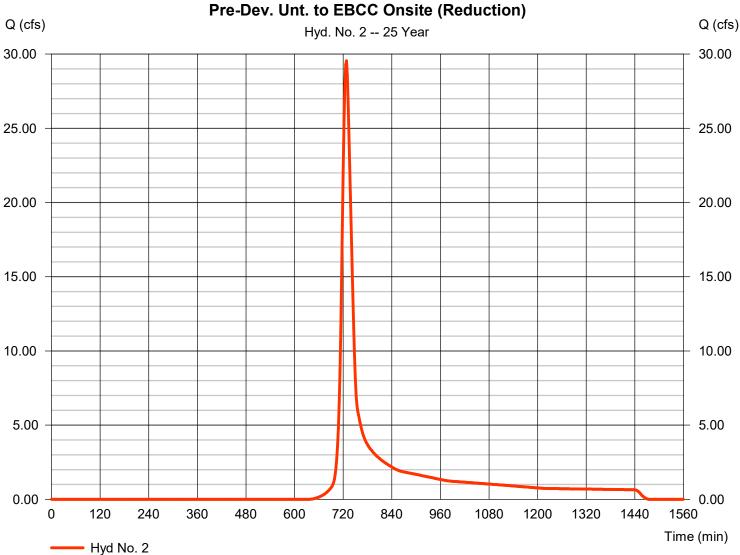


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 19.19 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 72,090 cuft
Drainage area	= 14.100 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 2

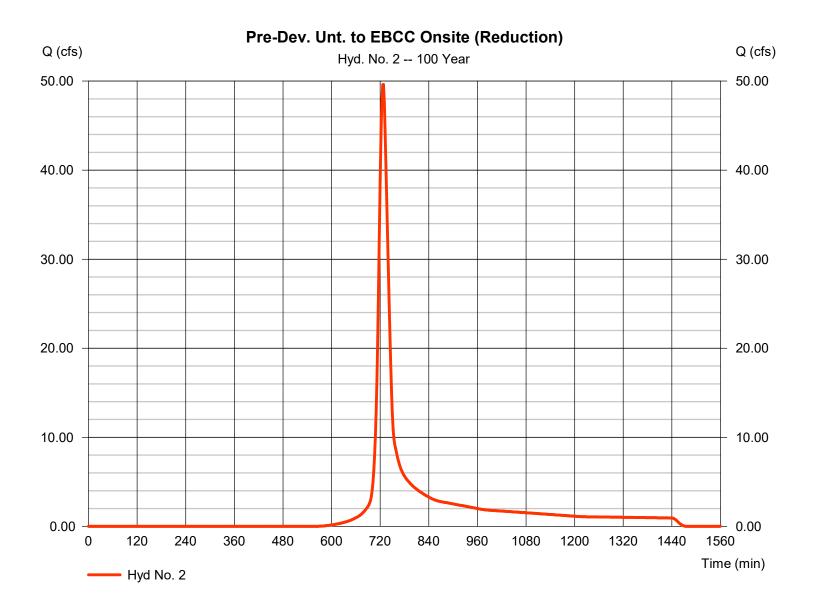
Hydrograph type	= SCS Runoff	Peak discharge	= 29.55 cfs
Storm frequency	= 25 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 106,524 cuft
Drainage area	= 14.100 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 38.95 cfs
Storm frequency	= 50 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 138,010 cuft
Drainage area	= 14.100 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 49.62 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 174,085 cuft
Drainage area	= 14.100 ac	Curve number	= 63
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

POST-DEVELOPMENT HYDROLOGY (EAST BRANCH CHESTER CREEK)

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

ELA SPORT

ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

NRCS (SCS) TR-55- WATERSHED WEIGHTED CURVE NUMBER POST-DEVELOPMENT SUMMARY

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township

COUNTY: Chester

	Ļ	Min		5	13	
		COITIPOSILE 'CN' Value		66	70	
		Area (ac.)	Area (ac.)		4.98	
Open Space (Undsturbed Area)	D	80		0.00	0.00	
Open Space (Disturbed Area)	D	80		0.00	0.00	
Open Space (Undsturbed Area)	В	61	()	0.00	1.47	
Open Space (Disturbed Area)	В	61	Area (ac	0.98	2.28	
Parking, Other Impervious (Undisturbed	В	98		0.03	0.16	
Parking, Other Impervious (Disturbed Area)	В	98		0.11	1.07	
JSU ONA J	DSH	"CN" Value		detained		
			WATERSHED	East Branch Chester Creek Undetained	BMP 1	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-

DEVELOPMENT CONDITIONS

DESIGN & CONSULTING ATHLETIC FACILITIES

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

LOCATION: **PROJECT:**

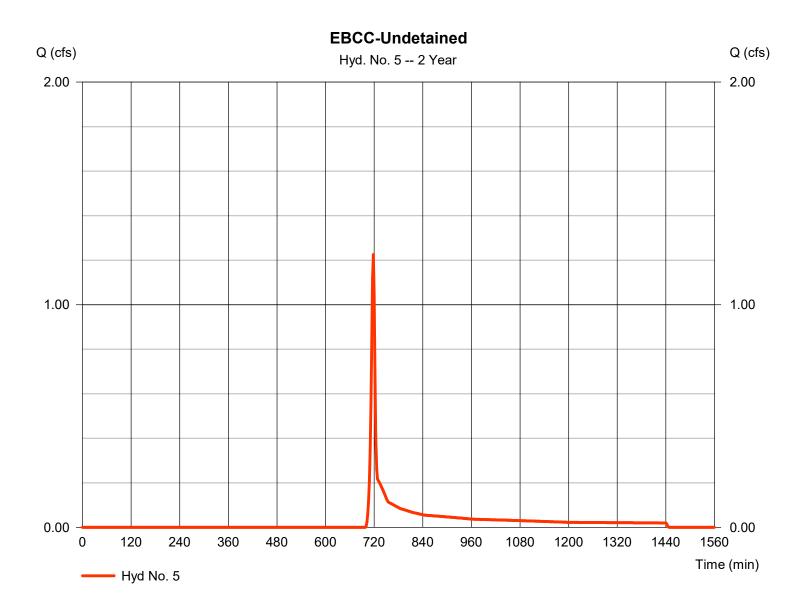
Westtown Township

Chester COUNTY:

The Westtown School - Oak Lane Project

	otal	217	Hrs.						0 22
	Τo	- <u>-</u> -	Min.						13
		ĴΤ	Min.	0	0	0	0	0.0	00
		^ɛ ๅ կֈնսəๅ	ft.						
	ipe	n s'gninnsM	u						
	nel or P	Slope S ₃	ft./ft.						
рс	hanr	Pipe Diameter	in.						
Methe	Ö	Wetted Perimeter	ft.	0.00	0.00	0.00	0.00	0.00	
l (Ial		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00	
mer		Channel or Pipe	C/P						
f concentration (Tc) or travel time (Tt) NRCS Velocity(Segmental) Method	entrated	ĴΤ	Min.	0.0	0.8	۲. ۲.	0.1	0.5	с С
		Average Velocity	ft./s	0	4	2.3	6.8	2	
	Conce	Slope S ₂	ft./ft.		0.060	0.013	0.180	0.015	
NRC	allow	^շ ๅ կֈɓuəๅ	ft.		180	153	40	65	
~	Sh	Flow Path	U/P		⊃	٩	⊃	∍	
		ъT	Min.	11	0	0	0	0	10.7
Time o	verland	2 yr rainfall	in.	3.26	3.26	3.26			
		n s'gninnsM	u	0.24					
	0	rS ∍qolS	ft./ft.	0.040					
		Length L ₁ 100 ft. max.	ft.	100					
		Sub area		BMP 1					
	NRCS Velocity(Segmental) Method	NRCS Velocity(Segmental) Method overland Shallow Concentrated Total	Tc T	Incontrated Incontrated Performation Incontrated Channel or Pipe In Manning's n In Slope S ₂ Manning's n Channel or Pipe In Slope S ₂ In In In <t< td=""><td>Image: Second formation of the second formation of th</td><td>McCS Velocity/Segmental) Method Incontrated Shallow Concentrated Incontrated Shallow Concentrated Incontrated Shallow Concentrated Incontrated Incontrated Inconte Incontrated</td><td>Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction In</td><td>NRCS Velocity (Segmental) Math asx, asy asy asy asy asy asy asy asy asy asy</td><td>MCCS Velocity (Segmental) Main (1) (1)</td></t<>	Image: Second formation of the second formation of th	McCS Velocity/Segmental) Method Incontrated Shallow Concentrated Incontrated Shallow Concentrated Incontrated Shallow Concentrated Incontrated Incontrated Inconte Incontrated	Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction In	NRCS Velocity (Segmental) Math asx, asy	MCCS Velocity (Segmental) Main (1) (1)

0.22

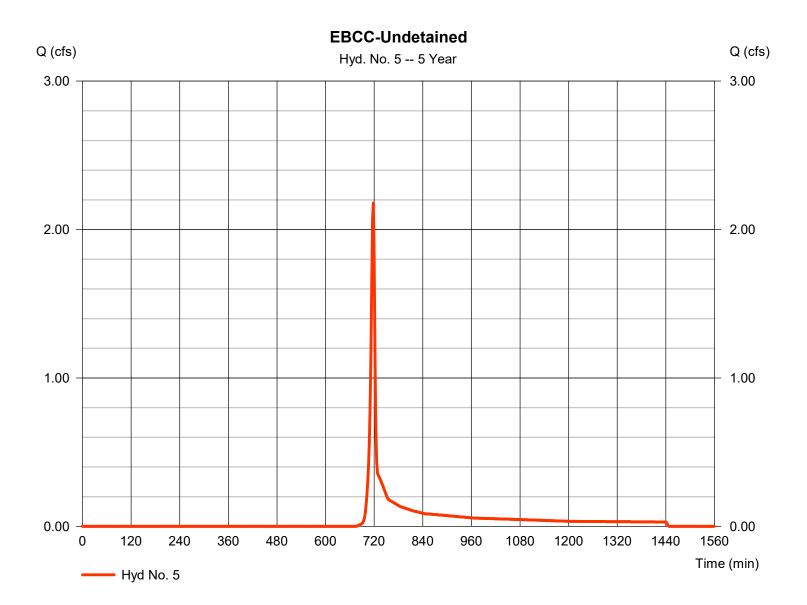

Hrs.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

EBCC-Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 1.225 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 2,590 cuft
Drainage area	= 1.130 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

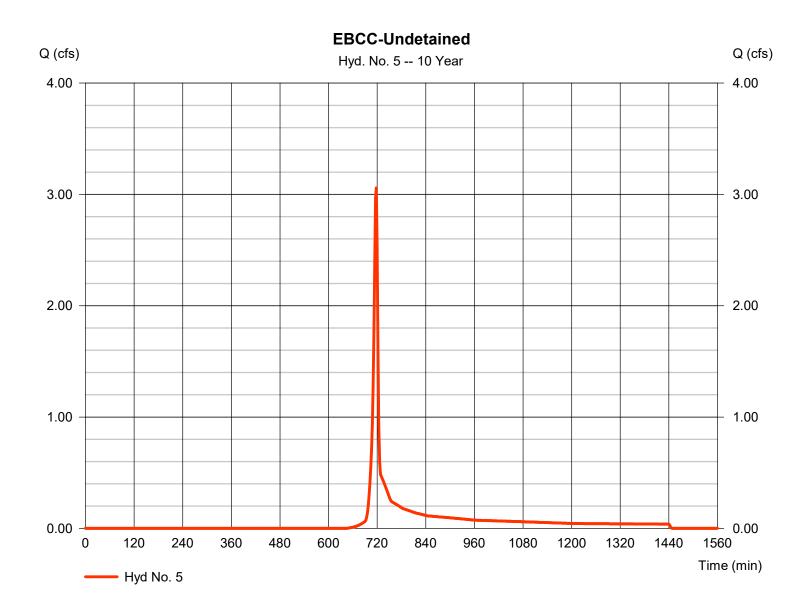


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

EBCC-Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 2.179 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 4,408 cuft
Drainage area	= 1.130 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

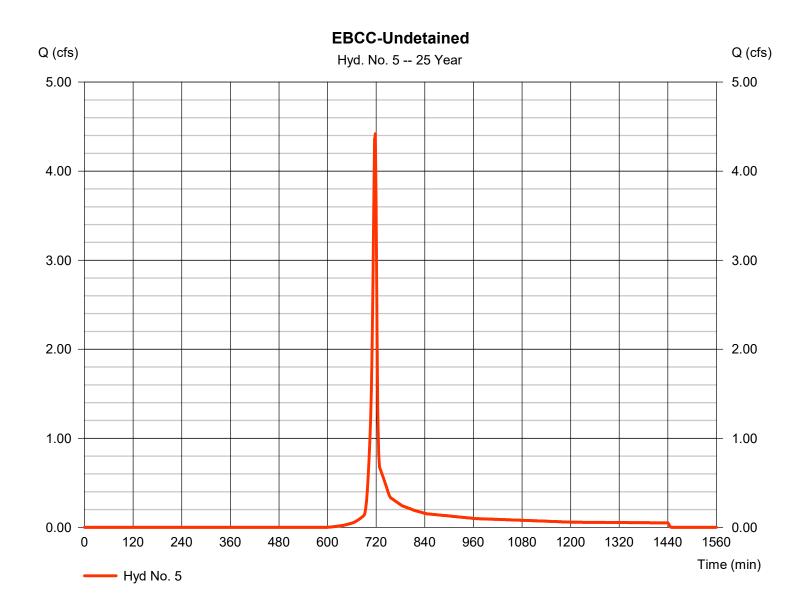


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

EBCC-Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 3.059 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 6,126 cuft
Drainage area	= 1.130 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

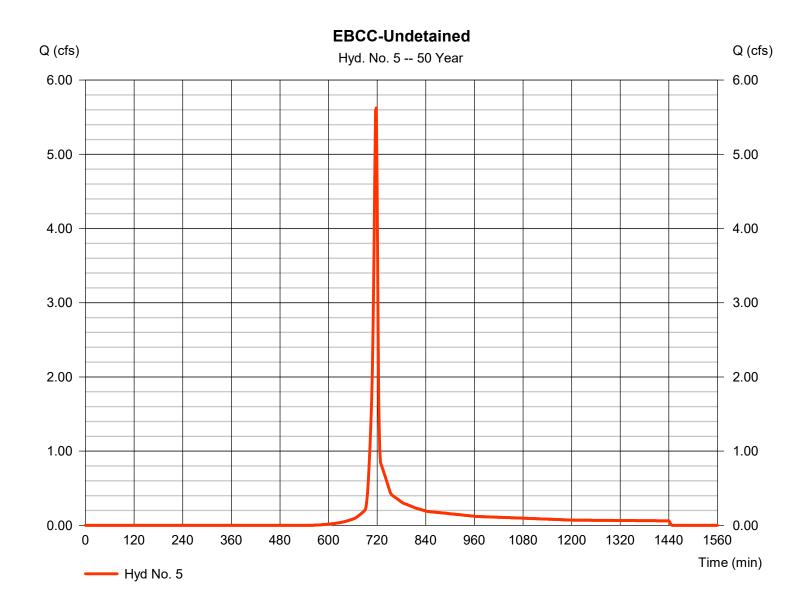


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

EBCC-Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 4.420 cfs
Storm frequency	= 25 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 8,846 cuft
Drainage area	= 1.130 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

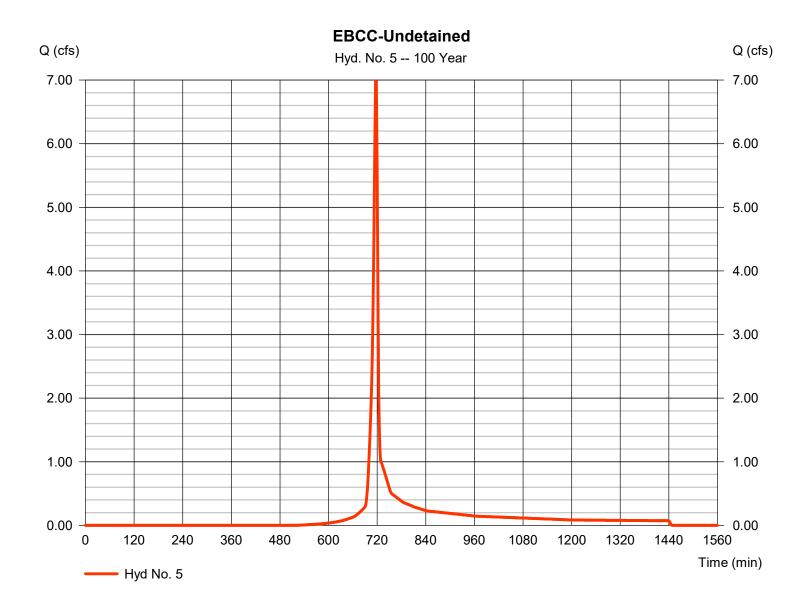


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

EBCC-Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 5.626 cfs
Storm frequency	= 50 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 11,305 cuft
Drainage area	= 1.130 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

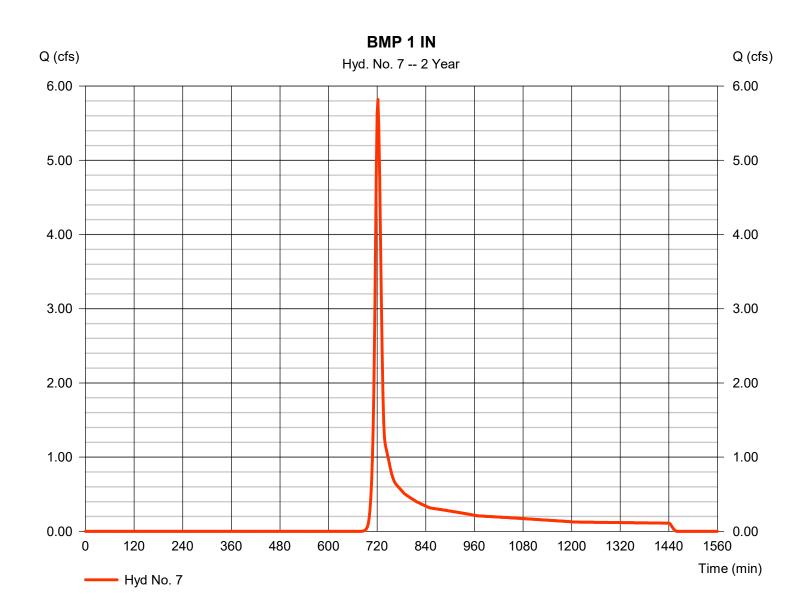


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

EBCC-Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 6.983 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 14,098 cuft
Drainage area	= 1.130 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

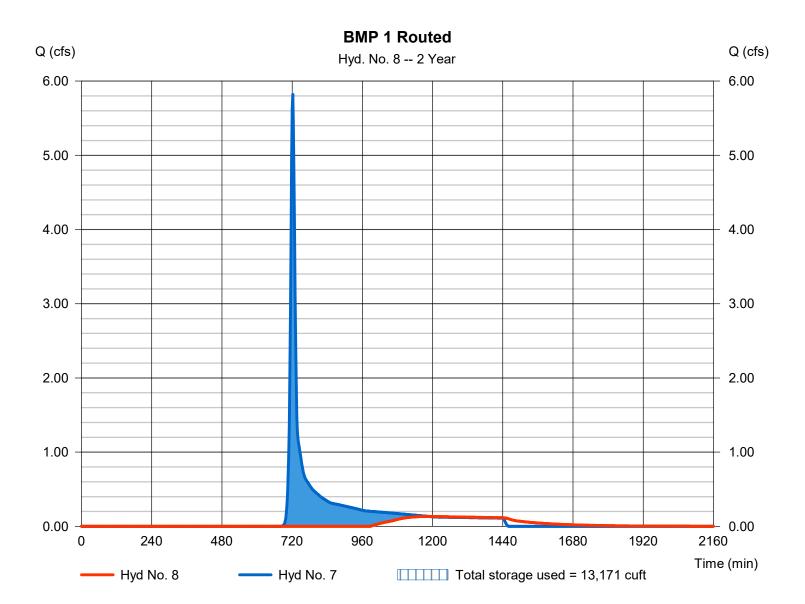


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP 1 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 5.820 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 16,092 cuft
Drainage area	= 4.980 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

BMP 1 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.134 cfs
Storm frequency	= 2 yrs	Time to peak	= 1186 min
Time interval	= 2 min	Hyd. volume	= 3,882 cuft
Inflow hyd. No.	= 7 - BMP 1 IN	Max. Elevation	= 290.57 ft
Reservoir name	= BMP 1	Max. Storage	= 13,171 cuft

Storage Indication method used.

Pond Report

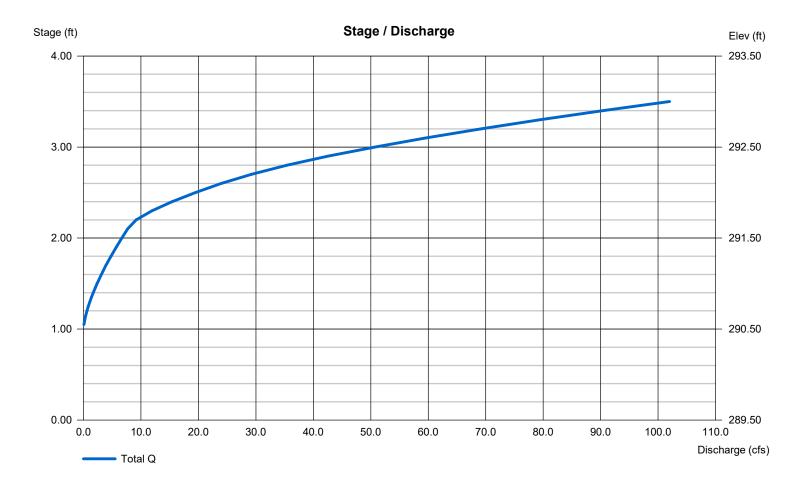
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 7 - BMP 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 289.50 ft

Stage / Storage Table

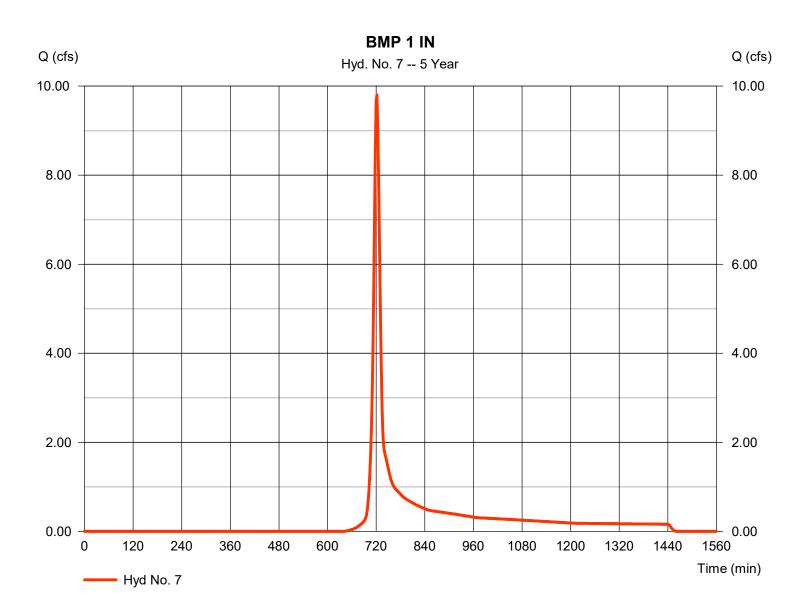

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	289.50	11,329	0	0
0.50	290.00	12,199	5,880	5,880
1.00	290.50	13,093	6,321	12,201
1.50	291.00	13,943	6,757	18,958
2.50	292.00	15,850	14,885	33,843
3.50	293.00	17,790	16,809	50,652

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	Inactive	0.00	0.00	Crest Len (ft)	= 10.50	2.00	30.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 291.65	290.50	292.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 284.25	0.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 28.47	0.10	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.53	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

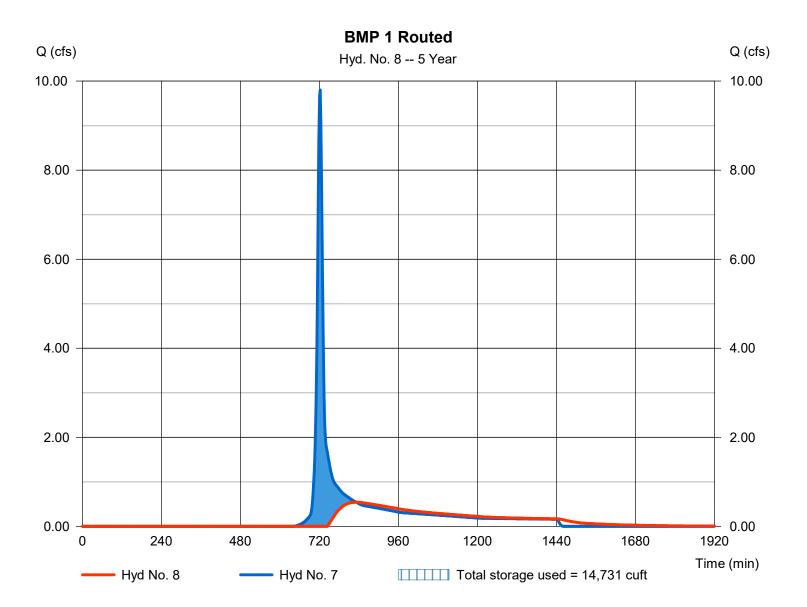


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP 1 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 9.799 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 26,040 cuft
Drainage area	= 4.980 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

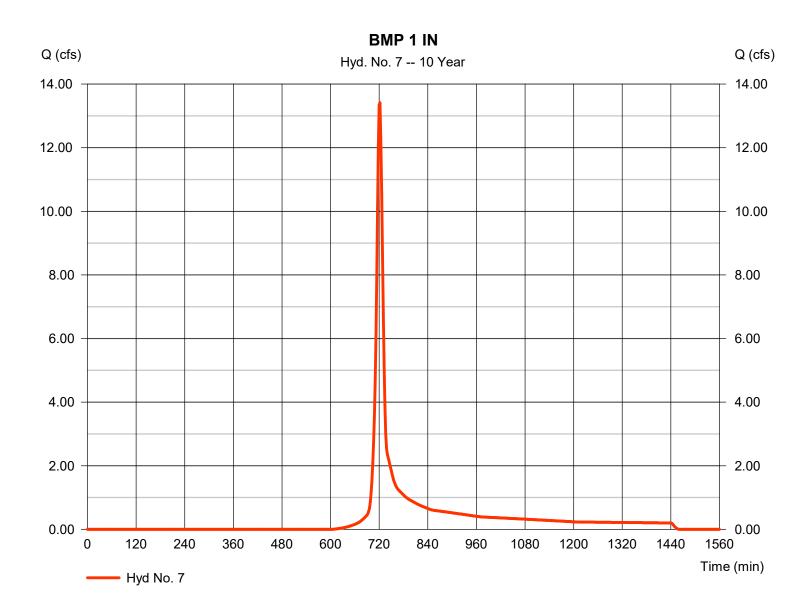

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

BMP 1 Routed

oir Peak discharge	= 0.542 cfs
Time to peak	= 832 min
Hyd. volume	= 13,830 cuft
P 1 IN Max. Elevation	= 290.69 ft
Max. Storage	= 14,731 cuft
	Time to peak Hyd. volume 2 1 IN Max. Elevation

Storage Indication method used.

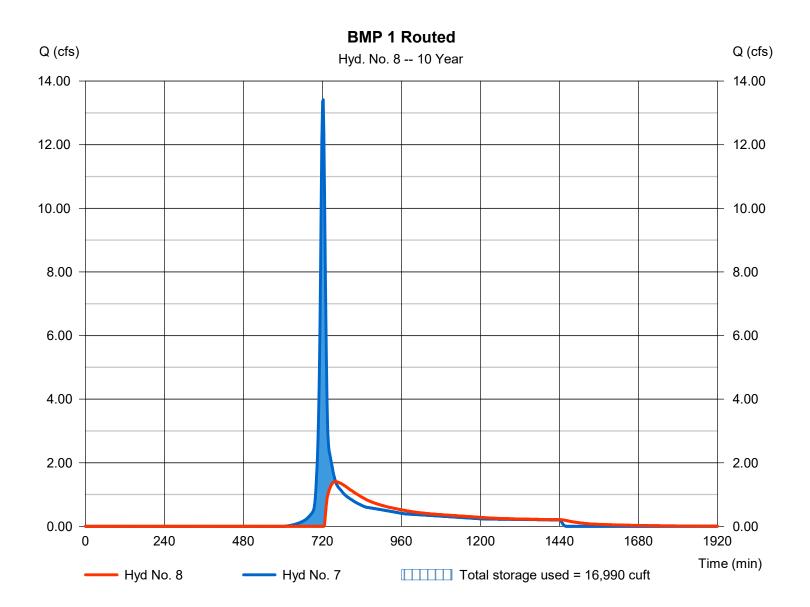

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 7

BMP 1 IN

Hydrograph type Storm frequency Time interval	= SCS Runoff = 10 yrs = 2 min	Peak discharge Time to peak	= 13.41 cfs = 722 min = 25.221 cuft
		Hyd. volume	= 35,221 cuft
Drainage area	= 4.980 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

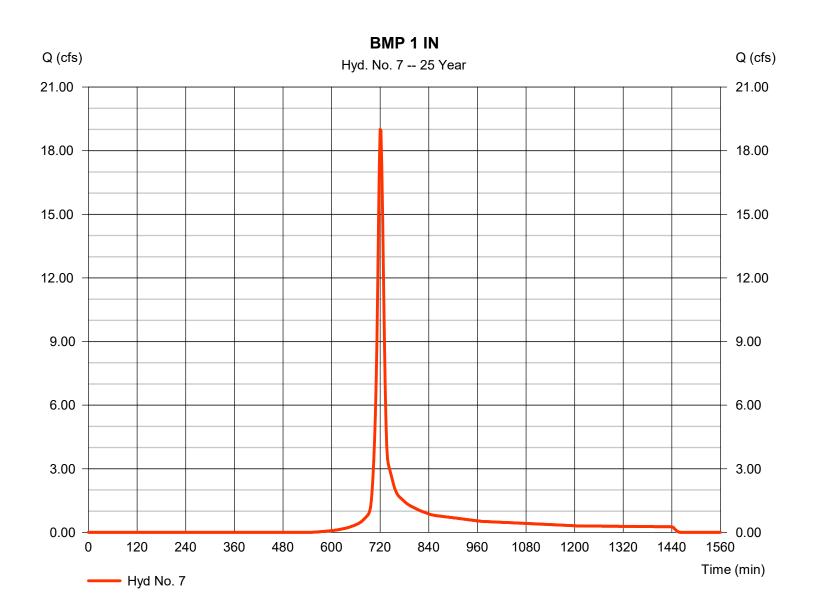

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

BMP 1 Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.405 cfs
Storm frequency	= 10 yrs	Time to peak	= 760 min
Time interval	= 2 min	Hyd. volume	= 23,010 cuft
Inflow hyd. No.	= 7 - BMP 1 IN	Max. Elevation	= 290.85 ft
Reservoir name	= BMP 1	Max. Storage	= 16,990 cuft

Storage Indication method used.

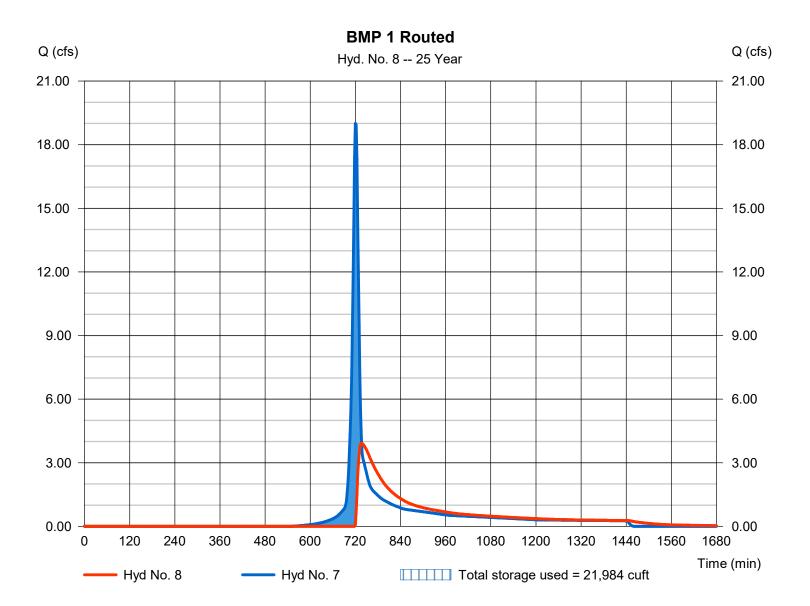


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP 1 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 19.00 cfs
Storm frequency	= 25 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 49,500 cuft
Drainage area	= 4.980 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

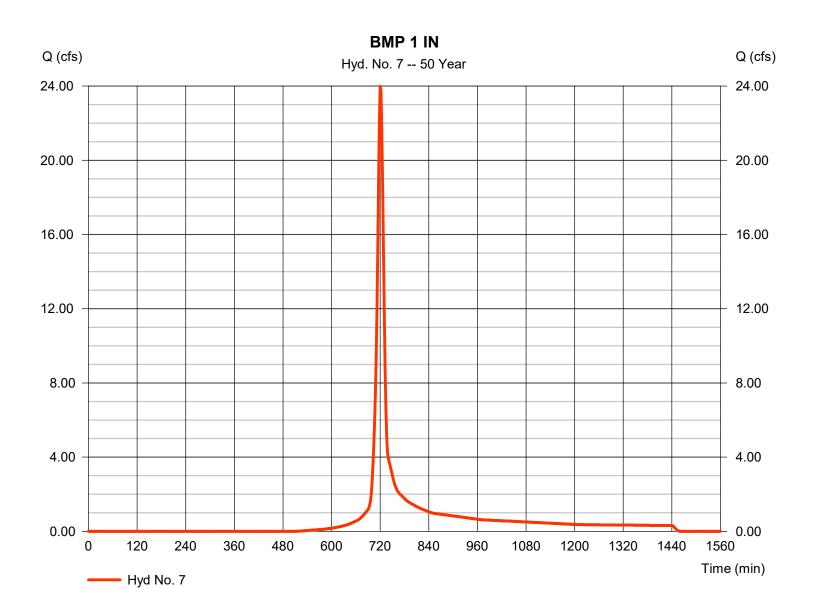

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

BMP 1 Routed

Hydrograph type	= Reservoir	Peak discharge	= 3.929 cfs
Storm frequency	= 25 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 37,290 cuft
Inflow hyd. No.	= 7 - BMP 1 IN	Max. Elevation	= 291.20 ft
Reservoir name	= BMP 1	Max. Storage	= 21,984 cuft

Storage Indication method used.

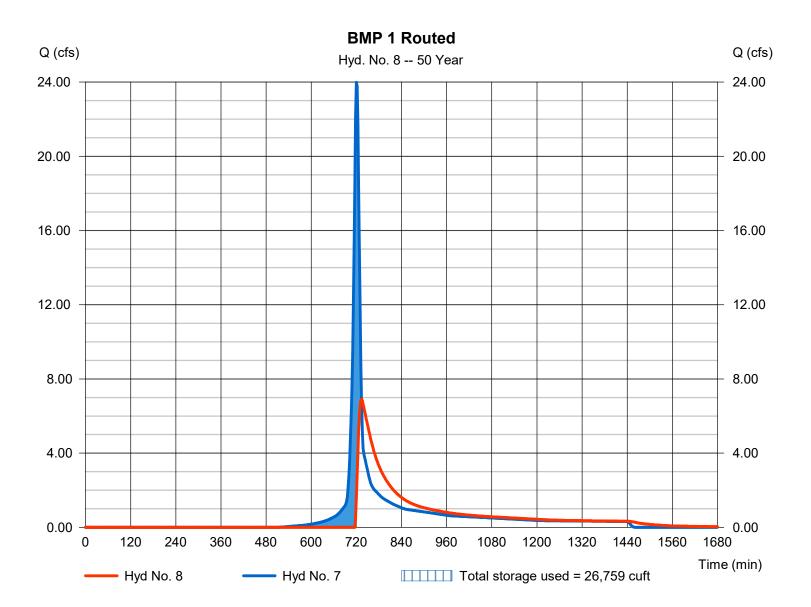


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP 1 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 23.98 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 62,223 cuft
Drainage area	= 4.980 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

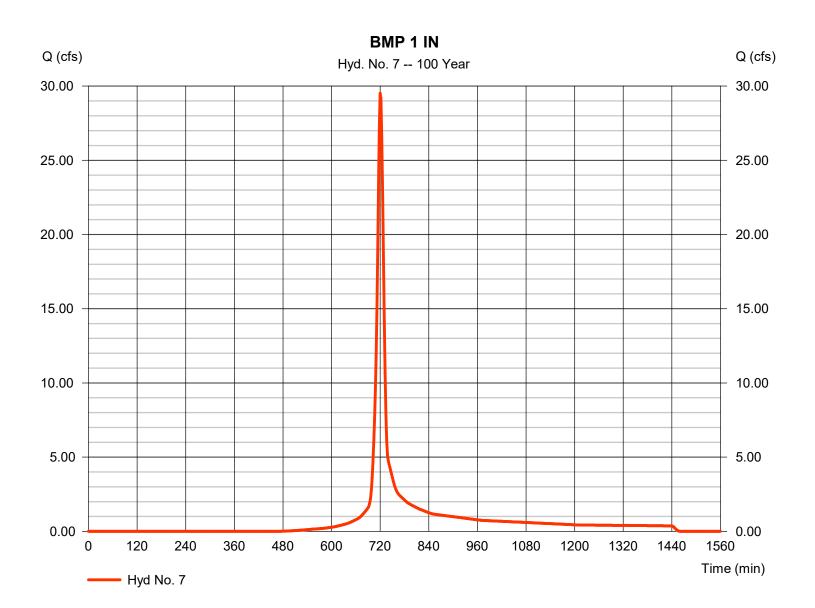

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

BMP 1 Routed

Hydrograph type	= Reservoir	Peak discharge	= 6.906 cfs
Storm frequency	= 50 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 50,013 cuft
Inflow hyd. No.	= 7 - BMP 1 IN	Max. Elevation	= 291.52 ft
Reservoir name	= BMP 1	Max. Storage	= 26,759 cuft
		0	,

Storage Indication method used.

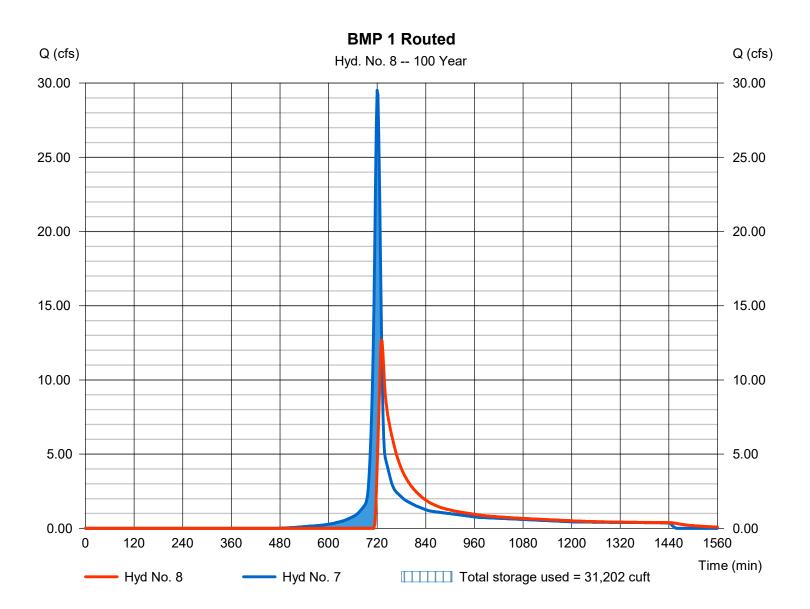


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

BMP 1 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 29.52 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 76,538 cuft
Drainage area	= 4.980 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

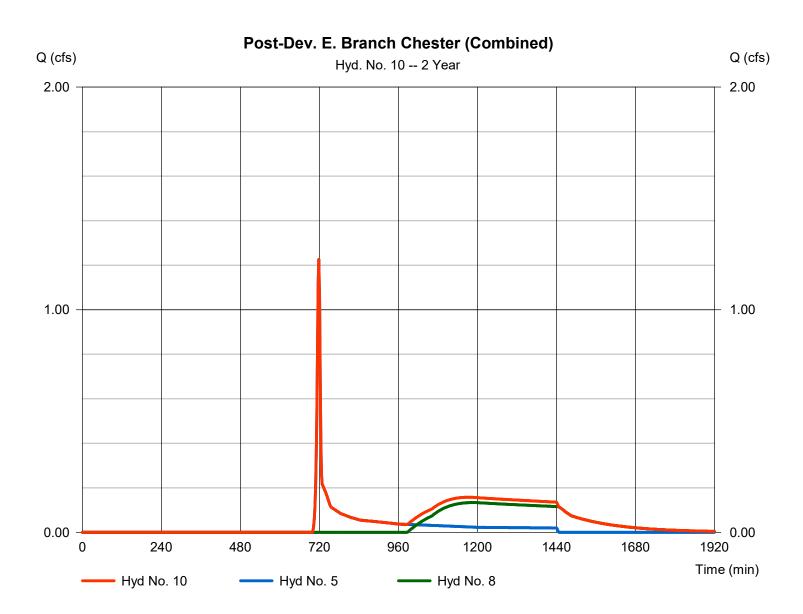

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

BMP 1 Routed

Peak discharge =	= 12.69 cfs
ime to peak =	= 730 min
+yd. volume =	= 64,328 cuft
/lax. Elevation =	= 291.82 ft
/lax. Storage =	= 31,202 cuft
- - /	ime to peak = yd. volume = lax. Elevation =

Storage Indication method used.

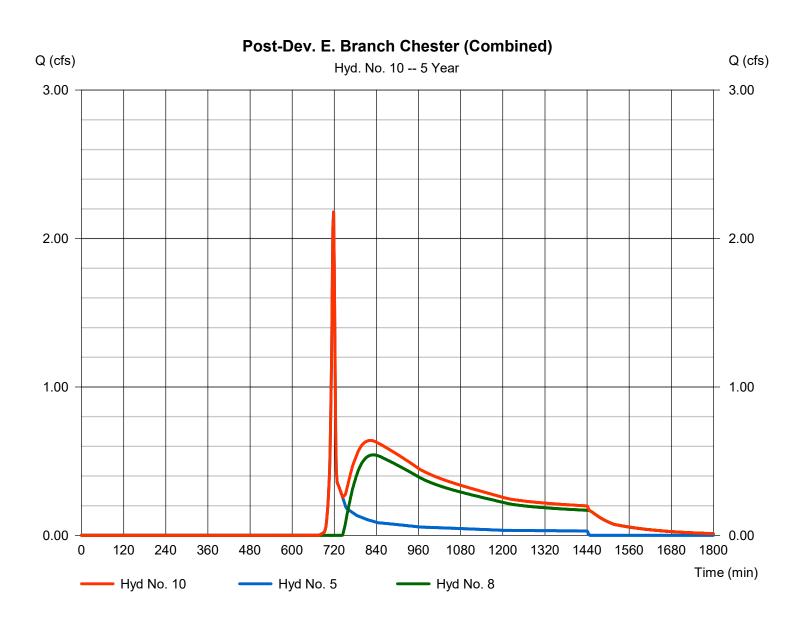


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type	= Combine	Peak discharge	= 1.225 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 6,472 cuft
Inflow hyds.	= 5, 8	Contrib. drain. area	= 1.130 ac
inited rigae.	0, 0		11100 40

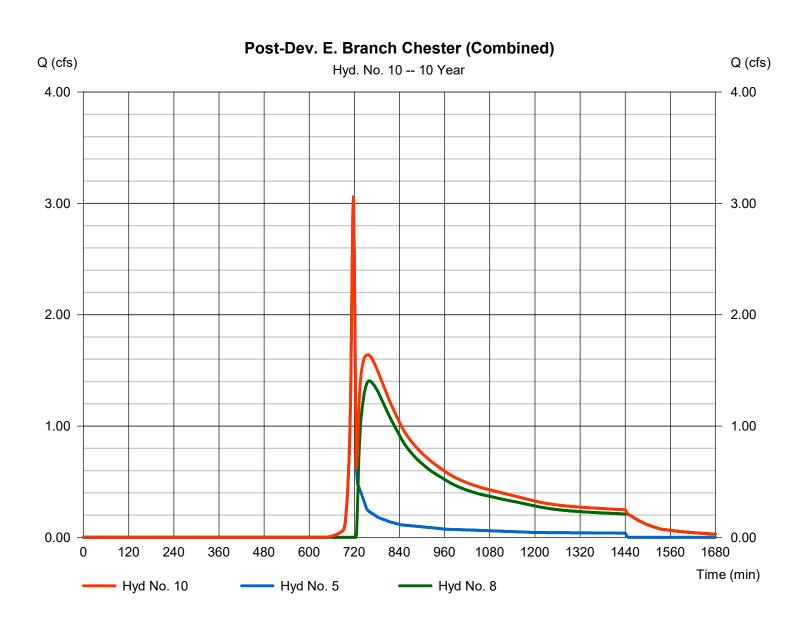


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type	= Combine	Peak discharge	= 2.179 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 18,238 cuft
Inflow byds	= 5 8	Contrib, drain, area	= 1 130 ac
Inflow hyds.	= 5,8	Contrib. drain. area	= 1.130 ac

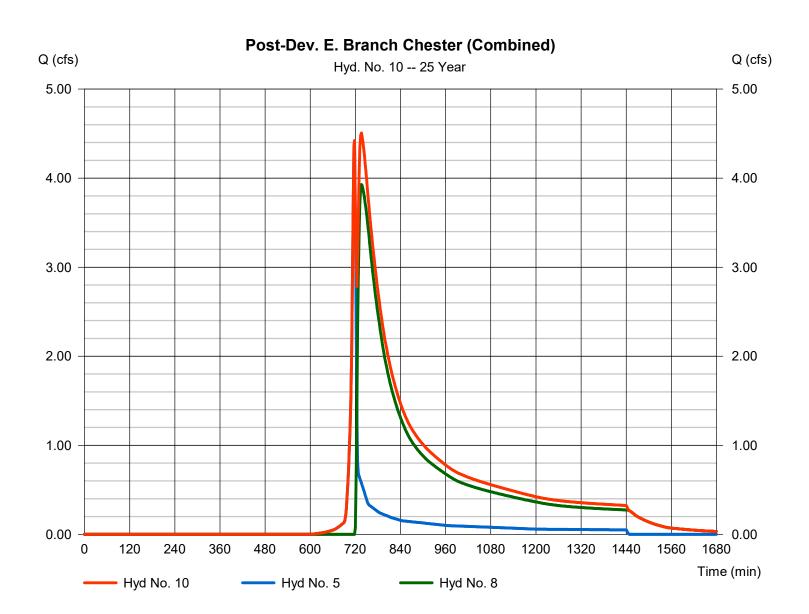


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type	= Combine	Peak discharge	= 3.059 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 29,136 cuft
Inflow hyds.	= 5, 8	Contrib. drain. area	= 1.130 ac

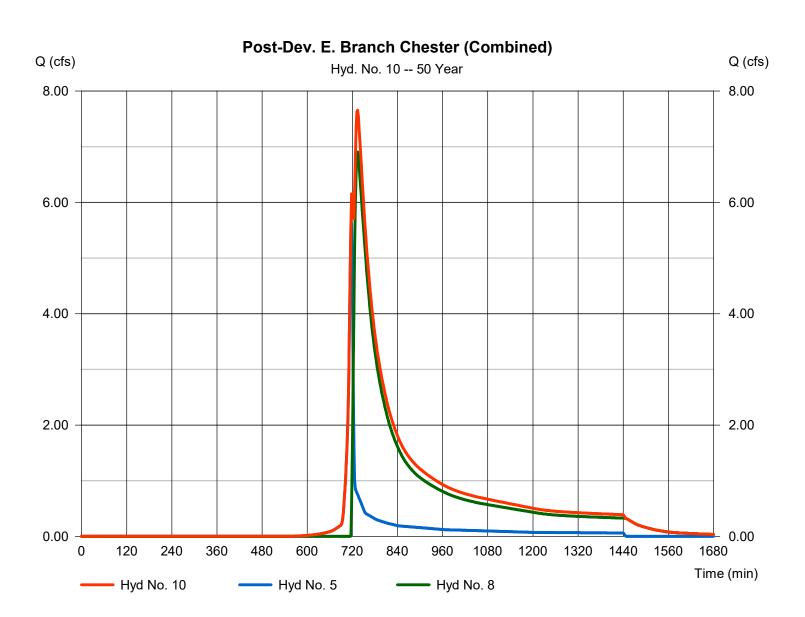


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type Storm frequency	= Combine = 25 yrs	Peak discharge Time to peak	= 4.506 cfs = 736 min
Time interval	= 2 min	Hyd. volume	= 46,136 cuft
Inflow hyds.	= 5,8	Contrib. drain. area	= 1.130 ac

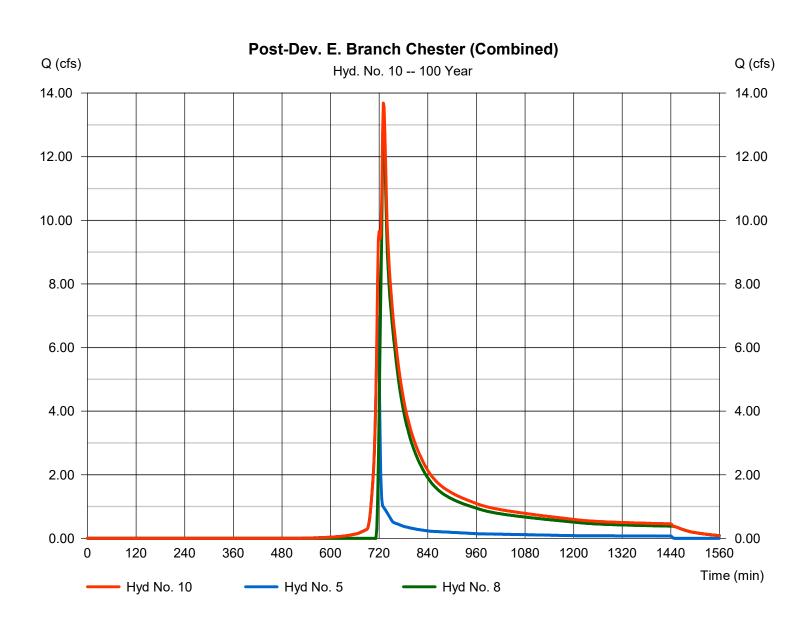


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type	= Combine	Peak discharge	= 7.657 cfs
Storm frequency	= 50 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 61,318 cuft
Inflow hyds.	= 5, 8	Contrib. drain. area	= 1.130 ac
innow nyao.	0,0		1.100 40



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type	= Combine	Peak discharge	= 13.69 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 78,426 cuft
Inflow hyds.	= 5,8	Contrib. drain. area	= 1.130 ac

UNT. TO EAST BRANCH CHESTER CREEK

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

ELA SPORT

ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

NRCS (SCS) TR-55- WATERSHED WEIGHTED CURVE NUMBER POST-DEVELOPMENT SUMMARY

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester

		_						
		Tc	Min.	22	5	ß	12	
		Composite	'CN' Value	65	98	98	66	
		Total	Area (ac.)	9.74	2.22	2.22	2.74	
əəsq2 nəqO (Undsturbed Area)	D	80		0.56	0.00	0.00	0.00	
Open Space (Disturbed Area)	D	80		0.87	0.00	0.00	0.66	
9360 Space (Undsturbed Area)	В	61	ic)	1.94	0.00	0.00	0.00	
Open Space (Disturbed Area)	В	61	Area (ac	6.01	0.00	0.00	2.07	
Parking, Other Impervious (Undisturbed Area)	В	98		0.00	00.0	0.00	0.00	
Parking, Other Impervious (Disturbed Area)	В	98		0.36	2.22	2.22	0.01	
IAND USE	HSG	"CN" Value		4	0	~		
			WATERSHED	Infiltration Basin - BMP 4	Infiltration Bed - BMP 2	Infiltration Bed - BMP 3	Undetained	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-**DEVELOPMENT CONDITIONS**

> **DESIGN & CONSULTING ATHLETIC FACILITIES**

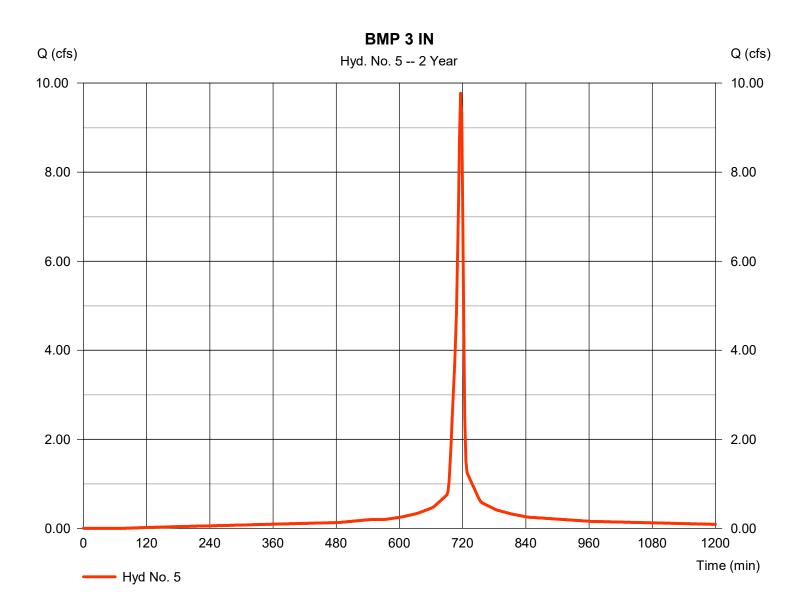
737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

LOCATION PROJECT

<u></u>	The Westtown School - Oak Lane Project
ż	Westtown Townshin

Chester COUNTY:

Γ		tal	∑ Тс	Hrs.						0.37										0.20
		Total	<u>°T</u> Z	Min.						22										12
		ţΤ	Min.	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	
			^ɛ ๅ կֈɓuəๅ	ff.																
		oipe	n s'gninnsM	۲																
(T.	ווו	Channel or Pipe	Slope S ₃	ft./ft.																
	od	hanr	Pipe Diameter	in.																
	<u>Metho</u>	Ω	Wetted Perimeter	ff.	0.00	0.00	0.00	0.00	0.00		00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1014	ital)		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00		00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	
	nen		Pipe Channel or	C/P																
Ę	Seg	ted	ĴΤ	Min.	0.0	3.4	0.2	0	0	3.6	0.0	1.5	0	0	0	0	0		0	1.5
	city(ntrat	Average Velocity	ft./s	0	1.7	6.6	0	0		0	3.5	0	0	0	0	0		0	
10140	NRCS Velocity(Segmental) Method	hallow Concentrated	Slope S ₂	ft./ft.		0.011	0.167					0.048								
	UNC NRC	allow	^շ ղ կքնսəղ	ft.		350	62					313								
	- 1	Sha	Flow Path Cover	U/P		⊃	⊃					⊃								
			сΤ	Min.	18	0	0	0	0	18	10.7	0	0	0	0	0	0		0	10.7
		рι	2 yr rainfall	i.	3.26	3.26	3.26				3.26									
		overland	n s'gninnsM	u	0.24						0.24									
		0	rS ∍qolS	ft./ft.	0.011						0.040									
			لفرون الله الم 100 ft. max.	ft.	100						100									
_			Sub area		BMP 1						Unt. to EBCC	Undetained								

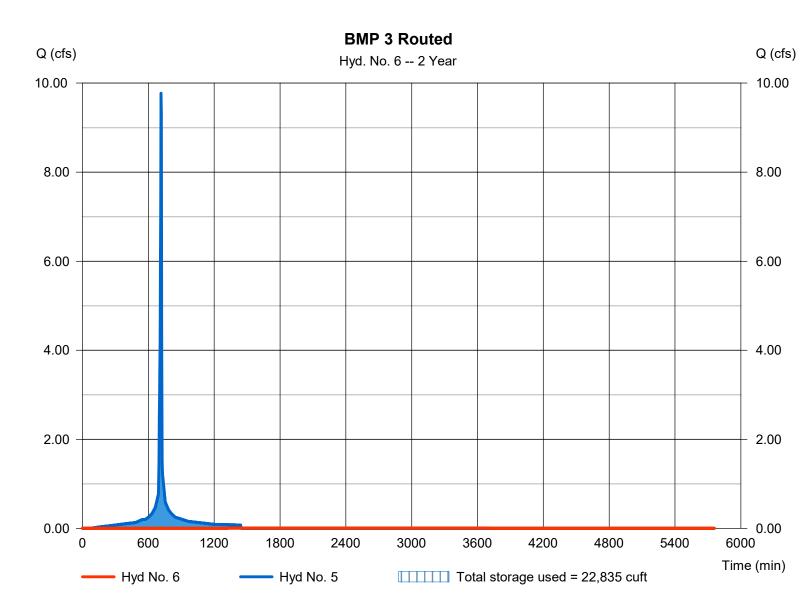

FILE NAME:WESTTOWN-STORM.xlsx - Post_Tc_(B)

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

BMP 3 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 9.771 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 22,871 cuft
Drainage area	= 2.220 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

BMP 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.006 cfs
Storm frequency	= 2 yrs	Time to peak	= 1446 min
Time interval	= 2 min	Hyd. volume	= 772 cuft
Inflow hyd. No.	= 5 - BMP 3 IN	Max. Elevation	= 321.04 ft
Reservoir name	= BMP 3	Max. Storage	= 22,835 cuft

Storage Indication method used.

Pond Report

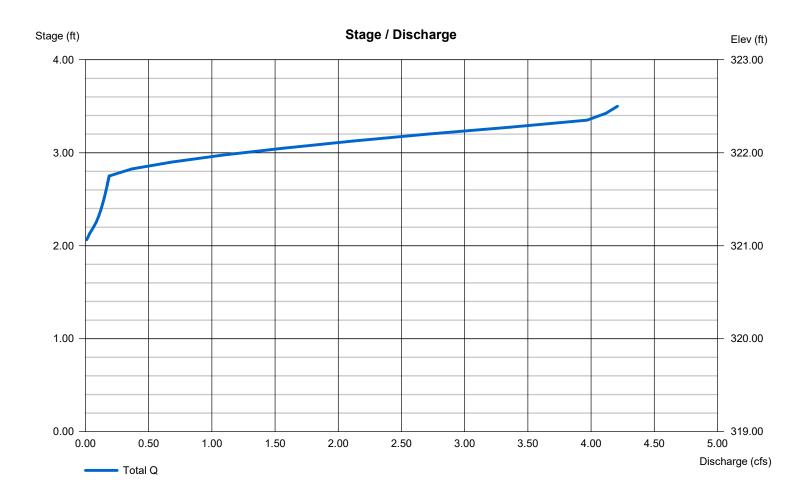
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 7 - BMP 3

Pond Data

Pond storage is based on user-defined values.

Stage / Storage Table

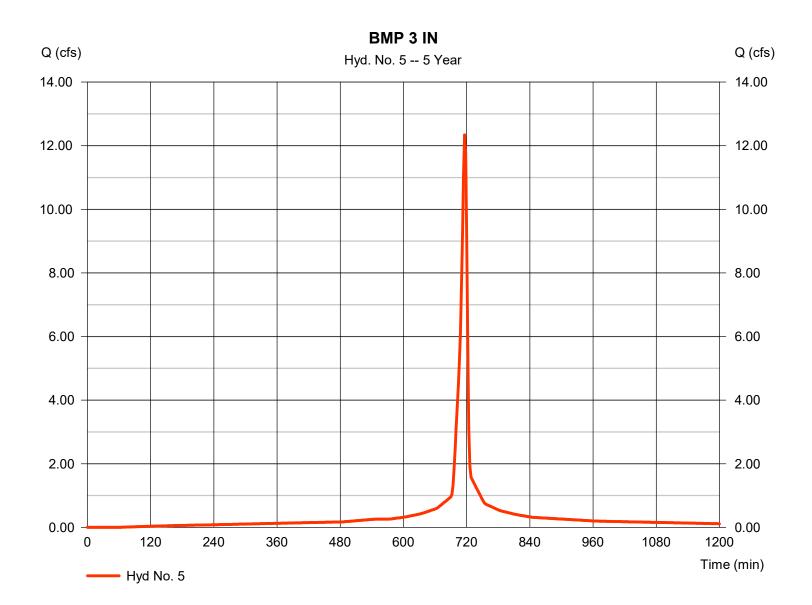

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	319.00	n/a	0	0
1.00	320.00	n/a	10,878	10,878
2.00	321.00	n/a	11,038	21,916
2.65	321.65	n/a	14,567	36,483
2.75	321.75	n/a	3,600	40,083
3.50	322.50	n/a	28,665	68,748

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	3.00	0.00	0.00	Crest Len (ft)	= 3.14	0.00	0.00	0.00
Span (in)	= 12.00	3.00	0.00	0.00	Crest El. (ft)	= 321.75	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 319.00	321.00	0.00	0.00	Weir Type	= Broad			
Length (ft)	= 245.00	0.10	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.75	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

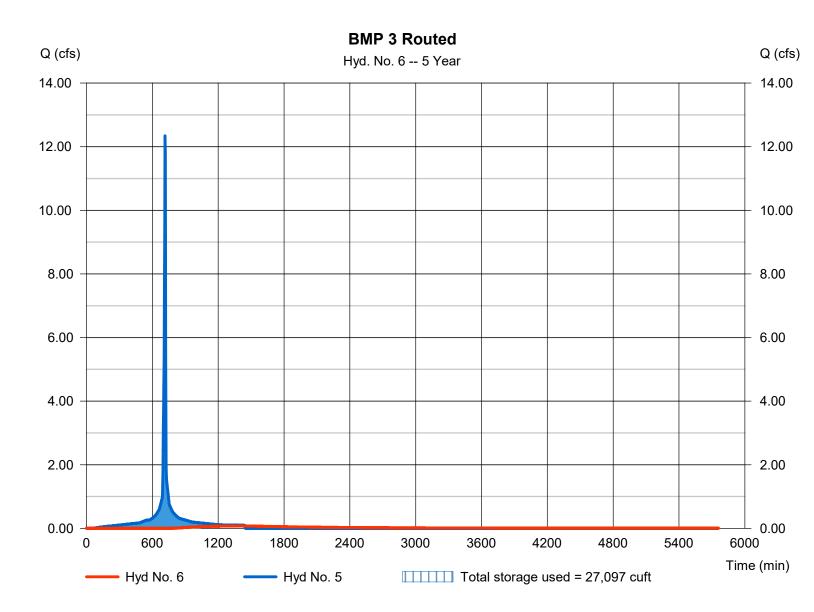


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

BMP 3 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 12.34 cfs
Storm frequency	= 5 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 29,199 cuft
Drainage area	= 2.220 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

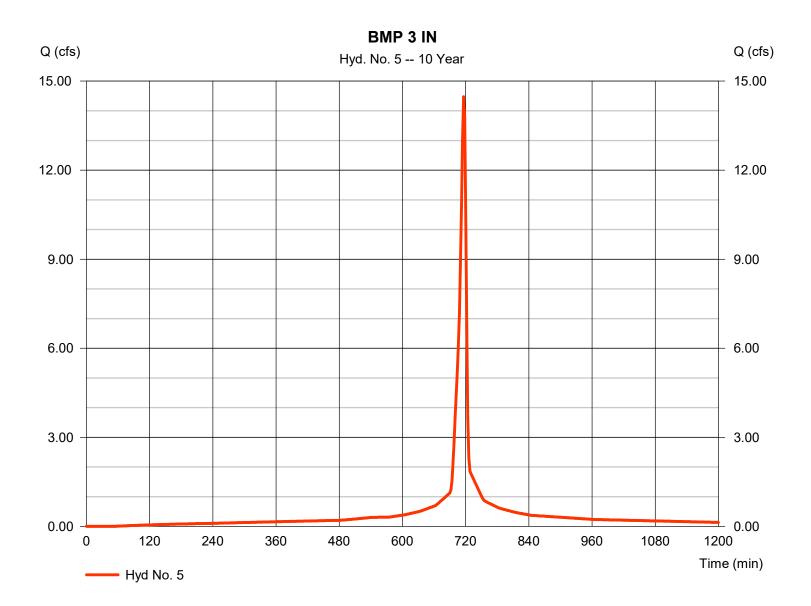

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

BMP 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.076 cfs
Storm frequency	= 5 yrs	Time to peak	= 1442 min
Time interval	= 2 min	Hyd. volume	= 6,655 cuft
Inflow hyd. No.	= 5 - BMP 3 IN	Max. Elevation	= 321.23 ft
Reservoir name	= BMP 3	Max. Storage	= 27,097 cuft

Storage Indication method used.

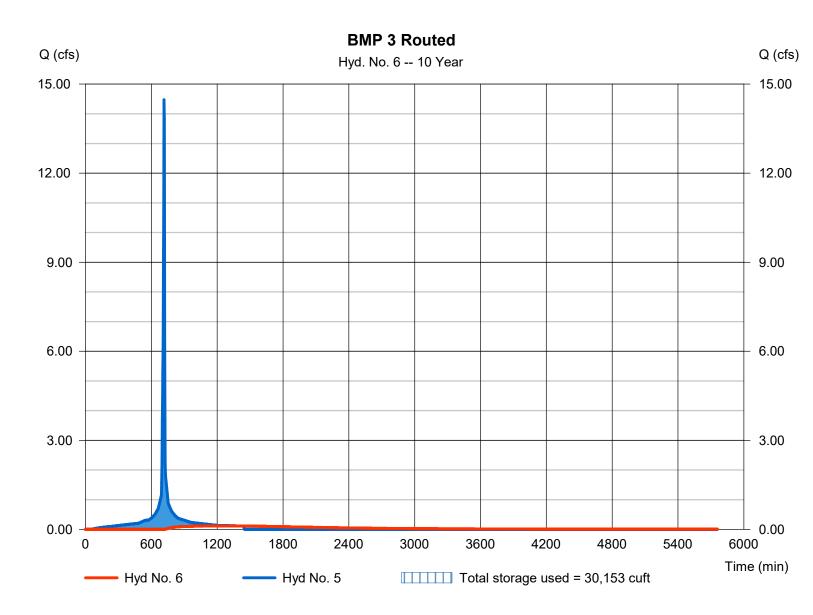

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 5

BMP 3 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 14.48 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 34,477 cuft
Drainage area	= 2.220 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

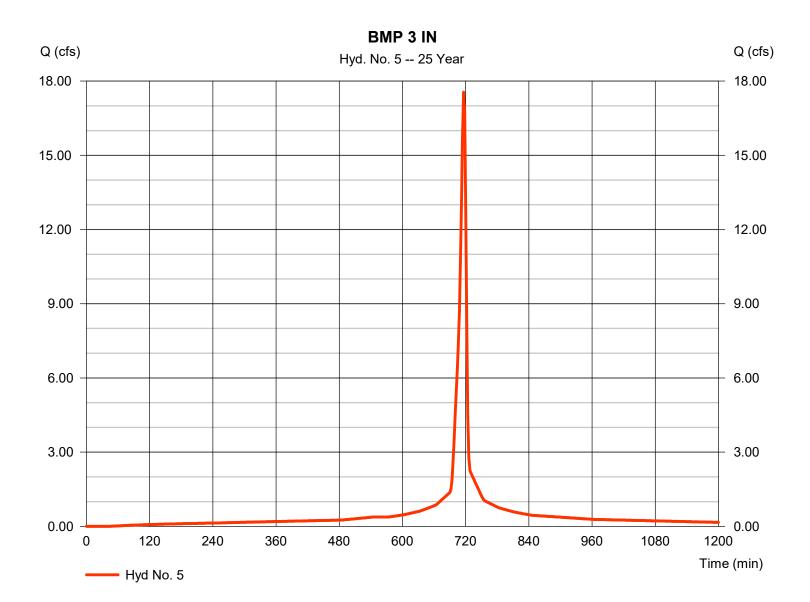

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

BMP 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.116 cfs
Storm frequency	= 10 yrs	Time to peak	= 1378 min
Time interval	= 2 min	Hyd. volume	= 11,796 cuft
Inflow hyd. No.	= 5 - BMP 3 IN	Max. Elevation	= 321.37 ft
Reservoir name	= BMP 3	Max. Storage	= 30,153 cuft
		5	,

Storage Indication method used.

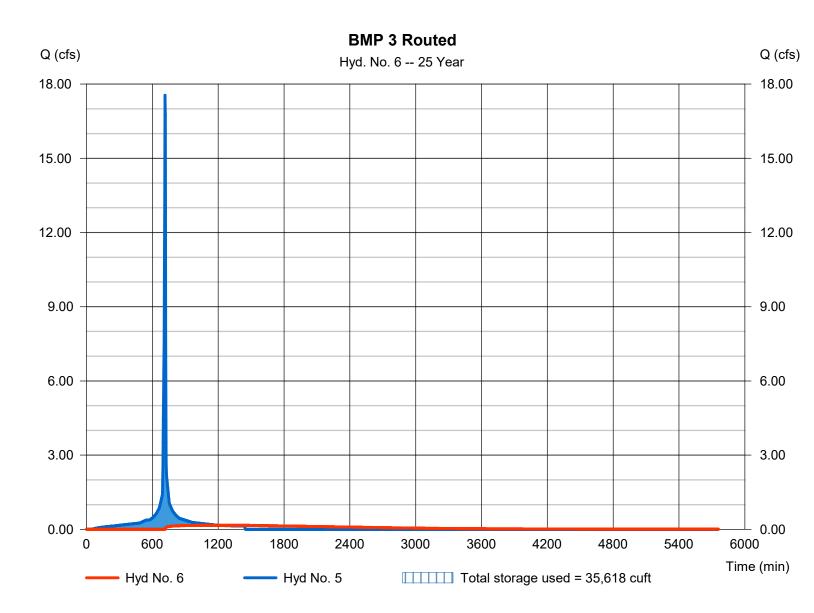


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

BMP 3 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 17.55 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 42,097 cuft
Drainage area	= 2.220 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

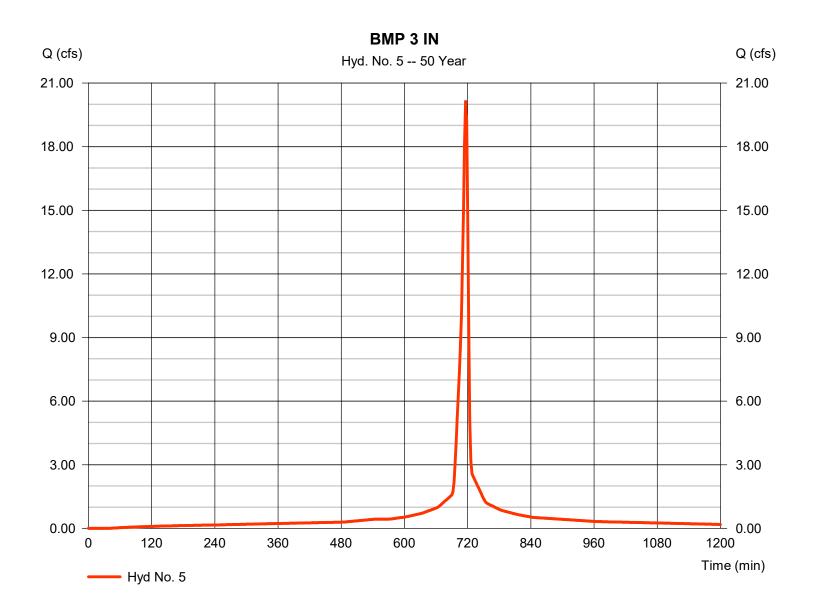

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

BMP 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.165 cfs
Storm frequency	= 25 yrs	Time to peak	= 1190 min
Time interval	= 2 min	Hyd. volume	= 19,215 cuft
Inflow hyd. No.	= 5 - BMP 3 IN	Max. Elevation	= 321.61 ft
Reservoir name	= BMP 3	Max. Storage	= 35,618 cuft

Storage Indication method used.

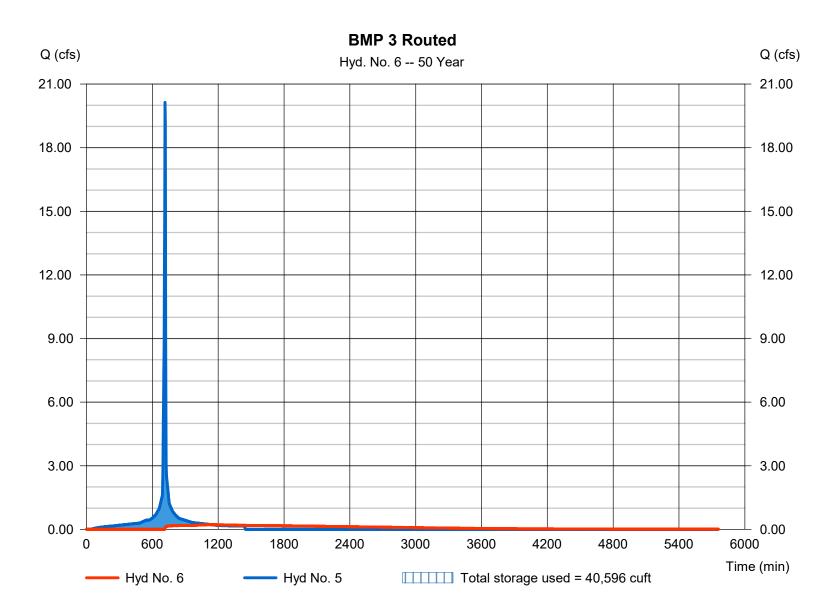


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

BMP 3 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 20.14 cfs
Storm frequency	= 50 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 48,512 cuft
Drainage area	= 2.220 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

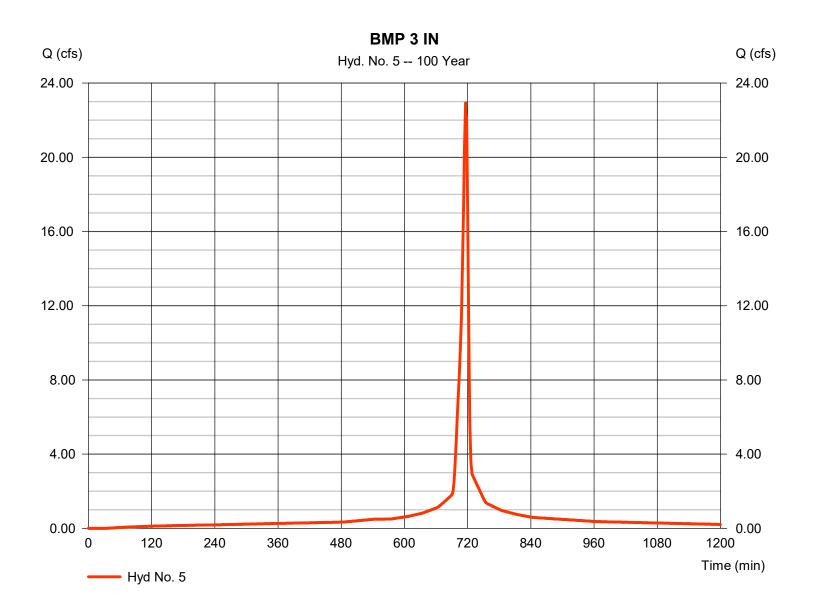

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

BMP 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.219 cfs
Storm frequency	= 50 yrs	Time to peak	= 1140 min
Time interval	= 2 min	Hyd. volume	= 25,455 cuft
Inflow hyd. No.	= 5 - BMP 3 IN	Max. Elevation	= 321.76 ft
Reservoir name	= BMP 3	Max. Storage	= 40,596 cuft

Storage Indication method used.

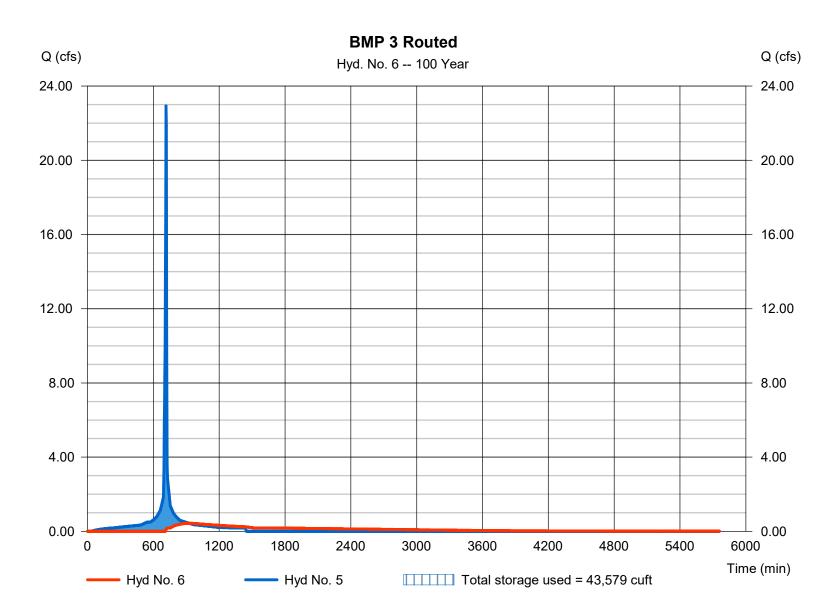


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

BMP 3 IN

Hydrograph type	= SCS Runoff	Peak discharge	= 22.94 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 55,457 cuft
Drainage area	= 2.220 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

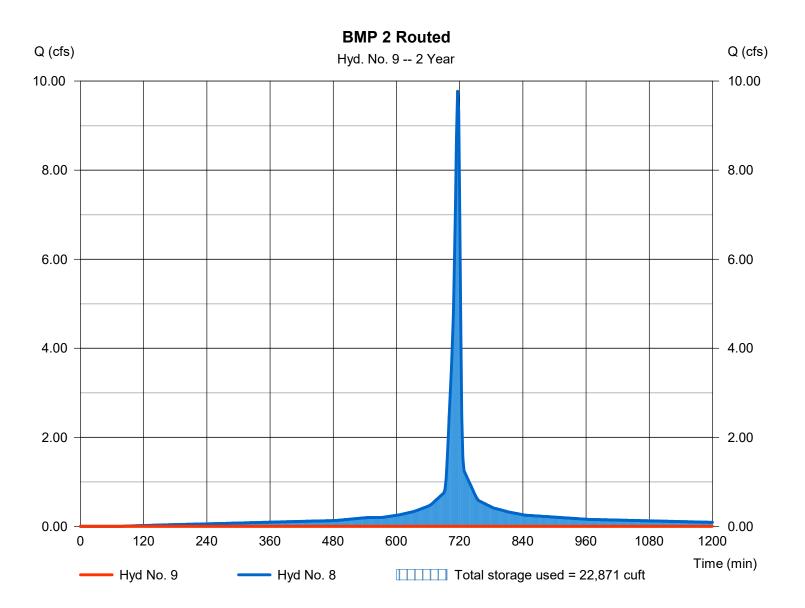

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

BMP 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.435 cfs
Storm frequency	= 100 yrs	Time to peak	= 926 min
Time interval	= 2 min	Hyd. volume	= 32,369 cuft
Inflow hyd. No.	= 5 - BMP 3 IN	Max. Elevation	= 321.84 ft
Reservoir name	= BMP 3	Max. Storage	= 43,579 cuft
Reservoir name	= BMP 3	Max. Storage	= 43,579 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

BMP 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 8 - BMP 2 IN	Max. Elevation	= 316.75 ft
Reservoir name	= BMP 2	Max. Storage	= 22,871 cuft

Storage Indication method used.

Pond Report

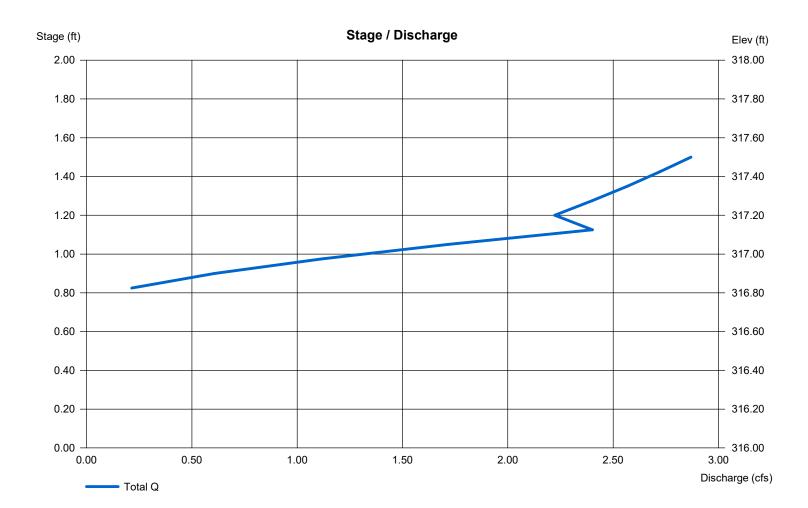
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 6 - BMP 2

Pond Data

Pond storage is based on user-defined values.

Stage / Storage Table

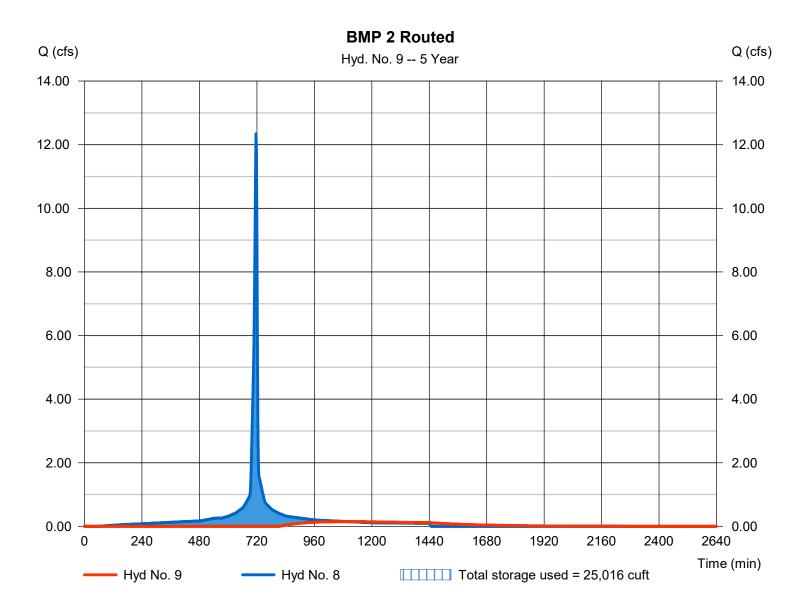

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	316.00	n/a	0	0	
0.67	316.67	n/a	20,294	20,294	
0.75	316.75	n/a	2,741	23,035	
1.50	317.50	n/a	28,665	51,700	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	0.00	0.00	0.00	Crest Len (ft)	= 3.14	0.00	0.00	0.00
Span (in)	= 15.00	0.00	0.00	0.00	Crest El. (ft)	= 316.75	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert EI. (ft)	= 312.50	0.00	0.00	0.00	Weir Type	= 1			
Length (ft)	= 84.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.53	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)	
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			
-									

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

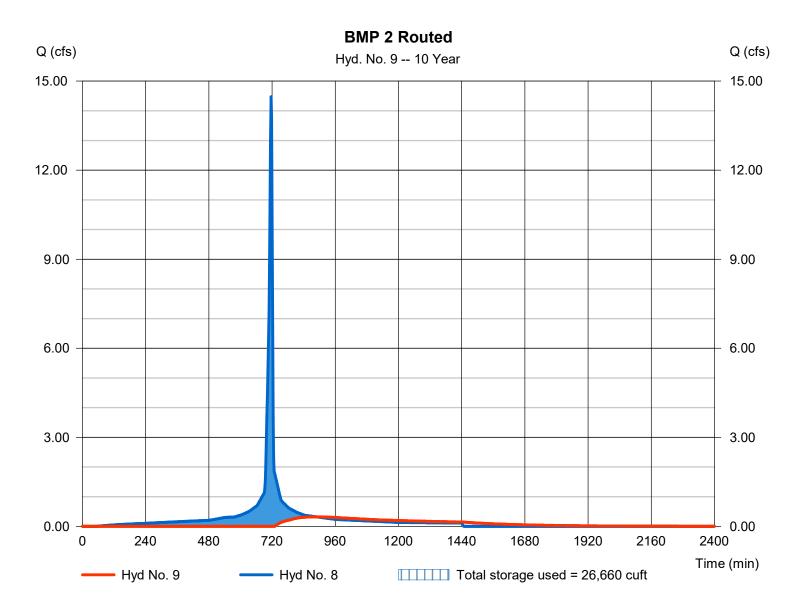

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

BMP 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.148 cfs
Storm frequency	= 5 yrs	Time to peak	= 1100 min
Time interval	= 2 min	Hyd. volume	= 6,151 cuft
Inflow hyd. No.	= 8 - BMP 2 IN	Max. Elevation	= 316.80 ft
Reservoir name	= BMP 2	Max. Storage	= 25,016 cuft
		•	

Storage Indication method used.

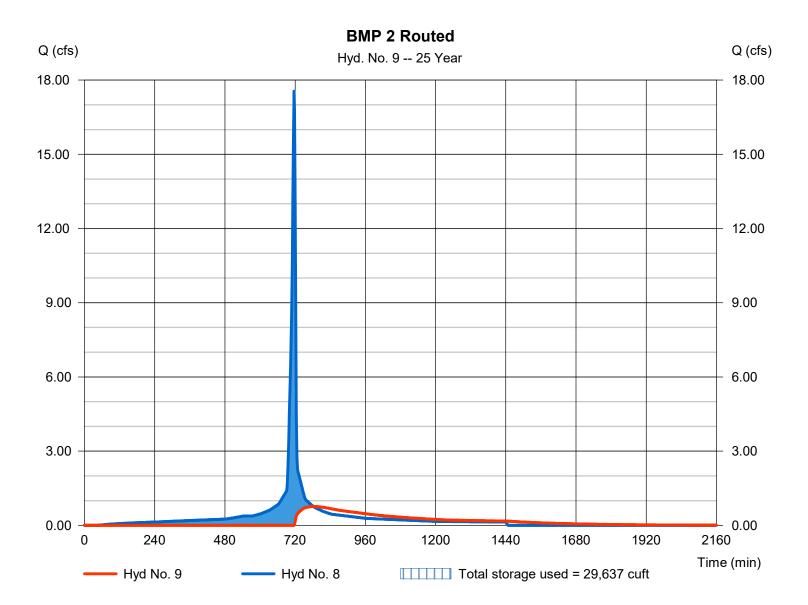

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

BMP 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.319 cfs
Storm frequency	= 10 yrs	Time to peak	= 888 min
Time interval	= 2 min	Hyd. volume	= 11,429 cuft
Inflow hyd. No.	= 8 - BMP 2 IN	Max. Elevation	= 316.84 ft
Reservoir name	= BMP 2	Max. Storage	= 26,660 cuft

Storage Indication method used.

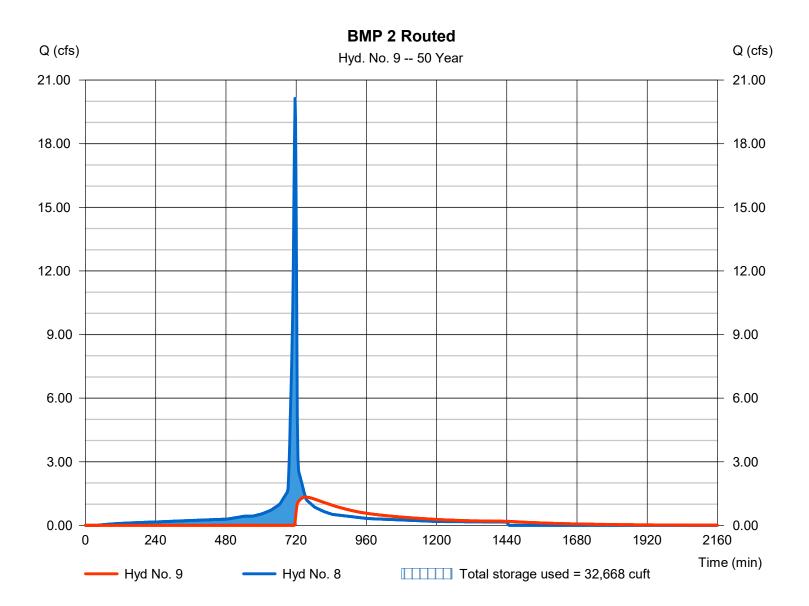

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

BMP 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.762 cfs
Storm frequency	= 25 yrs	Time to peak	= 782 min
Time interval	= 2 min	Hyd. volume	= 19,048 cuft
Inflow hyd. No.	= 8 - BMP 2 IN	Max. Elevation	= 316.92 ft
Reservoir name	= BMP 2	Max. Storage	= 29,637 cuft
5	-		

Storage Indication method used.

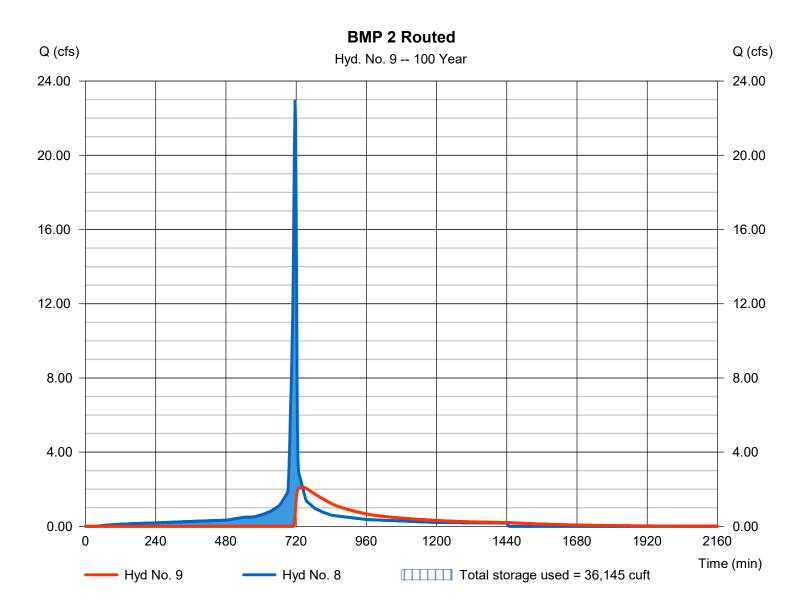

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

BMP 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.333 cfs
Storm frequency	= 50 yrs	Time to peak	= 752 min
Time interval	= 2 min	Hyd. volume	= 25,463 cuft
Inflow hyd. No.	= 8 - BMP 2 IN	Max. Elevation	= 317.00 ft
Reservoir name	= BMP 2	Max. Storage	= 32,668 cuft
Reservoir name	= BMP 2	Max. Storage	= 32,668 cuft

Storage Indication method used.

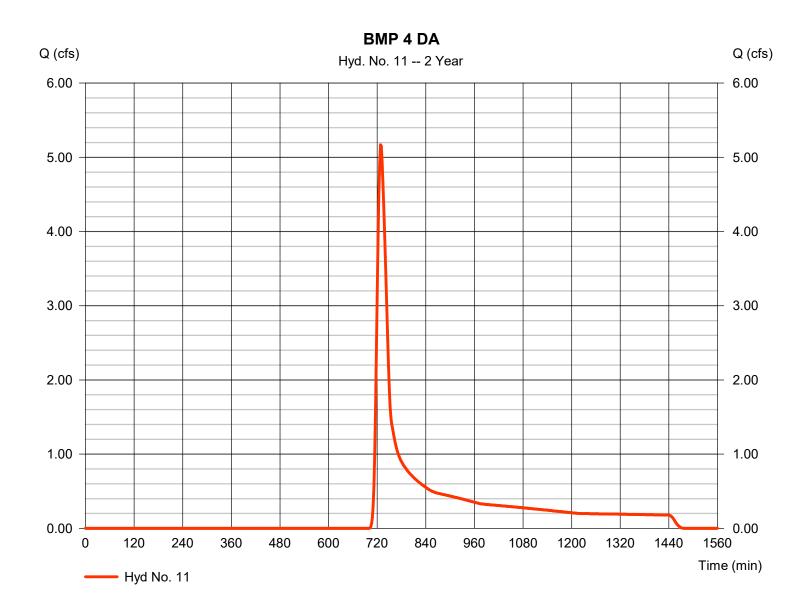

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

BMP 2 Routed

= 2.110 cfs
= 742 min
= 32,409 cuft
= 317.09 ft
= 36,145 cuft

Storage Indication method used.

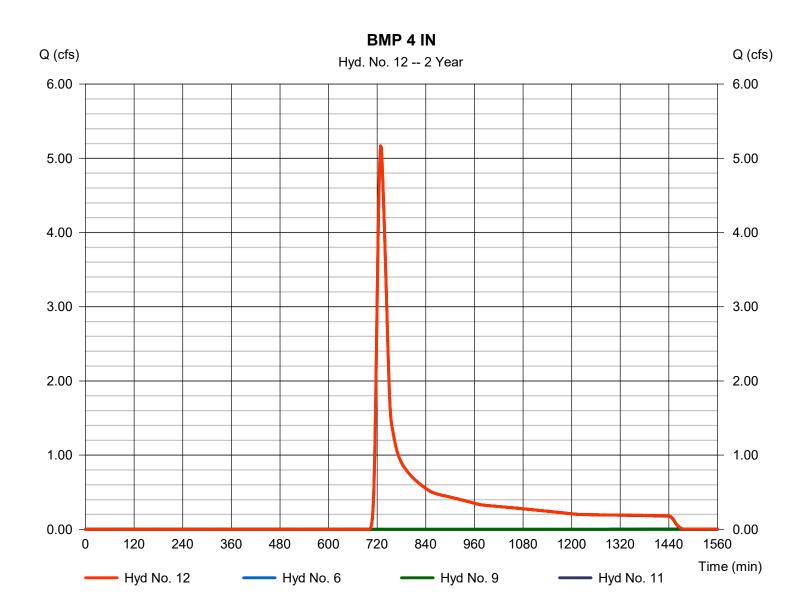


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

BMP 4 DA

Hydrograph type	= SCS Runoff	Peak discharge	= 5.169 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 22,661 cuft
Drainage area	= 9.740 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

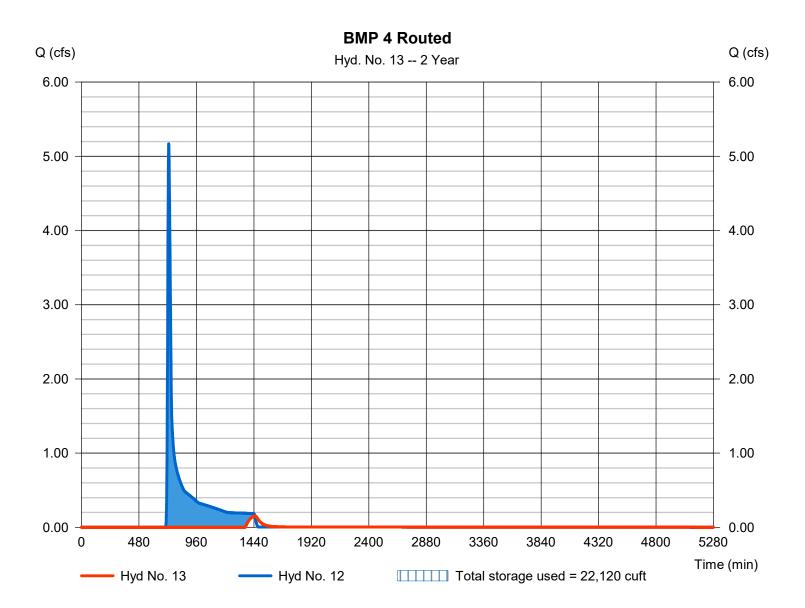

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type= CombinePeak discharStorm frequency= 2 yrsTime to peakTime interval= 2 minHyd. volumeInflow hyds.= 6, 9, 11Contrib. drain	= 728 min = 23,433 cuft
---	----------------------------


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

BMP 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.155 cfs
Storm frequency	= 2 yrs	Time to peak	= 1448 min
Time interval	= 2 min	Hyd. volume	= 1,707 cuft
Inflow hyd. No.	= 12 - BMP 4 IN	Max. Elevation	= 311.01 ft
Reservoir name	= BMP 4	Max. Storage	= 22,120 cuft

Storage Indication method used.

Pond Report

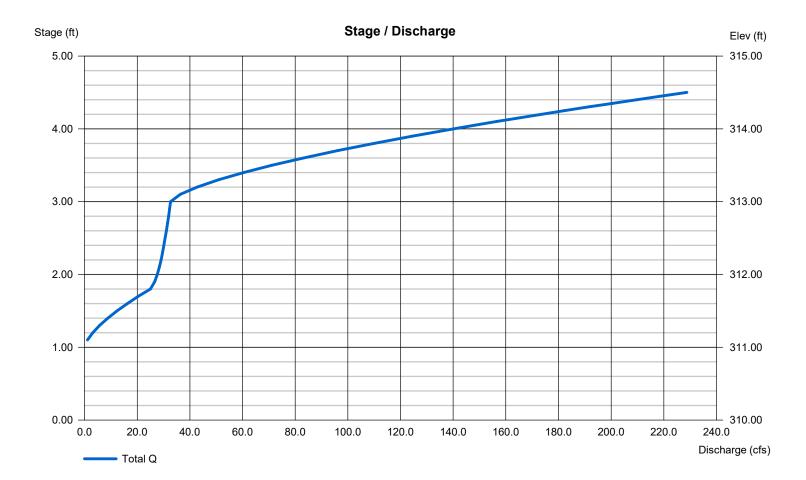
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 5 - BMP 4

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 310.00 ft

Stage / Storage Table

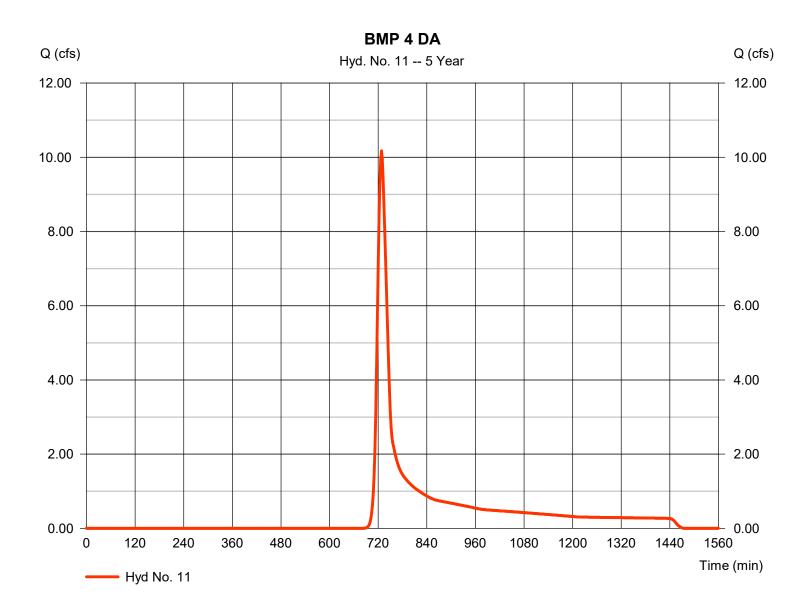

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	310.00	18,641	0	0
1.00	311.00	24,964	21,724	21,724
2.00	312.00	31,828	28,324	50,047
3.00	313.00	39,079	35,388	85,435
4.00	314.00	46,489	42,726	128,162
4.50	314.50	48,534	23,752	151,913

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 10.50	Inactive	40.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 311.00	311.00	313.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 307.25	0.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 36.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.69	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

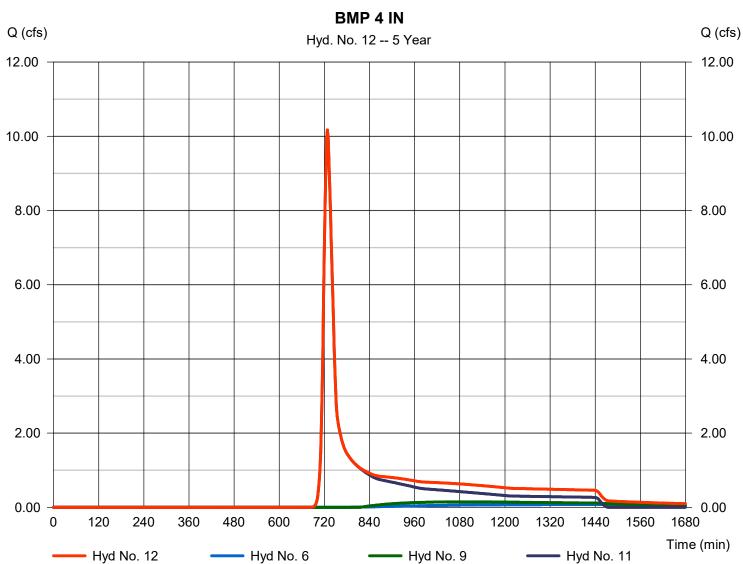


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

BMP 4 DA

Hydrograph type	= SCS Runoff	Peak discharge	= 10.17 cfs
Storm frequency	= 5 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 39,117 cuft
Drainage area	= 9.740 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

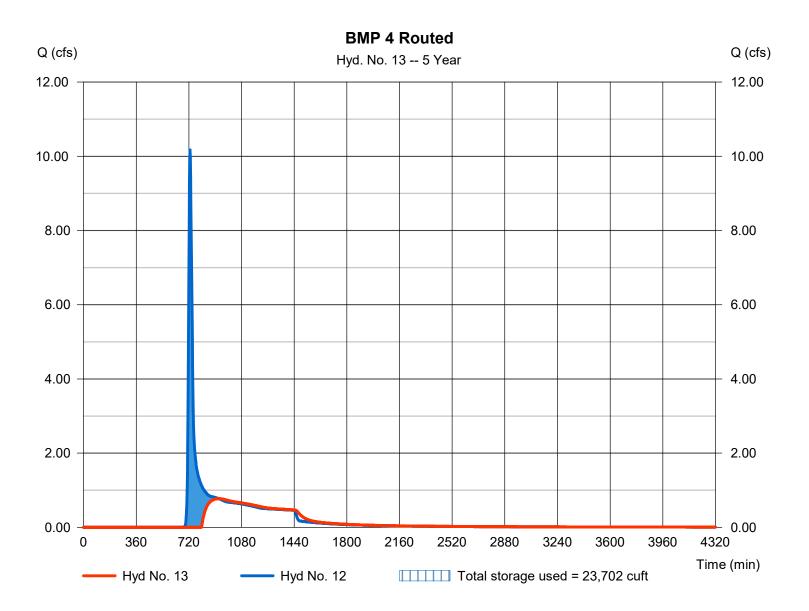


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 12

BMP 4 IN

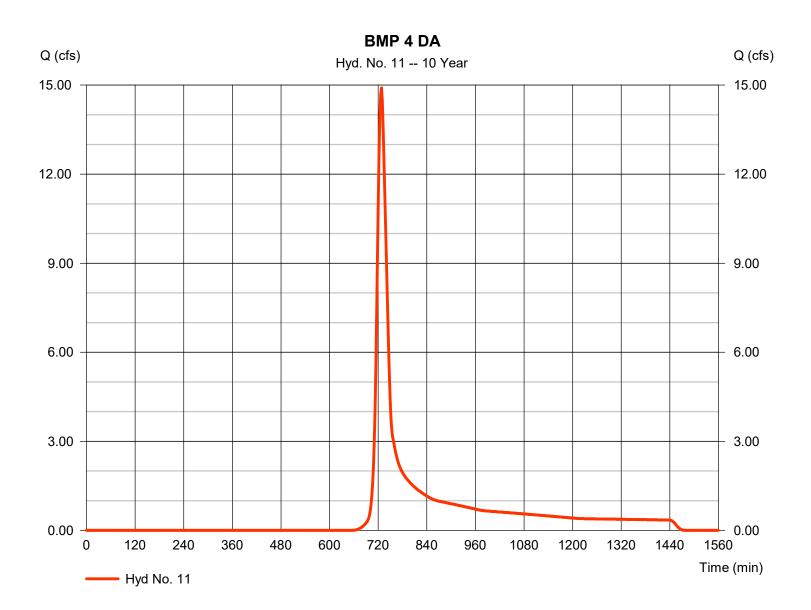

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

BMP 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.772 cfs
Storm frequency	= 5 yrs	Time to peak	= 924 min
Time interval	= 2 min	Hyd. volume	= 30,189 cuft
Inflow hyd. No.	= 12 - BMP 4 IN	Max. Elevation	= 311.07 ft
Reservoir name	= BMP 4	Max. Storage	= 23,702 cuft

Storage Indication method used.

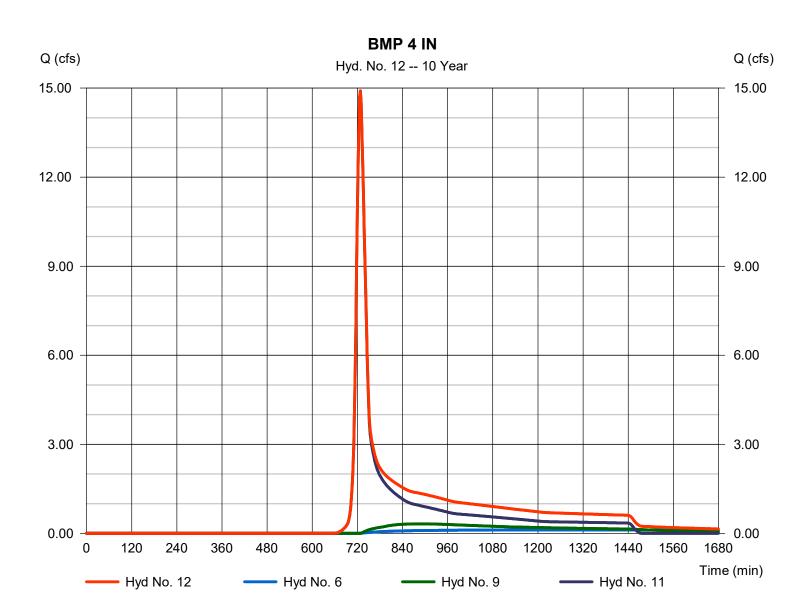


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

BMP 4 DA

Hydrograph type	= SCS Runoff	Peak discharge	= 14.91 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 54,771 cuft
Drainage area	= 9.740 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

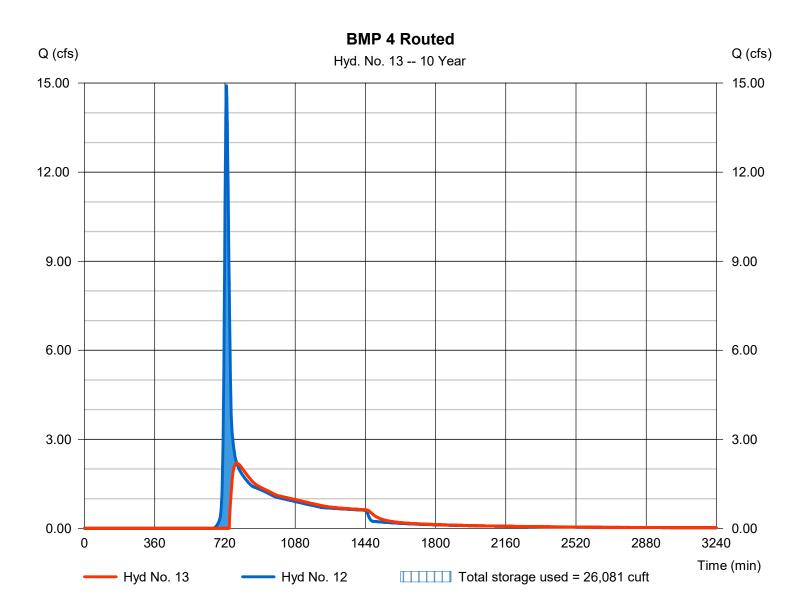


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 12

BMP 4 IN

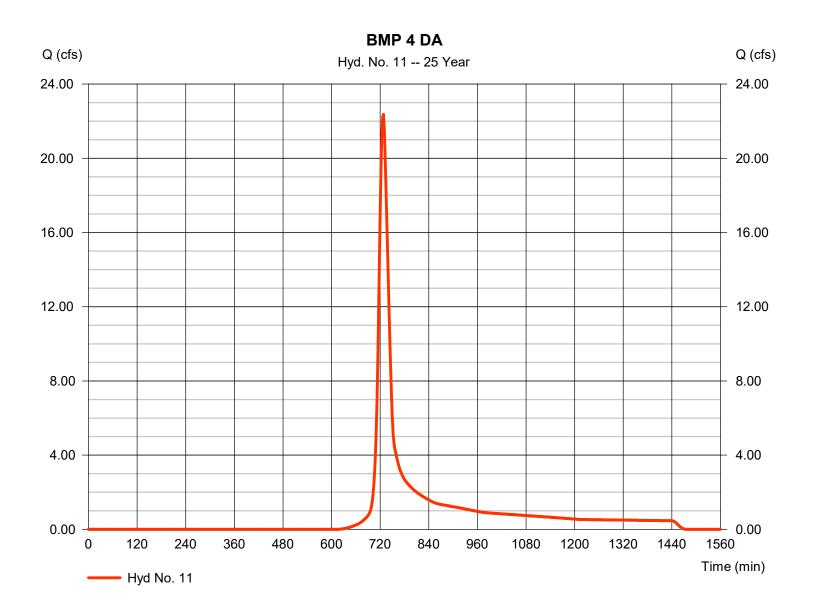

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

BMP 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 2.194 cfs
Storm frequency	= 10 yrs	Time to peak	= 780 min
Time interval	= 2 min	Hyd. volume	= 56,259 cuft
Inflow hyd. No.	= 12 - BMP 4 IN	Max. Elevation	= 311.15 ft
Reservoir name	= BMP 4	Max. Storage	= 26,081 cuft
Reservoir name	= BMP 4	Max. Storage	= 26,081 cuft

Storage Indication method used.

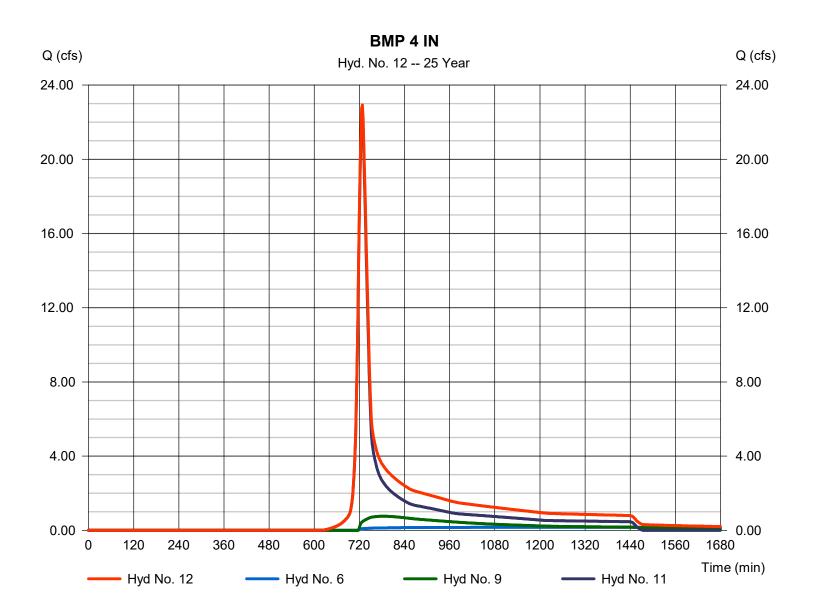


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

BMP 4 DA

Hydrograph type	= SCS Runoff	Peak discharge	= 22.37 cfs
Storm frequency	= 25 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 79,682 cuft
Drainage area	= 9.740 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

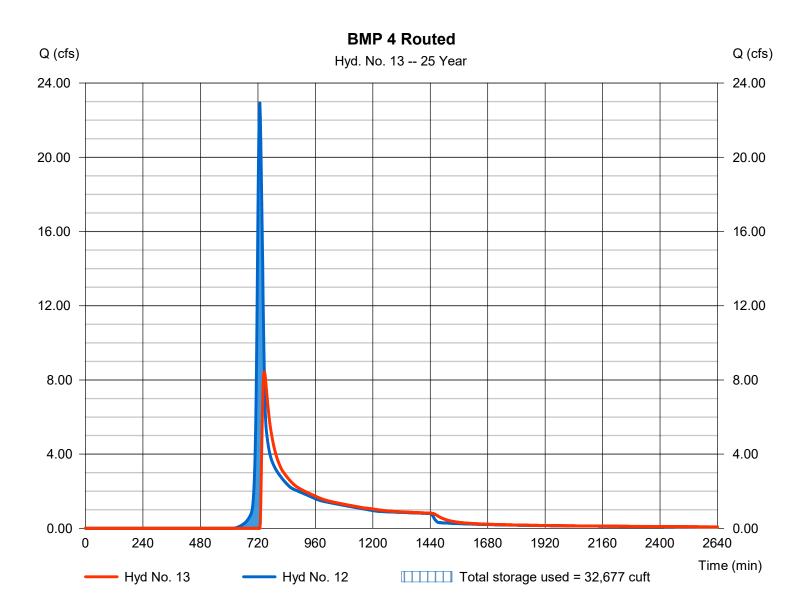


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 12

BMP 4 IN

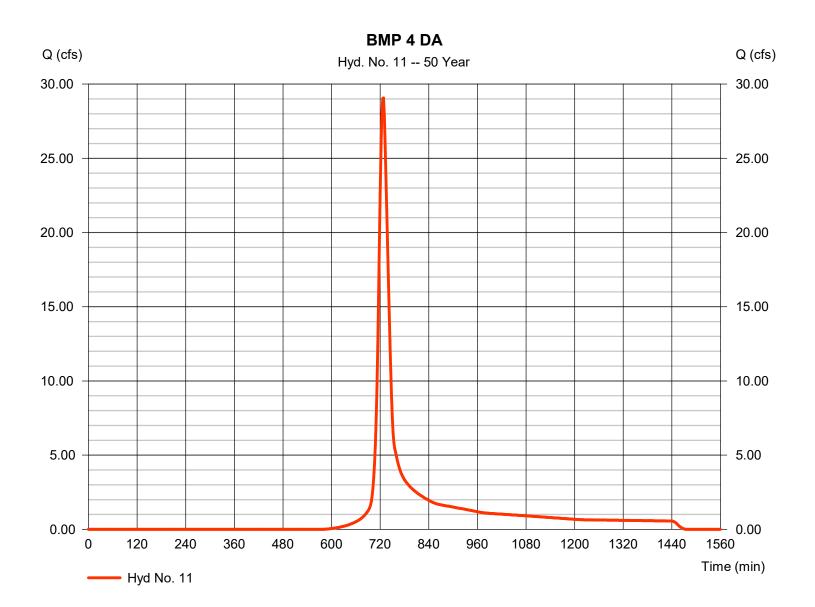

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

BMP 4 Routed

4 cfs
min
06 cuft
39 ft
77 cuft

Storage Indication method used.

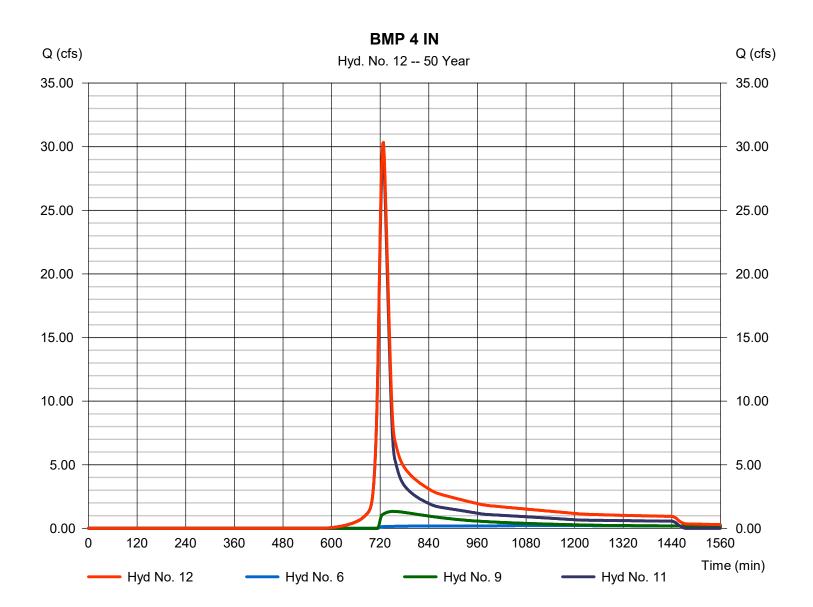


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

BMP 4 DA

Hydrograph type Storm frequency	= SCS Runoff = 50 yrs	Peak discharge Time to peak	= 29.07 cfs = 728 min
Time interval	$= 2 \min$	Hyd. volume	= 102,279 cuft
Drainage area	= 9.740 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

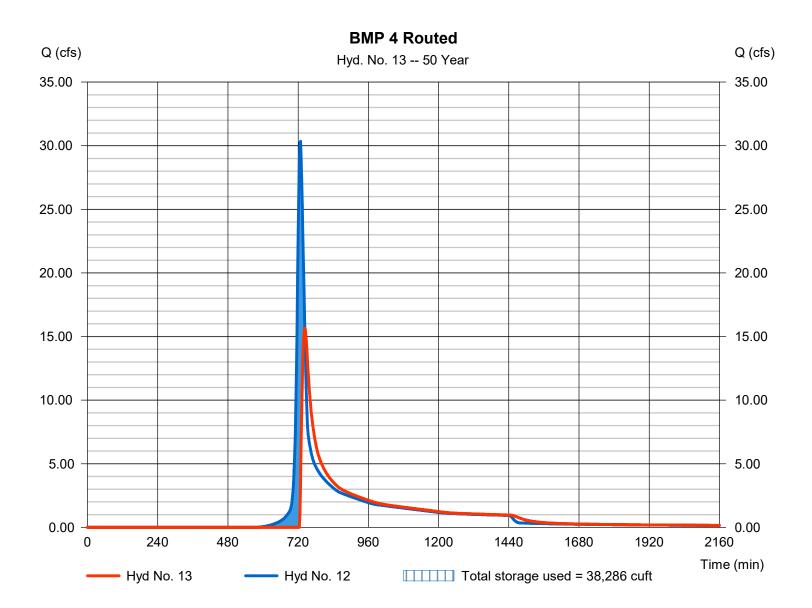

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type	= Combine	Peak discharge	= 30.34 cfs
Storm frequency	= 50 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 153,197 cuft
Inflow hyds.	= 6, 9, 11	Contrib. drain. area	= 9.740 ac
•			

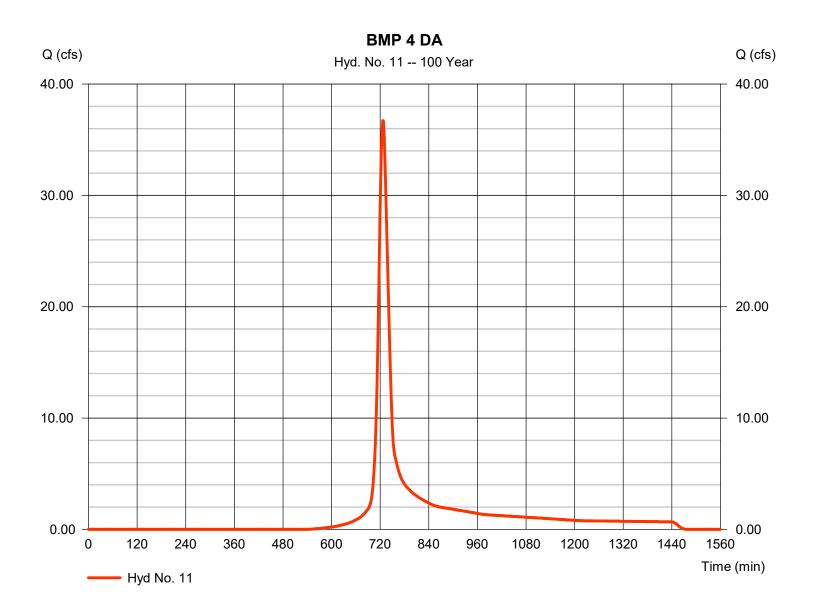

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

BMP 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 15.66 cfs
Storm frequency	= 50 yrs	Time to peak	= 742 min
Time interval	= 2 min	Hyd. volume	= 131,455 cuft
Inflow hyd. No.	= 12 - BMP 4 IN	Max. Elevation	= 311.58 ft
Reservoir name	= BMP 4	Max. Storage	= 38,286 cuft

Storage Indication method used.

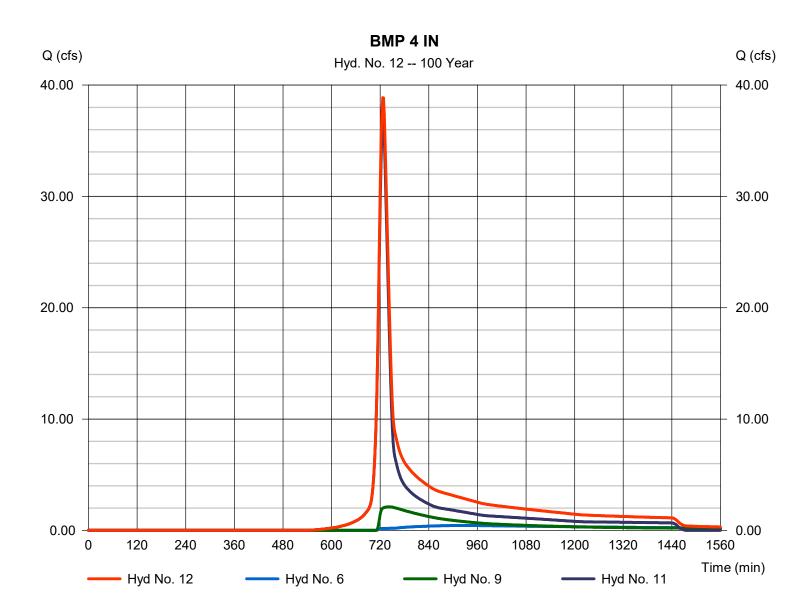


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

BMP 4 DA

Hydrograph type	= SCS Runoff	Peak discharge	= 36.71 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 128,024 cuft
Drainage area	= 9.740 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

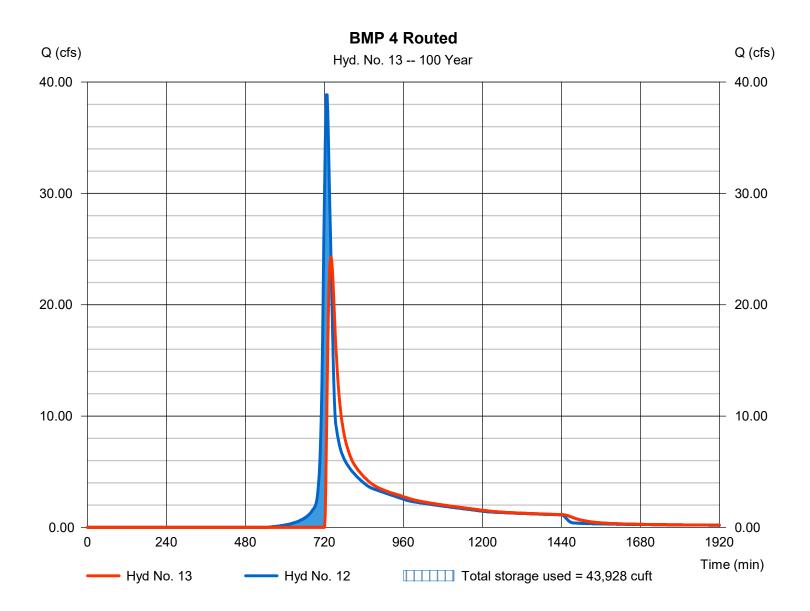

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 01 / 16 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type	= Combine	Peak discharge	= 38.87 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 192,802 cuft
Inflow hyds.	= 6, 9, 11	Contrib. drain. area	= 9.740 ac
innow nyas.	- 0, 0, 11		- 5.7 40 40

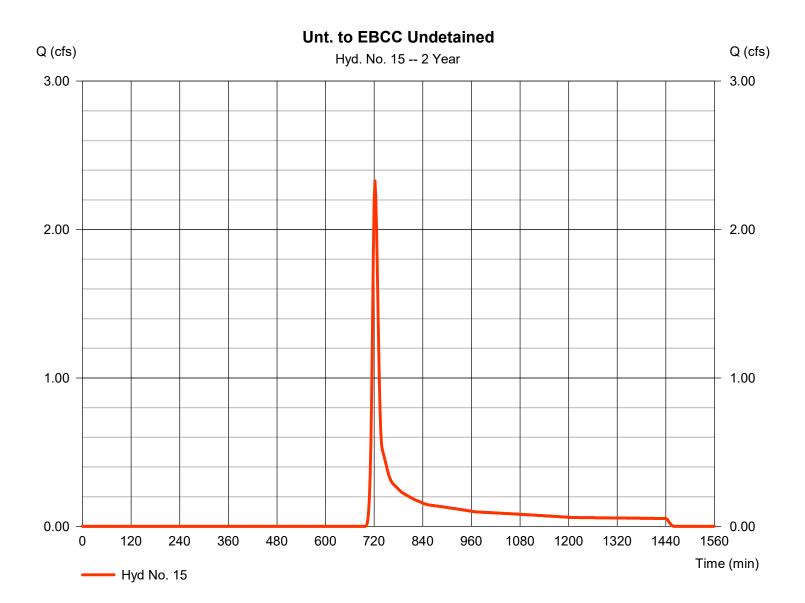

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

BMP 4 Routed

rvoir Peak discharge	e = 24.29 cfs
rs Time to peak	= 740 min
Hyd. volume	= 171,058 cuft
3MP 4 IN Max. Elevation	= 311.78 ft
4 Max. Storage	= 43,928 cuft
	rs Time to peak Hyd. volume BMP 4 IN Max. Elevation

Storage Indication method used.

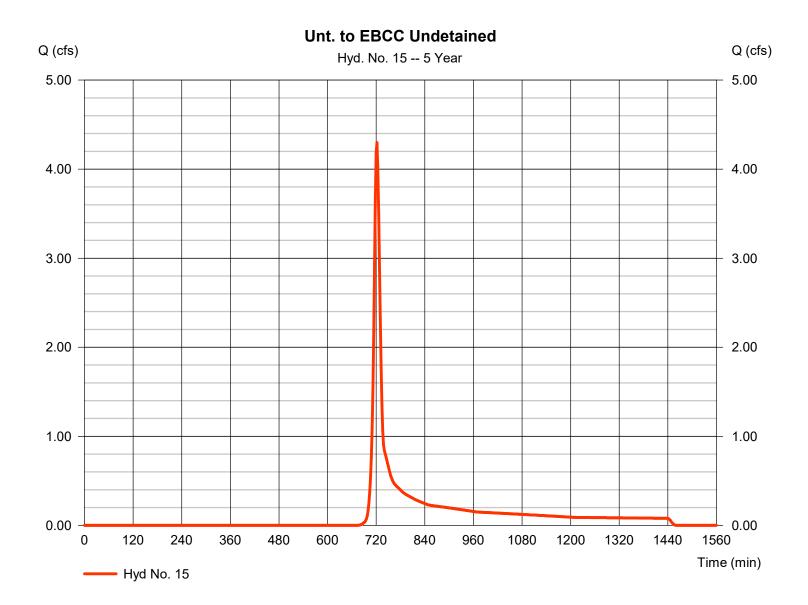


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 2.328 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 6,908 cuft
Drainage area	= 2.740 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

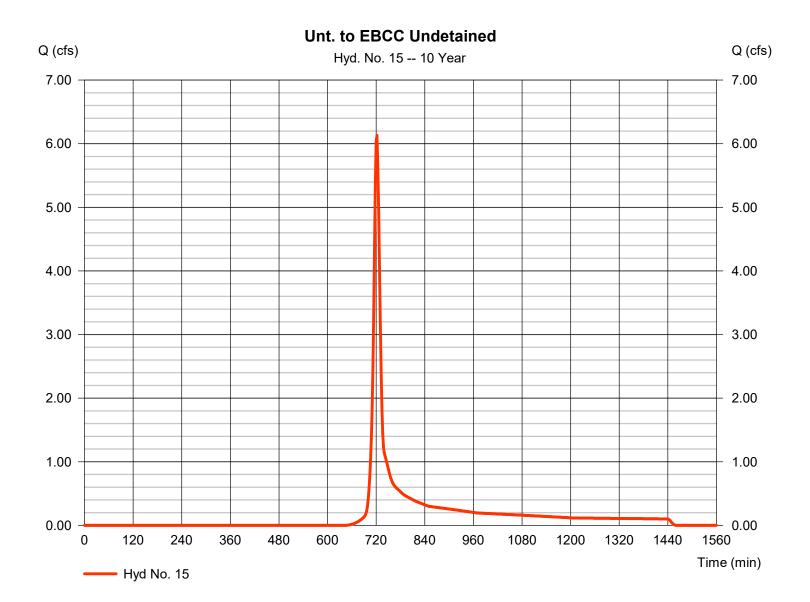


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 4.298 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 11,756 cuft
Drainage area	= 2.740 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

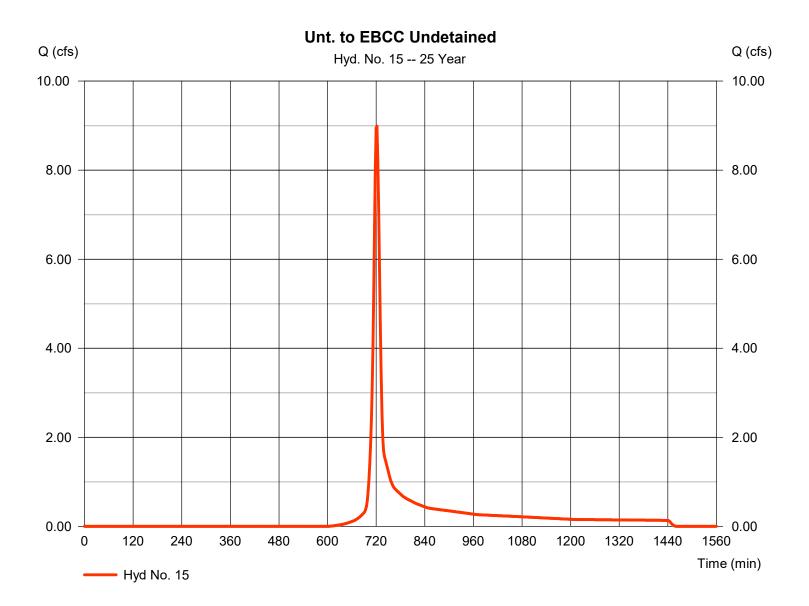


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 6.130 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 16,338 cuft
Drainage area	= 2.740 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

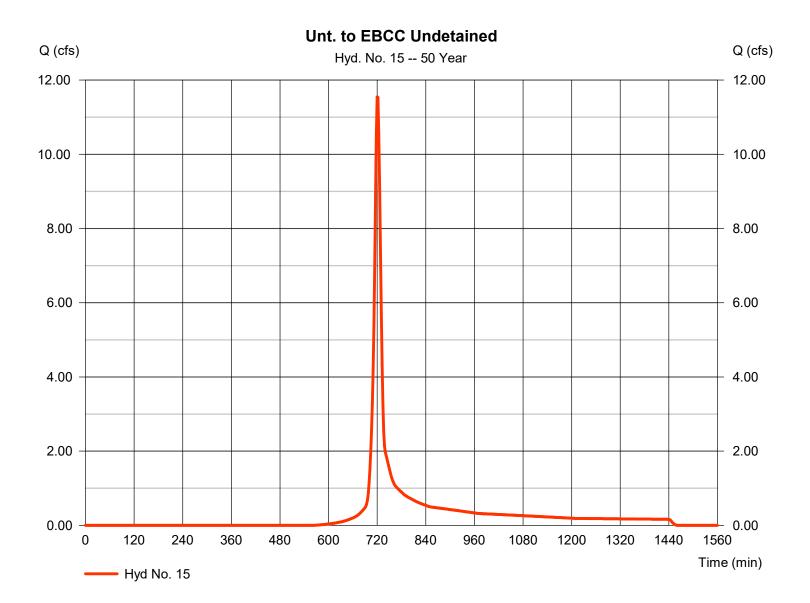


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type	= SCS Runoff	Peak discharge	= 8.988 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 23,595 cuft
Drainage area	= 2.740 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

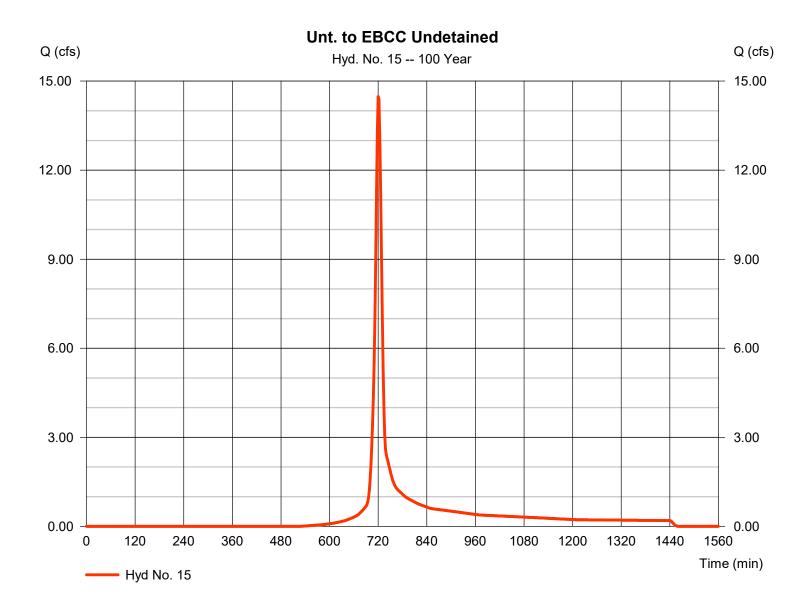


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Unt. to EBCC Undetained

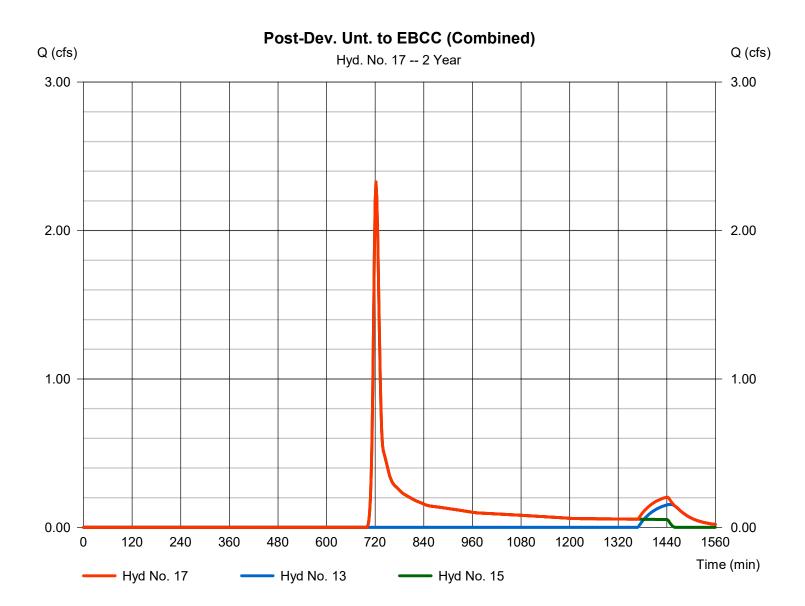
Hydrograph type	= SCS Runoff	Peak discharge	= 11.55 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 30,153 cuft
Drainage area	= 2.740 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 6.66 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

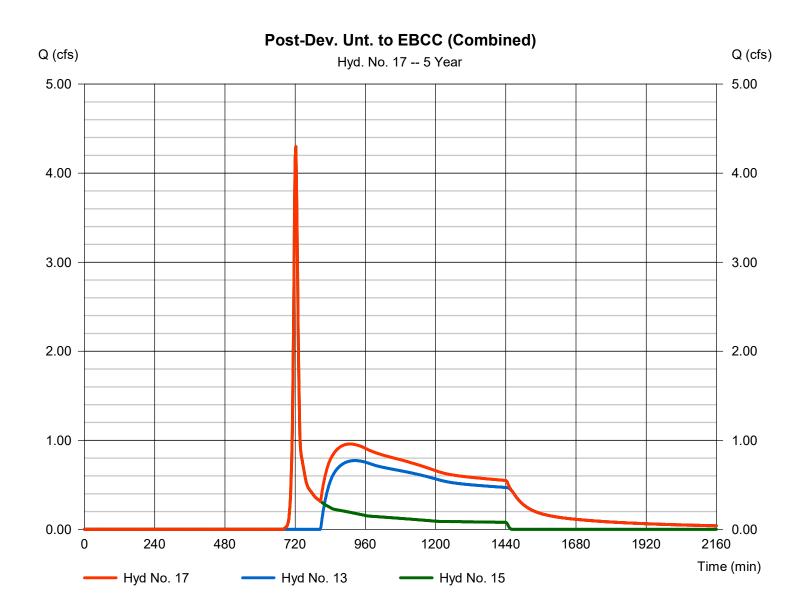
Unt. to EBCC Undetained


Hydrograph type	= SCS Runoff	Peak discharge	= 14.48 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 37,604 cuft
Drainage area	= 2.740 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 12.00 min
Total precip.	= 7.58 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

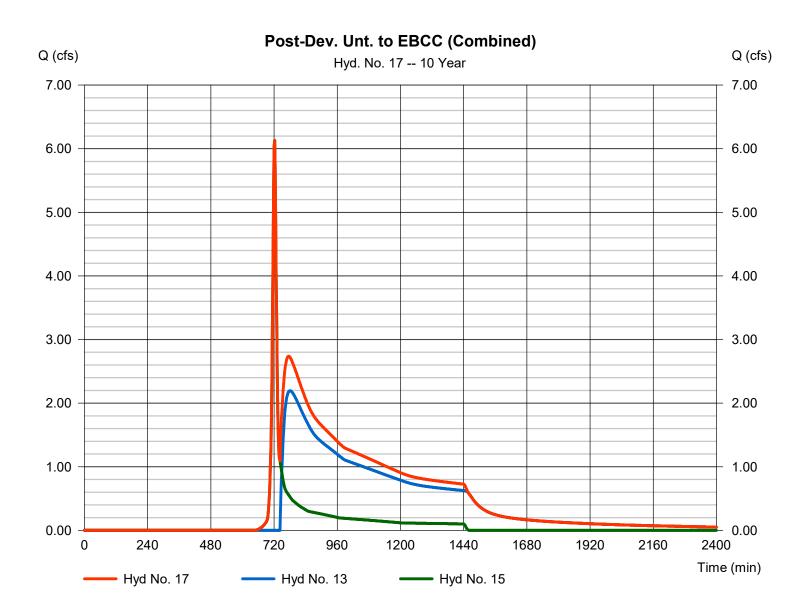
Post-Dev. Unt. to EBCC (Combined)


Monday, 01 / 16 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

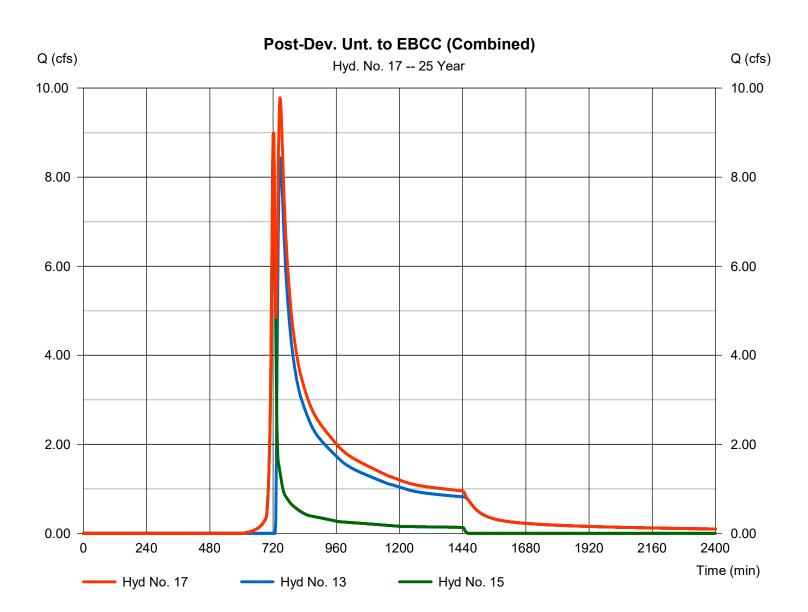
Post-Dev. Unt. to EBCC (Combined)


Storm frequency= 5 yrsTime to peak= 722 minTime interval= 2 minHyd. volume= 41,946 cuftInflow hyds.= 13, 15Contrib. drain. area= 2.740 ac			5	,
---	--	--	---	---

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

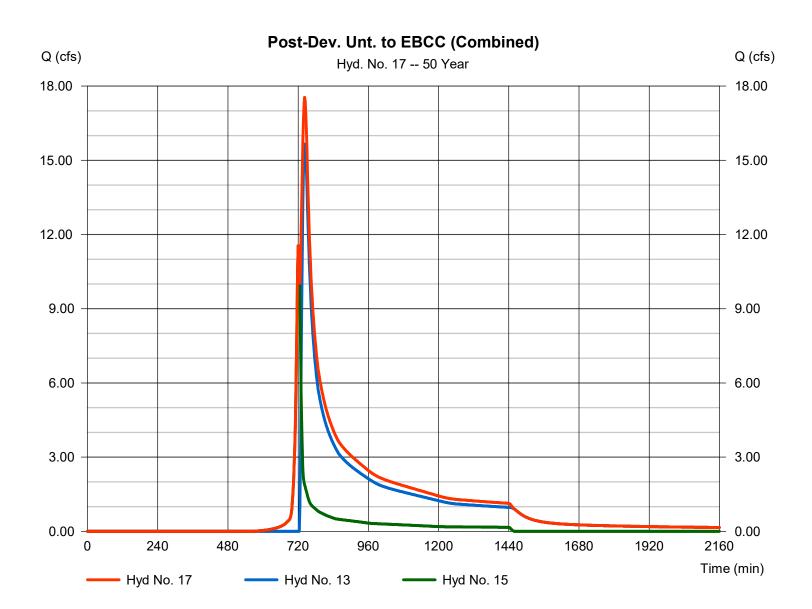
Post-Dev. Unt. to EBCC (Combined)



Monday, 01 / 16 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

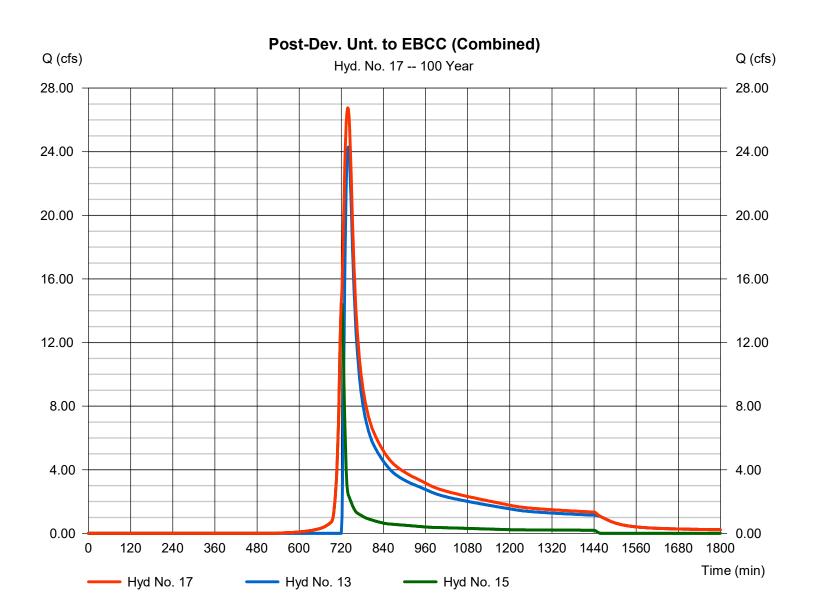
Hyd. No. 17


Post-Dev. Unt. to EBCC (Combined)

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)


Monday, 01 / 16 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

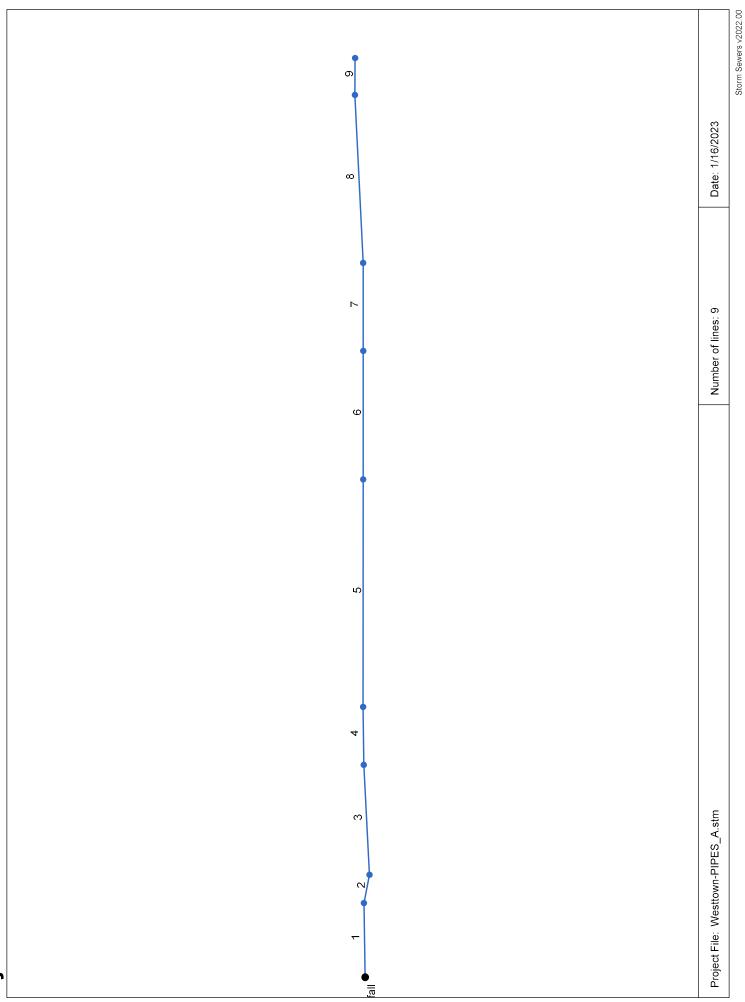
Hydrograph type	= Combine	Peak discharge	= 26.76 cfs
Storm frequency	= 100 yrs	Time to peak	= 738 min
Time interval	= 2 min	Hyd. volume	= 208,663 cuft
Inflow hyds.	= 13, 15	Contrib. drain. area	= 2.740 ac

Monday, 01 / 16 / 2023

APPENDIX F STORM SEWER CALCULATIONS

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

A GROUP


IDSCAPE ARCHITECTS

The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester **PROJECT:**

COMMENTS											
Tc	(min)		5	S	5	5	5	5	5	5	
COMP.	С		0.28	0.40	08.0	96.0	0.72	0.85	0.65	0.45	
AREA	(ac.)		1.79	0.73	0.35	0.06	0.48	0.15	0.11	0.37	
OIL DIL	WOODS	2.0	00.0	0.00	00.0	0.00	0.00	00.0	00.0	0.00	
D SOIL	LAWN	0.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	WOODS	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
B SOIL	LAWN	0.25	1.72	0.58	0.09	0.00	0.18	0.03	0.05	0.27	
	IMP	66.0	0.06	0.15	0.26	0.06	0.31	0.12	0.06	0.10	
INLET	COVER TYPE	C COEFFICIENTS	I-A3	I-A5	I-A6	I-A7	I-A8	I-A9	I-A10	I-A11	

INLET AREA COEFFICIENTS AND SURFACE FLOWS

5
U
T
<u></u>
_
a
Ξ
2
2
U)
Ň
07
-
—
~
<u> </u>

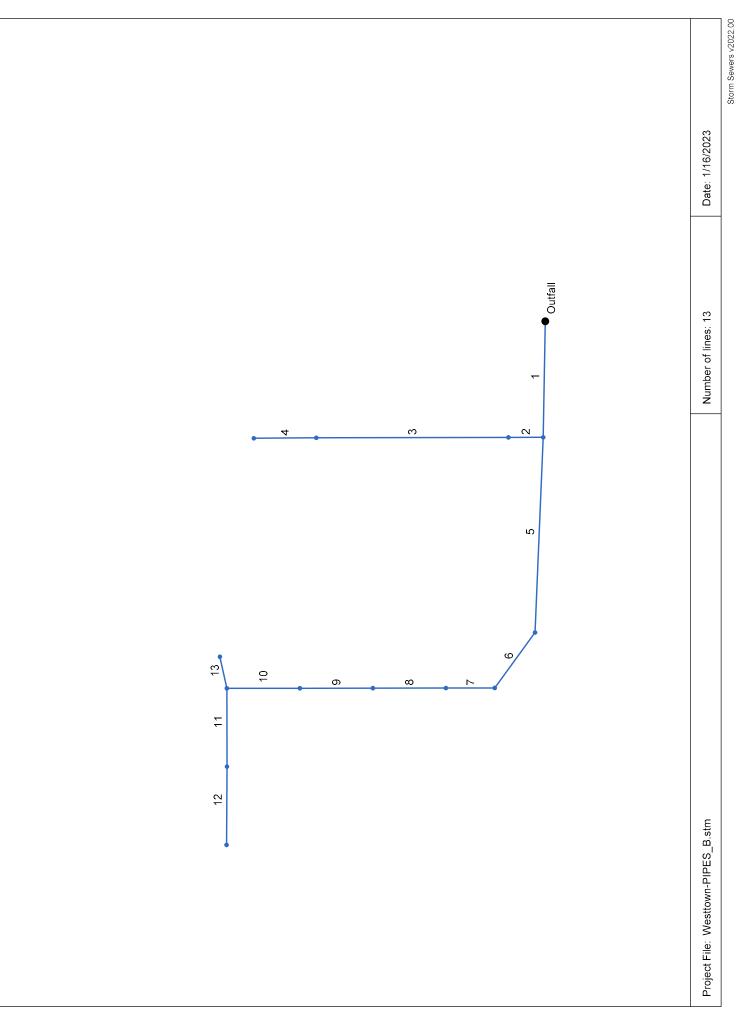
Sto	rm	Storm Sewer Tabulation	ver	Tal	oula	Itio	C															Page 1
Station		Len	Drng Area		Rnoff	Area x C	U	۲ ۲		Rain T	_	Cap Ve	Vel	Pipe		Invert Elev	>	HGL Elev	>	Grnd / Rim Elev	im Elev	Line ID
Line .	To		Incr	Total		Incr	Total	Inlet	Syst		MOIT	=	ഗ	Size S	Slope D	Dn	Up	Dn	Чр	ď	Чр	
		(#)	(ac)	(ac)	(C)			(min)	(min) ((in/hr)	(cfs) (c	(cfs) (f	(ft/s) (ii	(in) (9	(%) (f) (#)	(tt)	(1 1)	(t t)	(t t)	(#)	
-	End E	59.980	1.79	4.04	0.28	0.50	1.84	5.0	7.4	9.9	12.08	10.06	7.09	18	0.92	289.50	290.05	290.82	291.68	0.0	292.80	A3 to A2
7	~	23.270	0.00	2.25	00.0	0.00	1.34	0.0	7.3	6.6	8.82	18.21	5.03	6	3.01 2	290.05	290.75	292.05	292.19	292.80	296.20	A4 to A3
м	N	89.010	0.73	2.25	0.40	0.29	1.34	5.0	7.1	6.7	8.92	9.57	5.79	18	0.83	291.00	291.74	292.31	292.89	296.20	295.34	A5 to A4
4	m	46.880	0.35	1.52	0.80	0.28	1.05	5.0	6.9	6.7	7.01	14.61	6.34	15	5.12 2	291.84	294.24	292.89	295.30	295.34	297.84	A6 to A5
ъ	4	184.000	0.06	1.17	0.96	0.06	0.77	5.0	6.4	6.9	5.27 1	12.29	5.30	15	3.62 2	294.34	301.00	295.30	301.93	297.84	305.00	A7 to A6
9	<u></u>	103.890 0.48	0.48	1.11	0.72	0.35	0.71	5.0	6.0	7.0	4.95	6.40	5.47	15 0	0.98 3	301.10	302.12	301.93	303.02	305.00	306.00	A8 to A7
7	G	71.110	0.15	0.63	0.85	0.13	0.37	5.0	5.8	7.1	2.58	4.65	4.15	12	1.70 3	302.22	303.43	303.02	304.12	306.00	307.13	A9 to A8
ω	~	136.000 0.11	0.11	0.48	0.65	0.07	0.24	5.0	5.1	7.3	1.73	3.44	3.72	12 0	0.93 3	303.53	304.80	304.12	305.36	307.13	308.37	A10 to A9
თ	ω	29.850	0.37	0.37	0.45	0.17	0.17	5.0	5.0	7.3	1.22	3.51	3.43	12	0.97 3	304.90	305.19	305.36	305.65	308.37	308.73	A11 to A10
Projec	ct File:	Project File: Westtown-PIPES_A.stm	'n-PIPE	S_A.stm											1	Number (Number of lines: 9			Run Da	Run Date: 1/16/2023	123
NOTE	S:Inter	NOTES:Intensity = 50.00 / (Inlet time + 9.70) ^ 0.72;	1) / 00.(let time	, (02.6 +		Return period =Yrs. 100	sriod =Yr	s. 100 ;	c = cir	e = ellip b = box	xod = c										

Storm Sewers v2022.00

ELA GROUP

ENGINEERS &

INLET AREA COEFFICIENTS AND SURFACE FLOWS


LANDSCAPE ARCHITECTS

737 S. BROAD STREET IIIC. LITITZ, PA 17543

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester

COMMENTS			0.25 CFS FROM B-3			0.92 CFS FROM B-2									
Tc	(min)		5	5	5	5	5	5	5	5	5	5	S	5	
COMP.	С			0.25	0.25	0.25	0.25	0.65	0.33	0.54	0.57	0.45	0.61	0.38	
AREA	(ac.)		0.00	0.04	0.04	0.08	0.12	0.11	0.11	0.21	0.03	0.05	0.03	1.35	
D SOIL	CULTIVATED	0.67	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	
D	LAWN	0.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	CULTIVATED	0.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.35	
B SOIL	LAWN	0.25	0.00	0.04	0.04	0.08	0.12	0.05	0.09	0.13	0.02	0.04	0.02	0.86	
	IMP	0.99	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.08	0.01	0.01	0.02	0.15	
ТҮРЕ	ТҮРЕ	CIENTS													
INLET	COVER TYPE	C COEFFICIENTS	I-B4	I-B5	I-B6	I-B8	I-B9	I-B10	I-B11	I-B12	I-B12A	I-B13	I-B14	I-B18	

<u>0</u>
at
Ы
ab
Ĕ
θΓ
Š
Se
S
٢N
Ō

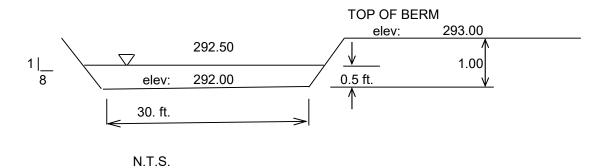
Sti	Drm	ו Se	Ne	Storm Sewer Tabulation	bulá	atio	۲															Page 1
Station	uc I	Len	Drng Area	Area	Rnoff	Area x C	U	ъ		Rain T	Total C	Cap full	Vel	Pipe		Invert Elev	>	HGL Elev	2	Grnd / Rim Elev	m Elev	Line ID
Line	T o I ine	1	Incr	Total		Incr	Total	Inlet	Syst	_		5	່ ທ	Size	Slope D	Du	Up	Dn	dN	D	Up	
		(t	(ac)	(ac)	(c)			(min)	(min) (i	(in/hr) (cfs) (((cfs) (t	(ft/s) (i	(in) (⁹	(%)	(tt)	(ft)	(t t)	(t t)	(ft)	(ft)	
-							и О	- 	۷ ۲			20	C / C		, 22		010 7E	011 OF	241 01		216.00	
_			0.0	0.0Z	0.0	0.00	CC.D	D.C				4. 0. 9	c/.c			00.010	010.010	67.110	C	0.0	00.010	
0	-	44.610	0.00	0.08	00.0	00.0	0.02	5.0	7.0	6.7 0	0.57	11.74	1.72	12	10.87	311.15	316.00	312.13	316.31	316.00	322.25	I-B4 TO MH-B3
ო	2	246.000	0 0.04	0.08	0.25	0.01	0.02	5.0	5.7	7.1	0.58	1.22	3.25	ω	1.02	316.25	318.75	316.57	319.11	322.25	322.25	I-B5 TO I-B4
4	ო	80.000	0.04	0.04	0.25	0.01	0.01	5.0	5.0	7.3 0	0.07	1.22	1.79	ω	1.01	319.19	320.00	319.30	320.12	322.25	322.00	I-B6 TO I-B5
5	-	249.540	00.00	0.74	00.0	0.00	0.33	5.0	10.4	5.8	4.03	4.57	3.48	15	0.50	310.75	312.00	312.13	313.05	316.00	321.00	MH-B7 TO MH-B3
Q	5	87.620	0.08	0.74	0.25	0.02	0.33	5.0	10.1	5.9	4.06	4.88	3.73	15	0.57	312.00	312.50	313.17	313.45	321.00	317.00	I-B8 TO MH-B7
2	9	62.500	0.12	0.66	0.25	0.03	0.31	5.0	9.6	6.0	1.86	2.55	2.37	12	0.51	312.50	312.82	313.77	313.94	317.00	317.00	I-B9 TO I-B8
∞	~	93.500	0.11	0.54	0.65	0.07	0.28	5.0	8.9	6.2	1.72	2.52	2.26	12	0.50	312.82	313.29	313.99	314.18	317.00	317.00	I-B10 TO I-B9
თ	ω	93.500	0.11	0.43	0.33	0.04	0.21	5.0	8.3	6.3	1.31	1.55	2.45	10	0.50	313.29	313.76	314.23	314.53	317.00	317.00	I-B11 TO I-B10
10	თ	93.500	0.21	0.32	0.54	0.11	0.17	5.0	7.6	6.5	1.11	1.55	2.39	10	0.50	313.76	314.23	314.58	314.81	317.00	317.00	I-B12 TO I-B11
1	10	100.000	0.05	0.08	0.45	0.02	0.04	5.0	6.2	6.9	0.28	0.85	1.16	ω	0.50	314.23	314.73	314.99	315.08	317.00	317.00	I-B13 TO I-B12
12	1	100.000	0.03	0.03	0.61	0.02	0.02	5.0	5.0	7.3 0	0.13	0.87	1.30	ω	0.52	314.73	315.25	315.10	315.42	317.00	317.00	I-B14 TO I-B13
13	10	41.260	0.03	0.03	0.57	0.02	0.02	5.0	5.0	7.3 0	0.12	0.86	0.38	ω	0.51	314.23	314.44	314.99	314.99	317.00	318.65	I-B12A TO I-B12
Proj	ect File:	: Westto	wn-PIP	Project File: Westtown-PIPES_B.stm												Number	Number of lines: 13	. m		Run Da:	Run Date: 1/16/2023	23

NOTES:Intensity = 50.00 / (Inlet time + 9.70) ^A 0.72; Return period = Yrs. 100; c = cir e = ellip b = box

APPENDIX G SPILLWAY/ANTI-SEEP COLLAR DESIGN CALCULATIONS

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

BMP 1 EMERGENCY SPILLWAY


PROJECT: The Westtown School - Oak Lane ProjectJOB #1091-001LOCATION: Westtown TownshipDATE:1/12/2023COUNTY: ChesterREVISED:

Flow into basin for 100-year storm frequency:

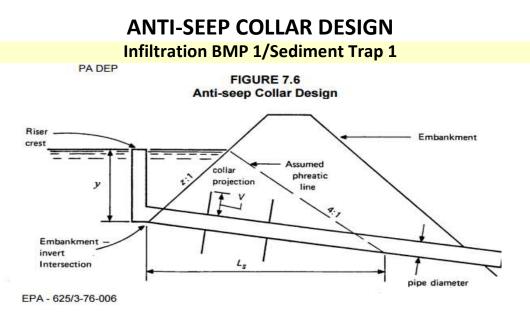
Q = 29.52 cfs (From Post-Development analysis)

Capacity of the Emergency Spillway:

	Q = CL	H^1.5			C = L = H =		
	Q =	84.00 cfs		>	30 cfs o	cfs	OK
Check actual dep	oth and ve	elocity:					
Top of Berm Spillway Elev		ן =			293.00 292.00		
	H = [Q/	C*L]^2/3					
	= 0.5	ft.		at ele	vation	292.50	
Freeboard:			293.00	-	292.50	=	0.5 ft.
	V = Q//	4			Side Slope	e (H:V) =	8
	=	1.7 fps					

F:\Data\1091- Westtown School\1091-001 - Oak Lane Project\Civil\Stormwater\Worksheets\WESTTOWN-STORM.xlsx - SPILLWAY-BASIN_BMP 1

North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0


SPILLWAY ANALYSIS

> > > <u>BMP 1</u>

Name	BMP 1
Discharge	29.52
Peak Flow Period	2
Channel Slope	0.167
Channel Bottom Width	30
Low Flow Liner	
Retardence Class	C 6-12 in
Vegetation Type	Mix (Sod and Bunch)
Vegetation Density	Very Good 80-95%
Soil Type	Sand (SP)

P300 - Class C - Mix (Sod & Bunch) - Very Good 80-95%

	•									
Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P300 Unvegetated	Straight	29.52 cfs	6.35 ft/s	0.15 ft	0.027	2.3 lbs/ft2	1.61 lbs/ft2	1.43	STABLE	E
Underlying Substrate	Straight	29.52 cfs	6.35 ft/s	0.15 ft	0.027	2.01 lbs/ft2	1.59 lbs/ft2	1.27	STABLE	Е
P300 Reinforced Vegetation	Straight	29.52 cfs	5.34 ft/s	0.18 ft	0.036	10 lbs/ft2	1.91 lbs/ft2	5.25	STABLE	Е
Underlying Substrate	Straight	29.52 cfs	5.34 ft/s	0.18 ft	0.036	2.66 lbs/ft2	1.89 lbs/ft2	1.41	STABLE	Е

1. Determine length of pipe in saturated zone (Ls)

Where y = Distance from upstream invert of spillway riser to top of dewatering volume (ft) z = Horizontal component of upstream embankment slope (ft) S = Pipe slope ft/ft

L_s = 44.64 ft

2. Determine the required increase in flow path

 L_F = 1.15* L_s = 51.34 ft

3. The minimum collar projection (V) is equal to 1/2 the increase in flow length (for one collary). If more than one collar is used, it is the increase divided by twice the number of collars

Number of collars: 2 Vmin = 1.67 ft

ft

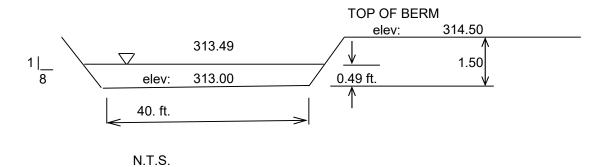
4. The maximum spacing between collars should be 14 x V or Ls ÷ (number of collars minus 1)

Minimum spacing should be 5 X V

V = 1.67Max = 22 ft Min = 8.4 ft

BMP 4 EMERGENCY SPILLWAY

PROJECT: The Westtown School - Oak Lane ProjectJOB #LOCATION: Westtown TownshipDATE:COUNTY: ChesterREVISED:


PB # 1091-001 TE: 1/12/2023 FD:

Flow into basin for 100-year storm frequency:

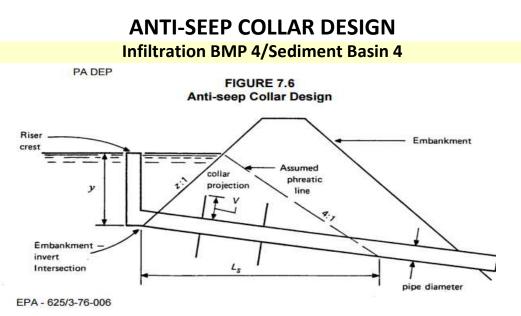
Q = <u>38.87 cfs</u> cfs (From Post-Development analysis)

Capacity of the Emergency Spillway:

Q = CLH^1.5	C = 2.8 L = 40 ft. H = 1.00	
Q = 112.00	cfs > 39 cfs cfs OK	
Check actual depth and velocity:		
Top of Berm Elevation = Spillway Elevation =	314.50 313.00	
H = [Q/C*L]^2/3	5	
= 0.49 ft.	at elevation 313.49	
Freeboard:	314.50 - 313.49 = 1.01 ft.	
V = Q/A	Side Slope (H:V) =	8
= 1.8	ps	

F:\Data\1091- Westtown School\1091-001 - Oak Lane Project\Civil\Stormwater\Worksheets\WESTTOWN-STORM.xlsx - SPILLWAY-BASIN_BMP 4

North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0


SPILLWAY ANALYSIS

> > > <u>BMP 4</u>

Name	BMP 4
Discharge	38.87
Peak Flow Period	2
Channel Slope	0.2
Channel Bottom Width	40
Low Flow Liner	
Retardence Class	C 6-12 in
Vegetation Type	Mix (Sod and Bunch)
Vegetation Density	Very Good 80-95%
Soil Type	Sand (SP)

P300 - Class C - Mix (Sod & Bunch) - Very Good 80-95%

				Normal		Permissible	Calculated	Safety		Staple
Phase	Reach	Discharge	Velocity	Depth	Mannings N	Shear Stress	Shear Stress		Remarks	Pattern
P300 Unvegetated	Straight	38.87 cfs	6.74 ft/s	0.14 ft	0.027	2.3 lbs/ft2	1.79 lbs/ft2	1.28	STABLE	E
Underlying Substrate	Straight	38.87 cfs	6.74 ft/s	0.14 ft	0.027	2.01 lbs/ft2	1.78 lbs/ft2	1.13	STABLE	Е
P300 Reinforced Vegetation	Straight	38.87 cfs	5.76 ft/s	0.17 ft	0.035	10 lbs/ft2	2.1 lbs/ft2	4.77	STABLE	Е
Underlying Substrate	Straight	38.87 cfs	5.76 ft/s	0.17 ft	0.035	2.46 lbs/ft2	2.08 lbs/ft2	1.18	STABLE	E

1. Determine length of pipe in saturated zone (Ls)

$$L_{s} = y(z+4) \begin{bmatrix} 1 + \frac{S}{(0.25-S)} \end{bmatrix}$$

$$z = 3$$

$$s = 0.0069$$

2 75

Where y = Distance from upstream invert of spillway riser to top of dewatering volume (ft) z = Horizontal component of upstream embankment slope (ft) S = Pipe slope ft/ft

L_s = 27.00 ft

2. Determine the required increase in flow path

 $L_F = 1.15*L_s = 31.04$ ft

3. The minimum collar projection (V) is equal to 1/2 the increase in flow length (for one collary). If more than one collar is used, it is the increase divided by twice the number of collars

Number of collars: 1 Vmin = 2.00 ft

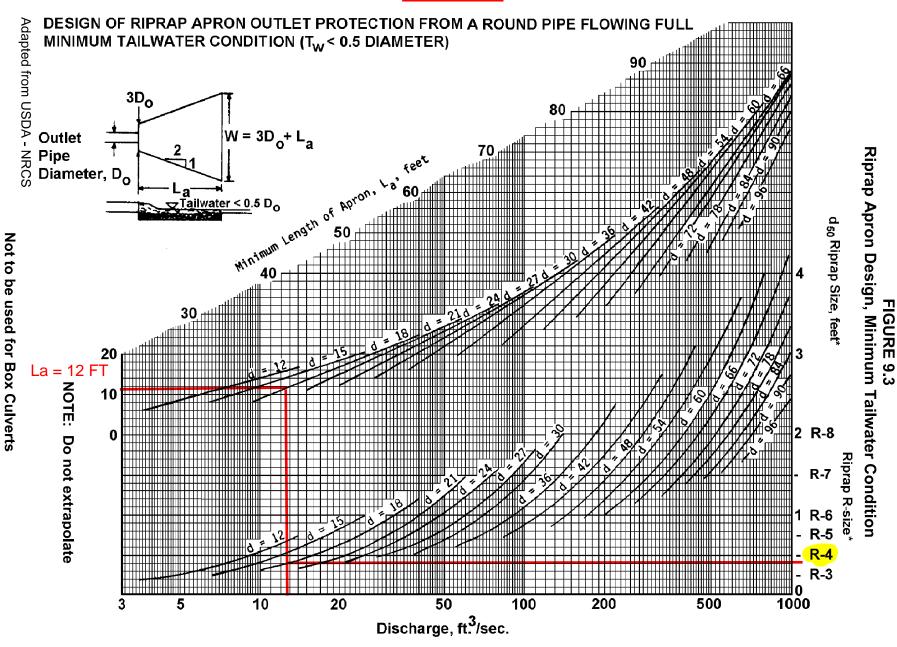
4. The maximum spacing between collars should be 14 x V or Ls ÷ (number of collars minus 1)

Minimum spacing should be 5 X V

APPENDX H RIP-RAP DESIGN CALCULATIONS

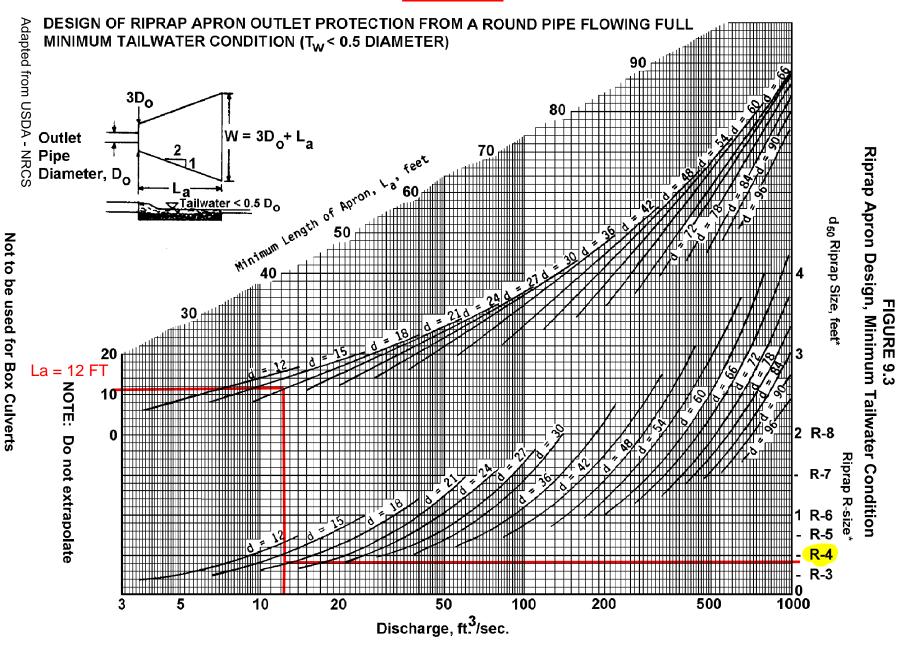
Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

STANDARD E&S WORKSHEET #20 Riprap Apron Outlet Protection

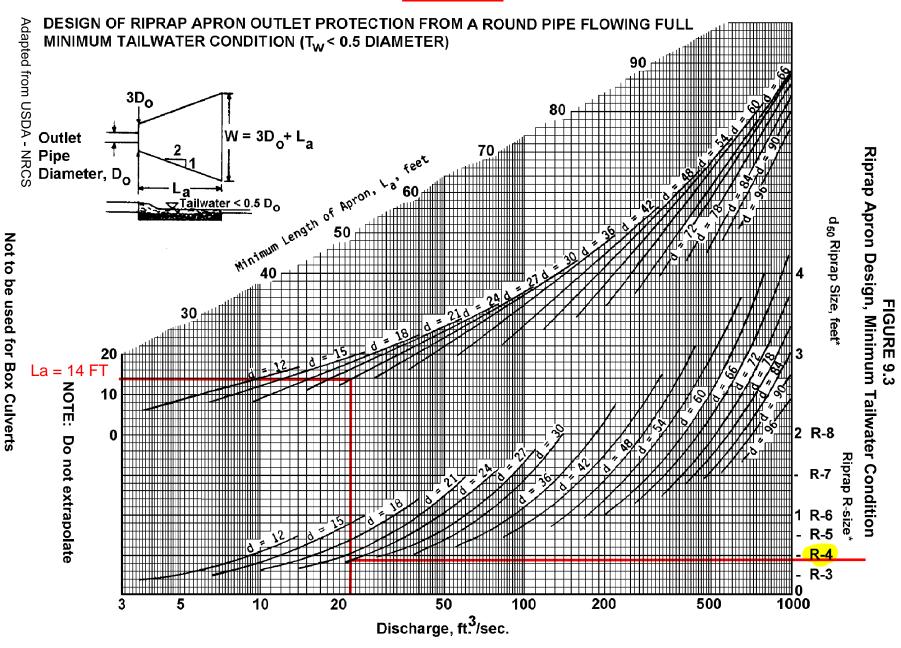

PROJECT: LOCATION: COUNTY: 0	Westtov	vn Townsh		ik Lane F	Project			P	JOB # DATE: EVISED:	1/16/	-001 2023
CHECK											
		A	Pd Pd Pd 1/2					ante			
					PLAN	VIEW					
			5		SECTIO	IN GRADE>	GEOTE				
NO.	PIPE DIA. Do (in.)	TAIL WATER COND. (Max or Min.)	MAN. "n" FOR PIPE	PIPE SLOPE (%)	Q (CFS)	V* (FPS)	RIPRAP SIZE	Rt (in)	Al (ft)	Aiw (ft)	Atw (ft)
EW-A1	18	Min.	0.012	0.50	12.7	7.18	R-4	18	12	4.50	16.50
EW-A2	18	Min.	0.012	0.92	12.1	6.84	R-4	18	12	4.50	16.50
EW-B1	24 15	Min.	0.012	0.67	24.3	7.74	R-4	18	14	6.00	20.00 12.75
	15	Min.	0.012	0.51	4.50	4.65	R-3	9	9	3.75	1275
EW-B2	10										12.70

*The anticipated velocity (V) should not exceed the maximum permissible shown in Table 6.6 for the proposed riprap protection. Adjust for less than full pipe flow. SEE TABLE 9, March 2000 E&S PROGAM MANUAL. Use Manning's equation to calculate velocity for pipe slopes > 0.05 ft/ft.velocity for pipe slopes > 0.05 ft/ft.

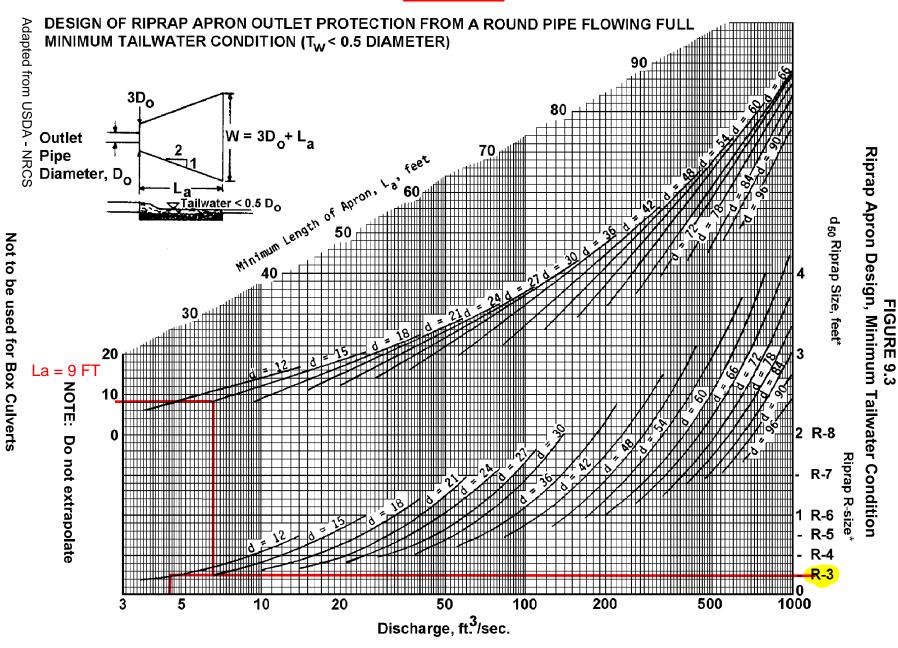
** Based on sediment basin flow through principle spillway


*** See attached Hydraflow Storm Sewers

EW-A1


* For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

EW-A2


* For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

EW-B1

* For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

EW-B2

* For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

Anticipated Velocity Calculation for Less Than Full Pipe Flow

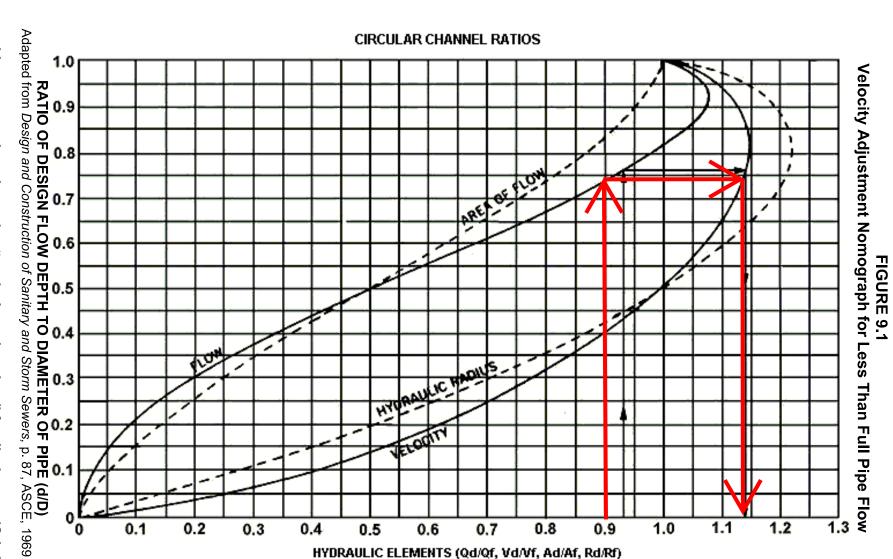
Outfall EW-B2

Full Flow Discharge:
$$Q_f = \frac{0.464}{n} D^{8/3} S^{1/2} = 5.01 \text{ cfs}$$

Continuity Equation to determine full-flow velocity:

$$V_f = \frac{Q_f}{A} = 4.08 \text{ ft/sec}$$

Where:


A = <u>1.23</u> = Cross Sectional Area (ft^2)

Ratio of Partial to Full-Flow Discharge:

$$d/D = \frac{Q_d}{Q_f} = 0.899$$
Where: $d/D = 0.90$ = Ratio of Part-Full to Full-Flow Discharge
 $Qd = \frac{4.50}{5.01}$ = Design Discharge (cfs)
 $D = 1.25$ = Diameter (ft)
 $S = 0.01$ = Slope of pipe (ft/ft)
 $n = 0.012$ = Mannings Coefficient
Velocity Ratio from Figure 9.1: 1.14

363-2134-008 / March 31, 2012 / Page 231

EW-B2

APPENDIX I INFILTRATION REPORTS

Corporate Office 743 South Broad Street Lititz, PA 17543 (717) 626-7271 Central PA Office 2013 Sandy Drive, Suite 103 State College, PA 16803 (814) 861-6328 Western PA Office 408 North Main Street, Suite 200 Butler, PA 16001 (717) 201-5334

October 8, 2018

Westtown School 975 Westtown Road West Chester, PA 19382

c/o

Mr. Charles R. Haley, Jr., P.E. ELA Group, Inc. 743 South Broad Street Lititz, PA 17543

RE: Stormwater Infiltration Feasibility Report Westtown School Oak Lane – Infiltration Westtown Township, Chester County, Pennsylvania Advantage Project Number: 1800331001

Dear Mr. Haley:

In accordance with your request, Advantage Engineers (Advantage) has completed an engineering analysis of the above referenced project site in order to evaluate the suitability of the subsurface soils for the infiltration of stormwater. This correspondence serves to transmit the results of our evaluation.

SITE AND PROJECT DESCRIPTION

The project site currently consists of outdoor athletic fields located east of Westtown Road in Westtown Township, Chester County, Pennsylvania. The site is bordered to the east by agricultural land and grass areas, to the south by Westtown School District buildings, to the west by Westtown Road and to the north by Westtown School District and wooded areas. The approximate location of the site in relation to the surrounding area is depicted on the *Topographic Map* (Figure 1) presented within the Appendix.

According to information provided by the Client, the improvements will include 2 synthetic turf multipurpose fields, 2 grass multipurpose fields, a softball field and a baseball field. Development of the site will also include new field lights, an outbuilding and new stormwater management facilities.

SCOPE OF WORK

The objective of our work was to determine the permeability of the invert soils, identify any limiting zones (i.e. bedrock, groundwater, or seasonal high water table) within the proposed stormwater management facilities, and address PADEP requirements as they relate to stormwater management. This objective was accomplished through completion of a scope of work which included the completion of a subsurface field exploration, laboratory testing program and preparation of this report. This report presents a summary of the scope of work completed, conditions encountered, and results of our engineering analysis of subsurface conditions.

SUBSURFACE FIELD EXPLORATION

In order to characterize subsurface conditions across the project site, 13 test pits were excavated on September 26 through 28, 2018. Supervision and monitoring of the field exploration was provided by a representative of Advantage. Test locations were marked out by ELA Group, Inc., based on the "Sketch Plan", dated July 24, 2017, prepared by Site Engineering Concepts, LLC. The approximate test locations, referenced as TP-1 through TP-13, are shown on the *Exploration Plan* (Figure 3) presented within the Appendix. Data pertaining to the subsurface exploration was documented in the field and is presented in detail on the *Test Pit Logs*, which contain detailed descriptions of the subsurface materials encountered and infiltration test depths. A general description of the soil conditions encountered is provided in the "Subsurface Conditions" section of this report.

Mr. Charles R. Haley, Jr., P.E. October 8, 2018 Advantage Project No.: 1800331001 Page 2 of 5

LABORATORY ANALYSIS

Soil samples retrieved from the site were visually reviewed and classified by Advantage Engineers. Representative soil samples were subjected to laboratory analyses to verify visual classifications in accordance with the following schedule:

- Natural Moisture Content (ASTM D2216)
- Sieve Analysis (ASTM D422)
- Atterberg Limits Determination (ASTM D4318)

Unified Soil Classification System (USCS) Group Symbols and ASTM Group Names has been assigned to the soils analyzed. Graphical depictions of the laboratory testing completed are presented in the table below and within the Appendix.

			STAN	IDARD C	LASSIFI	CATI	ON RI	ESUL	тѕ		
Location	Depth (ft)	Soil Type	% Gravel	% Sand	% Fines	LL	PL	PI	Natural Moisture Content	USCS Group Symbol	ASTM Group Name
TP-2	3		7.2	54.4	38.4	36	33	3	21.9%	SM	Silty SAND
TP-5	4 – 6	Stratum I	45.6	42.5	11.9	36	35	1	10.7%	GP-GM	Poorly Graded GRAVEL with Silt and Sand

LL-Liquid Limit; PL-Plastic Limit; PI-Plasticity Index

SUBSURFACE CONDITIONS

Geology

According to the Pennsylvania Geologic Survey's, <u>Geologic Map of the State of Pennsylvania</u>, 1980, the project site is underlain by politic schist of the Glenarm Wissahickon Formation (Geologic Symbol Xgw). This formation includes lenticular amphibolites bodies having ocean-floor basalt chemistry. The project site within its geologic setting is presented on the Geologic Map (Figure 2) found within the Appendix.

The Pennsylvania Geologic Survey publication, <u>The Engineering Characteristics of the Rocks of Pennsylvania</u>, Second Edition, 1982, describes the bedding in this formation as well developed, thin to fissile, and steeply dipping. Joints in this formation have an irregular pattern, are poorly formed, widely spaced, steeply dipping, and open. The schist of this formation is moderately resistant to weathering, and often weathers to a moderate depth. The resulting soil mantle is thin.

Soil

Surficial Materials

Each test pit was covered by approximately 6 to 28 inches of topsoil or tilled soil; however, the thickness of surficial materials may differ in unexplored areas of the project site.

Stratum I - Brown to gray Silty SAND and GRAVEL with Silt and Sand

Stratum I was encountered within each test pit completed except for TP-12 and TP-13 and extended to depths ranging from approximately 4.5 to 10 feet below existing site grades. Laboratory testing conducted on representative samples of Stratum I show this soil to be well graded and non-plastic with natural moisture contents of 21.9% and 10.7%. Stratum I is described under the USCS as Silty SAND (SM) and Poorly Graded GRAVEL with Silt and Sand (GP-GM).

Mr. Charles R. Haley, Jr., P.E. October 8, 2018 Advantage Project No.: 1800331001 Page 3 of 5

Stratum II – Brown Silty SAND with Gravel (highly weathered rock)

Stratum II was encountered within test pits TP-10 and TP-11 and extended to depths of approximately 7.5 and 9.5 feet, respectively, below existing site grades. Upon review, the soils of Stratum II were found to be well graded, non-plastic and predominately comprised of Silty SAND with Gravel. The soils of Stratum II are anticipated to represent the highly weathered bedrock surface.

Stratum III – Orange brown to blue gray Sandy CLAY

Stratum III was encountered within test pits TP-12 and TP-13 and extended to depths of approximately 6 feet below existing site grades. Upon review, the soils of Stratum III were found to be moderately graded, plastic and comprised of Sandy CLAY.

Bedrock

The bedrock surface was encountered within test pits TP-10 and TP-11 at depths of approximately 7.5 and 9.5 feet below existing site grades, respectively. The bedrock surface was defined as the depth at which the bucket of the given excavation equipment could no longer excavate. Other equipment may yield different bedrock data.

Groundwater/Soil Mottling

Groundwater was encountered within test pits TP-7, TP-8, TP-12 and TP-13 at depths ranging from approximately 1.5 to 6 feet below existing site grades. Additionally, soil mottling (indication of seasonal high water table and/or poorly draining soils) was encountered within test pits TP-12 and IT-13, starting at a depth of approximately 2.5 feet below existing site grades and extending to 6 feet below existing site grades. It should be noted that standing water was observed at several areas including the agricultural field located in the eastern portion of the site and the portion of the site located north of Oak Lane. These observations were made at the time of the field operation and the groundwater table elevation will vary with daily, seasonal, and climatological variations.

INFILTRATION ANALYSIS

To evaluate the feasibility of infiltration of stormwater within the proposed stormwater management facilities, infiltration tests were completed utilizing the "double-ring" infiltrometer method in accordance with the <u>Pennsylvania</u> <u>Stormwater Best Management Practices Manual</u>, latest Edition. Based on the topsoil thickness encountered within test pit TP-4, the infiltration test was completed below the proposed test elevation. Based on the limiting zone encountered (groundwater and/or soil mottling) within test pits TP-8, TP-12 and TP-13, no infiltration tests were able to be completed. Based on the limiting zones encountered (groundwater/bedrock) within TP- 7, TP-10 and TP-11, the infiltration tests were completed above the proposed test elevations. The test pit locations, approximate surface elevation, proposed test elevation, actual test elevation(s), presence of limiting zones, and the infiltration rate(s) achieved at each location are presented in the table below.

Mr. Charles R. Haley, Jr., P.E. October 8, 2018 Advantage Project No.: 1800331001 Page 4 of 5

			ATION TEST RESUL	TS	
Test Location	Surface Elevation (ft)	Proposed Test Elevations (ft)	Actual Test Elevations (FT)	Limiting Zone Elevation (ft)	Infiltration Rate* (in/hr)
TP-1	319.5	316	316	Not Encountered @	1.8
16-1	519.5	314	314	312	6.0
TP-2	317	316	316	Not Encountered @	0.0
16-2	517	314	314	312	1.4
TP-3	321	317.5	317.5	Not Encountered @	6.0
18-3	321	315.5	315.5	313.5	12.0
TP-4	210 5	319	318.5	Not Encountered @	1.2
112-4	319.5	317	317	315	1.0
	201	319.5	319.5	Not Encountered @	3.4
TP-5	321	317	317	315	4.8
TP-6	244	309	309	Not Encountered @	1.0
IP-0	311	307	307	305	0.0
TP-7	242	309	311	Crowndwater @ 207	0.0
IP-7	313	307	309	Groundwater @ 307	2.8
TP-8	311	309	No Test	Groundwater @ 309.5	No Test
11-0	511	307	No Test	Gioundwaler @ 309.5	No Test
TP-9	303	292.5	295	Not Encountered @	3.9
17-9	303	291	295	293	4.0
TP-10	305	299	301	Bedrock @ 297.5	2.8
11-10	305	297	299.5	Deulock @ 297.5	4.8
TP-11	309	303	303	Bedrock @ 299.5	6.0
16-11	309	301	301.5	DECITOCK @ 299.0	5.4
TP-12	298	296	No Test	Soil Mottling @ 295.5-292	No Test
11-12	230	294	No Test	Groundwater @ 294.5	No Test
TP-13	286	284	No Test	Groundwater @ 284.5	No Test
11-13	200	282	No Test	Soil Mottling @ 283.5-280	No Test

*Infiltration rates represent the rates recorded in the field and no safety factor has been applied

-Shaded cells represent infiltration tests completed above or below proposed invert due to a limiting zone or topsoil thickness -Bold cells indicate infiltration testing completed at shallower depths due to safety concerns

SUMMARY OF DATA & CONCLUSIONS

Based on the results of our field exploration and engineering analysis of the data obtained, we offer the following comments with regard to the infiltration of stormwater at the project site.

- The infiltration tests were conducted within the well graded, non-plastic, naturally-occurring soils of Stratum I and Stratum II.
- Groundwater was encountered within test pits TP-7, TP-8, TP-12 and TP-13 at depths ranging from approximately 1.5 to 6 feet below existing site grades.
- Soil mottling was encountered within test pits TP-12 and IT-13, starting at depths of approximately 2.5 feet below existing site grades and extending to 6 feet below existing site grades.

Mr. Charles R. Haley, Jr., P.E. October 8, 2018 Advantage Project No.: 1800331001 Page 5 of 5

- The bedrock surface was encountered within test pits TP-10 and TP-11 at depths of approximately 7.5 and 9.5 feet below existing site grades, respectively
- Infiltration rates were found to range from no movement (0.0 inches per hour) to 12.0 inches per hour. These rates are unfactored. The PADEP recommended rate for infiltration of stormwater is 0.1 to 10 inches per hour.

LIMITATIONS

The conclusions contained in this report are based upon the subsurface data collected and on details stated in this report. Should conditions arise which differ from those specifically stated herein, our office should be notified immediately, so that our recommendations can be reviewed and revised, if necessary.

The conclusions presented herein should be applied only to the infiltration tests as depicted on the *Exploration Plan* for the proposed stormwater management facilities to be constructed for Westtown School in Westtown Township, Chester County, Pennsylvania. Advantage takes no responsibility in utilizing this information for any other purposes.

The scope of work was limited to the exploration of the subsurface subsoils. Oil, hazardous waste, radioactivity, irritants, pollutants, radon or other dangerous substances and conditions were not the subject of this study. Their presence and/or absence are not implied, inferred or suggested by this report or results of this study.

We trust that this is the information you require. Should you have any questions or if we may be of further assistance, please don't hesitate to contact our office.

Respectfully, advantage engineers

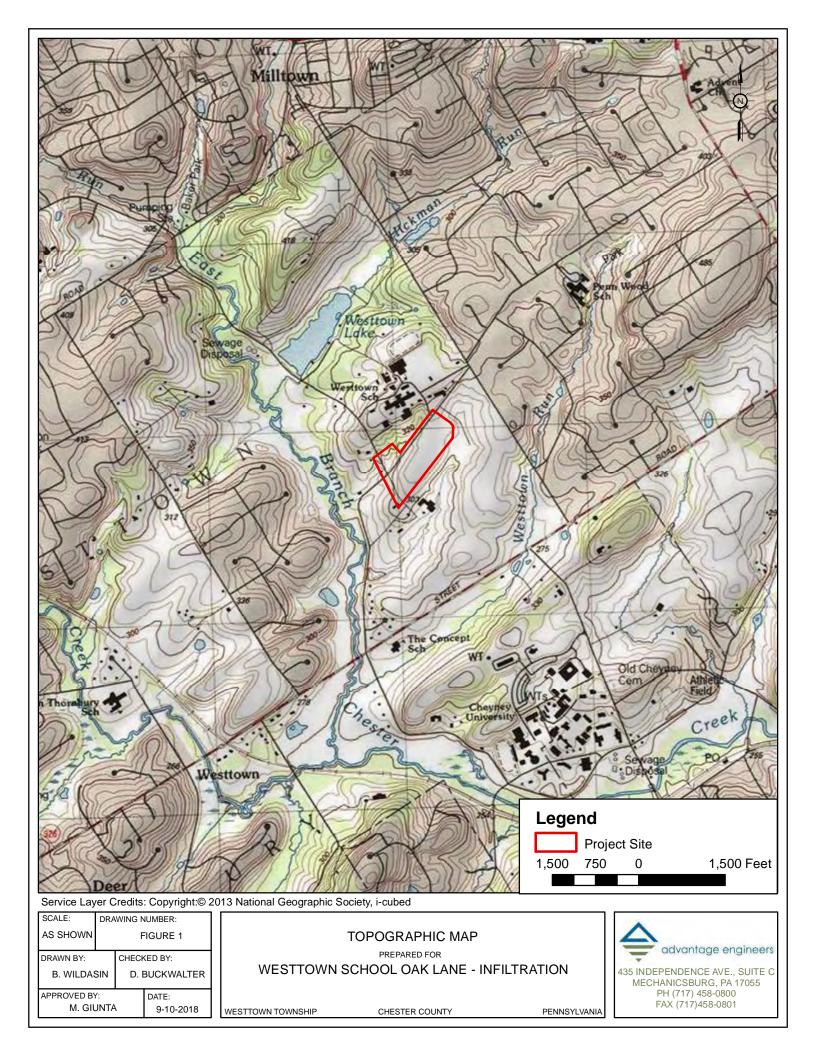
ean Wildow Saily.

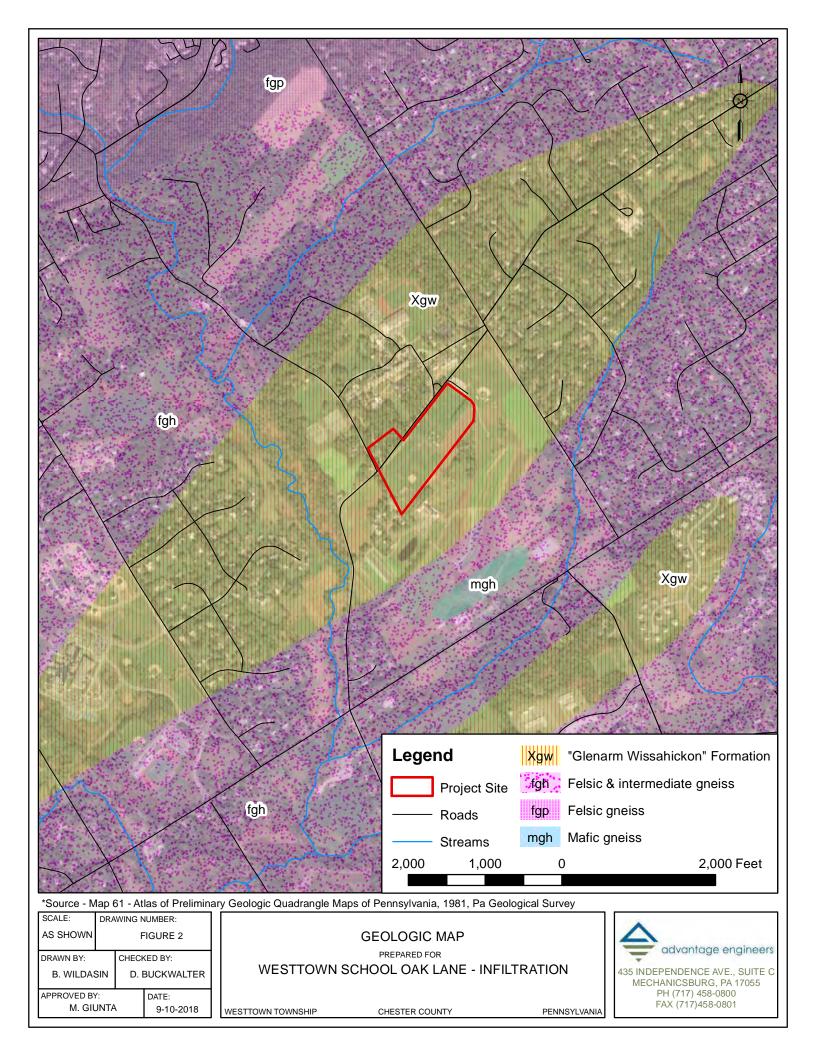
Bailey J. Wildasin Geotechnical Specialist I

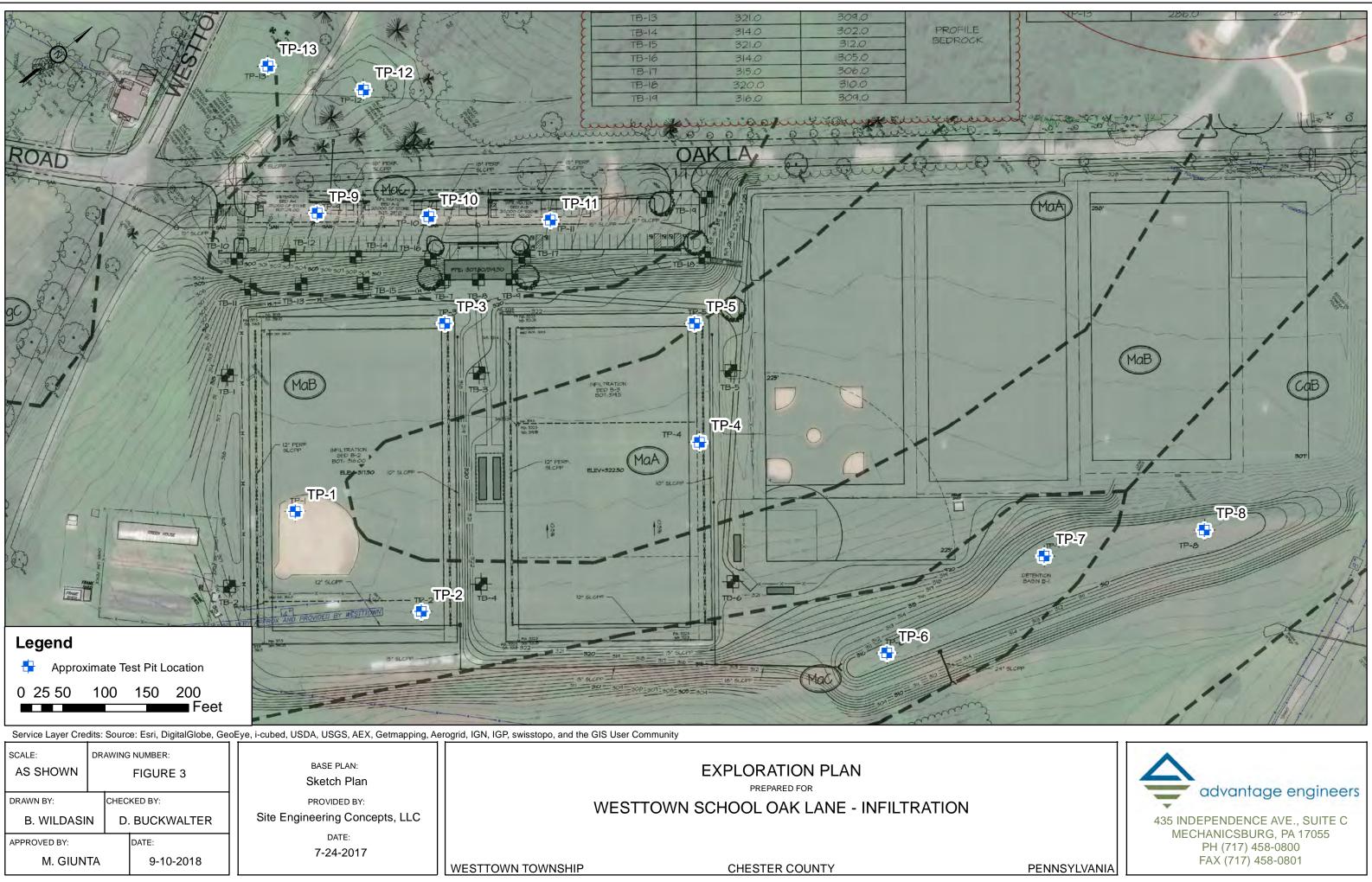
Mactic

David J. Buckwalter Senior Project Manager

APPENDIX

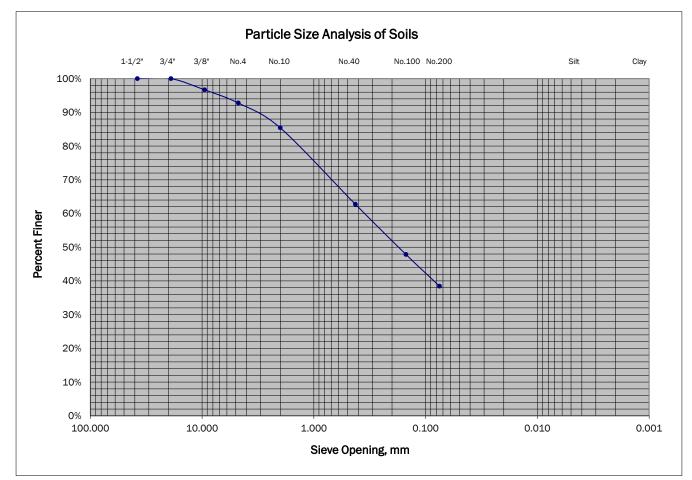

FIGURE 1 – TOPOGRAPHIC MAP


FIGURE 2 – GEOLOGIC MAP


FIGURE 3 – EXPLORATION PLAN

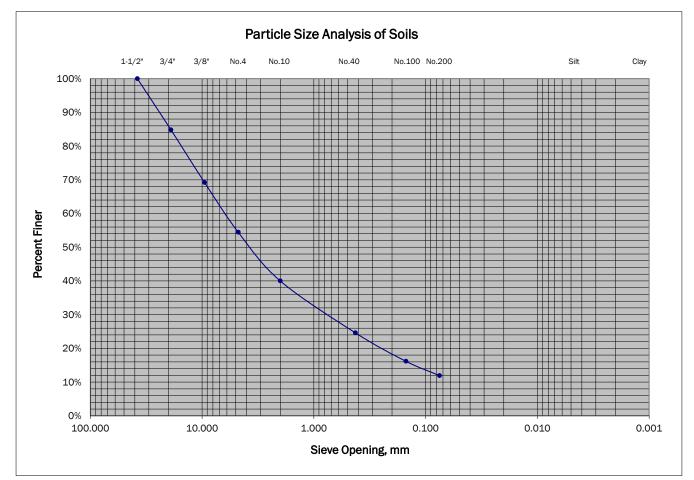
LABORATORY TEST RESULTS

TEST PIT LOGS



Soil Classification Report

Per ASTM Designations D 2487 and D 2488



As-Received Moist	Jre 21.9%						Particle S	ize Distribution		
USCS Classificatio	n: Silty SAND (SM	l)				US Standard	US Standard Sieve Size Opening (m		%Fii	ner
Gravel: 7.2%	Coarse: 0.0%	, D		Fine:	7.2%	Coarse	1-1/2"	38.0	100	.0%
Sand: 54.4%	Coarse: 7.4%	Medium:	22.7%	Fine:	24.3%	GRAVEL	3/4"	19.0	100	.0%
Fines: 38.4%	Silt:		Clay:			Fine	3/8"	9.50	96.	7%
Gravel Description	Subangular to	Subrounded					No. 4	4.75	92.	8%
						Coarse	No. 10	2.00	85.4	4%
Sand Description:	Subangular					Medium	No. 40	0.425	62.	7%
						SAND	No. 100	0.150	47.9	9%
Consistency: N/A		Dry Strengt	h:	Low		Fine	No. 200	0.075	38.4	4%
Dilatancy: Rapid		Toughness:		Low		Hydrometer	Silt Size	0.005		
Structure: Homoge	neous	Cementatio	on:	N/A		Analysis	Clay Size	0.001		
						D ₆₀ :	D ₃₀ :	D ₁₀ :	Cu:	Cc:
Test Pit: TP-2						Atterberg Limits	LL: 36	PL: 33	PI:	3
Sample: S1	Depth	: 3'				Description:	Brown Silty SAN	ND		
Project: Westtow	n School Oak Lane	e - Infiltration								
						Remarks:	Stratum I			
Client: ELA Grou	ıp, Inc.					1				
Advantage Project	Number:	18003310	01			Report Date:	October 4, 201	.8		

Soil Classification Report

Per ASTM Designations D 2487 and D 2488

As-Received Moist	ure 10.7%						Particle S	ize Distribution		
USCS Classification	n: Poorly Graded G	RAVEL with Sil	t and Sar	nd (GP-GI	M)	US Standard	US Standard Sieve Size Opening (r		%	Finer
Gravel: 45.6%	Coarse: 15.2%	,)		Fine:	30.4%	Coarse	1-1/2"	38.0	10	0.0%
Sand: 42.5%	Coarse: 14.4%	Medium:	15.4%	Fine:	12.7%	GRAVEL	3/4"	19.0	84	4.8%
Fines: 11.9%	Silt:		Clay:			Fine	3/8"	9.50	69	9.2%
Gravel Description	: Subangular						No. 4	4.75	54	4.4%
						Coarse	No. 10	2.00	40	0.0%
Sand Description:	Subangular					Medium	No. 40	0.425	24	4.6%
						SAND	No. 100	0.150	16	6.2%
Consistency: N/A		Dry Streng	th:	Low		Fine	No. 200	0.075	1:	1.9%
Dilatancy: Rapid		Toughness	•	Low		Hydrometer	Silt Size	0.005		
Structure: Homoge	eneous	Cementatio	on:	N/A		Analysis	Clay Size	0.001		
						D ₆₀ : 6.3	D ₃₀ : 0.75	D ₁₀ : 0.57	Cu: 11	Cc: 0.16
Test Pit: TP-5						Atterberg Limits	LL: 36	PL: 35	PI	: 1
Sample: S1	Depth	: 4' - 6'				Description:	Brown GRAVEL	with Silt and Sa	nd	
Project: Westtow	n School Oak Lane	e - Infiltration								
						Remarks:	Stratum I			
Client: ELA Gro	up, Inc.									
Advantage Project	Number:	18003310	01			Report Date:	October 4, 201	.8		

		TEST PI	T LOG		SHEE	T 1 OF 1		
PROJECT NAME: Westtown S	chool Oak Lane - Infiltra	<u>ition</u>		TEST PIT NO).: TP-1			
PROJECT NO.: <u>1800331001</u> CL	IENT: ELA Group, Inc.			TOP OF GRO	DUND: <u>±319.5'</u>			
LOCATION: See Exploration Plan (Figure 3)			GROUNDWATER DATA: Dry				
FIELD SURVEYED		TOPO ESTIMAT	E		Encountered Time: 0	Completion		
DEPTH (feet)		SC	DIL DESCRIPTION	N		REMARKS		
	0.0' - 0.5' Tan 0	Clayey SAND			E	Baseball Infield		
	0.5' - 7.5' Brow	n Silty SAND						
5								
	Brow	n Silty SAND v						
	_					Stratum I		
		-End of		Stratum				
10	_							
-								
	Infiltration T	Tests Conduct	ed at 3.5 Feet (3	316') and 5.5 Fe	eet (314')			
	_							
15	_							
	Turk Daniha		IG INFILTROME		5.5'			
	Test Depth:	Time (min)	Drop (inches')	Time (min)	D.5 Drop (inches)			
20	Pre-soak 1	30	1.7	30	5.0			
20	Pre-soak 2	30	1.2	30	5.0			
	Reading 1	30	1.0	10	1.0			
	Reading 2	30	0.8	10	1.0			
	Reading 3	30	0.8	10	1.0			
25	Reading 4	30	1.0	10	1.0			
	Reading 5			10	1.0			
	Reading 6			10	1.0			
	Reading 7							
	Reading 8							
30	Average Rate (inch	nes per hour)	1.8		6.0			
435 Independence Avenue	antage engi		ADVA DATE	ANTAGE REPRE	OD: <u>Mini-excavator</u> SENTATIVE: <u>B. Wilc</u> <u>September 27, 201</u> BY: <u>B. Wildasin</u>			

	TEST PIT LOG SHEET							
PROJECT NAME: Westtown Sc	hool Oak Lane -	Infiltration			TEST PIT NO.: TP-2			
PROJECT NO.: <u>1800331001</u> CLIE	NT: ELA Group	<u>, Inc.</u>			TOP OF GROUND: <u>±317'</u>			
LOCATION: See Exploration Plan (F	igure 3)				GROUNDWATER DATA: Dry			
FIELD SURVEYED		X TOPO ES	TIMATE		DEPTH: <u>Not Encount</u>		Completion	
DEPTH (feet)		SOIL DESCRIPTION						
	0.0' - 0.8'	0.0' - 0.8' Brown organic soil						
	0.8' - 5.0'	0.8' - 5.0' Brown Sandy SILT						
		Brown Silty S	AND					
5							Stratum I	
5			-End of T	est Pit at 5 Fee	et-		Stratum	
10	Infil	tration Tests (Conducted	l at 1 Foot (316	') and 3 Feet (314')			
15								
15		DOU	BLE RING		TER DATA	T		
		Test De		1'	3'	ł		
			Time (min)	Drop (inches)	Drop (inches)			
		Pre-soak 1	30	no movemen	t 1			
20		Pre-soak 2	30	no movemen	t 0.7			
		Reading 1	30	no movemen		+		
		Reading 2	30	no movemen				
		Reading 3		no movemen				
05		Reading 4 Reading 5	30	no movemen	t 0.6			
25		Reading 5						
		Reading 7						
		Reading 8						
30		Average Rat per ho		0.0 (no movemen	t) 1.4			
	ntage e Suite C. Mecha			ADVANT DATE EX	TION METHOD: <u>Min</u> GGE REPRESENTA (CAVATED: <u>Septer</u> (COMPILED BY: <u>B. \</u>	TIVE: <u>B. Wi</u> mber 27, 20	<u>Idasin</u>	

		TES	ST PIT L	.OG		SHE	ET 1 OF 1	
PROJECT NAME: Westtown Sch	ool Oak Lane	- Infiltration			TEST PIT NO.: TP-3			
PROJECT NO.: <u>1800331001</u> CLIEI	NT: <u>ELA Grou</u>	<u>p, Inc.</u>			TOP OF GROUND: ±	321'		
LOCATION: See Exploration Plan (Fig	gure 3)				GROUNDWATER DATA: Dry			
FIELD SURVEYED		X TOPO ES	STIMATE		DEPTH: Not Encounte		Completion	
DEPTH (feet)	SOIL DESCRIPTION						REMARKS	
	0.0' - 0.8'	Brown organ	ic soil				Topsoil	
	0.8' - 7.5'	Brown Silty S	SAND					
5								
		Brown Silty S	SAND with	Gravel				
							Stratum I	
	<u> </u>		End of Te	st Pit at 7.5 F	eet-		Stratum	
10								
	Infiltrat	tion Tests Con	ducted at :	3 5 Feet (317)	5') and 5.5 Feet (315.	5')		
						•)		
15								
		DOU	BLE RING	INFILTROME	TER DATA			
		Test De	epth:	3.5'	5.5'			
			Time (min)	Drop (inches)	Drop (inches)			
		Pre-soak 1	30	3.7	5.0			
20		Pre-soak 2	30	3.6	5.0			
		Reading 1	10	1.2	3.2			
		Reading 2		0.9	1.9			
		Reading 3		0.9	2.0			
		Reading 4		1.1	2.1			
25		Reading 5		1.0	1.9			
		Reading 6		1.0	2.0			
		Reading 7						
		Reading 8	-					
30		Average Rat per ho		6.0	12.0			
	ntaae e	enainee	rs		ATION METHOD: <u>Mini-</u> TAGE REPRESENTATI		Idasin	

DATE EXCAVATED: September 27, 2018 DRAWN/COMPILED BY: B. Wildasin

		TES	T PIT L	OG		SHE	EET 1 OF 1
PROJECT NAME: Westtown Schoo	l Oak Lane -	Infiltration			TEST PIT NO.: TP-4		
PROJECT NO.: <u>1800331001</u> CLIENT	: ELA Group	o, Inc.			TOP OF GROUND: <u>±31</u>	9.5'	
LOCATION: See Exploration Plan (Figure					GROUNDWATER DATA: Dry		
FIELD SURVEYED	<u>10 07</u>	X TOPO ES			DEPTH: Not Encountered Time: Completion		
		A TOPO ES			DEF III. Not Encountered		
DEPTH (feet)	SOIL DESCRIPTION						REMARKS
	0.0' - 0.8'	Brown organi	c soil				Topsoil
(0.8' - 4.5'	Brown Sandy	SILT				
5	-End of Test Pit at 4.5 Feet-						Stratum I
		-		51 PIL al 4.5 F	eet-		
10							
	Infiltr	ation Tests Co	inducted at	1 Foot (318 !	5') and 2.5 Feet (317')		
				. 11 001 (010.			
15							
		DOU	BLE RING	INFILTROME	TER DATA		
		Test De	pth:	1'	2.5'		
			Time (min)	Drop (inches)	Drop (inches)		
		Pre-soak 1	30	0.6	0.7		
20		Pre-soak 2	30	0.6	0.6		
		Reading 1	30	0.6	0.6		
		Reading 2	30	0.6	0.5		
		Reading 3	30	0.6	0.5		
		Reading 4	30	0.6	0.5		
25		Reading 5					
		Reading 6					
		Reading 7					
		Reading 8					
		Average Rate		1.2	1.0		
30		per no					
	tage e	enginee	rs	ADVAN	ATION METHOD: <u>Mini-ex</u> TAGE REPRESENTATIVE XCAVATED: <u>Septembe</u>	E: <u>B. Wi</u>	ildasin

DRAWN/COMPILED BY: B. Wildasin

		TEST PI	T LOG		SHE	ET 1 OF 1			
PROJECT NAME: Westtown Sc	<u>chool Oak Lane - Infiltra</u>	<u>tion</u>		TEST PIT NO.: TP-5					
PROJECT NO.: <u>1800331001</u> CLII	ENT: <u>ELA Group, Inc.</u>			TOP OF GRO	DUND: <u>±321'</u>				
LOCATION: See Exploration Plan (F	Figure 3)			GROUNDWA	TER DATA: Dry				
FIELD SURVEYED	ХТ	TOPO ESTIMATE	E	DEPTH: <u>Not</u>	Encountered Time:	<u>Completion</u>			
DEPTH (feet)		SO	DIL DESCRIPTION	1		REMARKS			
	0.0' - 0.8' Dark	brown Sandy (CLAY with organ	nic debris		Topsoil			
		n Silty SAND							
	Browr	Brown GRAVEL with Silt and Sand							
5	-								
		-End of Test Pit at 6 Feet-							
	-	-End of Test Pit at 6 reet-							
	-								
10	Infiltration T	Infiltration Tests Conducted at 1.5 Feet (319.5') and 4 Feet (317')							
	_								
	_								
	_								
15	-								
	1		G INFILTROME	TER DATA					
	Test Depth:		.5'		4'				
		Time (min)	Drop (inches)	Time (min)	Drop (inches)				
20	Pre-soak 1	30	2.4	30	3.4				
	Pre-soak 2	30	1.8	30	3.5				
	Reading 1	30	1.8	10	1.0				
	Reading 2	30	1.7	10	0.8				
	Reading 3	30	1.7	10	0.8				
25	Reading 4	30	1.7	10	0.8				
	Reading 5		<u> </u>	10	0.8				
	Reading 6 Reading 7								
	Reading 7								
30	Average Rate (inch	ies per hour)	3.4		4.8				
	antage engi	ineers	ADVA DATE	NTAGE REPRE	DD: <u>Mini-excavator</u> SENTATIVE: <u>B. Wi</u> <u>September 26, 20</u> BY: <u>B. Wildasin</u>	<u>Idasin</u>			

	TEST PIT LOG						ET 1 OF 1	
PROJECT NAME: Westtown Sch	nool Oak Lane -	- Infiltration			TEST PIT NO.: TP-6			
PROJECT NO.: <u>1800331001</u> CLIE	NT: <u>ELA Group</u>	<u>, Inc.</u>			TOP OF GROUND: <u>±311'</u>			
LOCATION: See Exploration Plan (Fi	gure 3)				GROUNDWATER DATA: Dry			
FIELD SURVEYED		X TOPO ES	STIMATE		DEPTH: Not Encounte	red Time:	Completion	
DEPTH (feet)	SOIL DESCRIPTION					REMARKS		
	0.0' - 1.5' Dark brown organic soil						Tilled Soil	
	1.5' - 6.0'	Brown Sandy	SILT					
5							Stratum I	
			-End of Te	est Pit at 6 Fe	et-		Stratum	
10	Infi	Itration Tests	Conducted	at 2 Feet (30	9') and 4 Feet (307')			
15				INFILTROME				
		Test De	1	2'	4'			
			Time (min)	Drop (inches)				
		Pre-soak 1	30	0.6	no movement			
20		Pre-soak 2	30	0.4	no movement			
		Reading 1	30	0.5	no movement			
		Reading 2	30	0.5	no movement			
		Reading 3		0.5	no movement			
		Reading 4		0.5	no movement			
25		Reading 5						
		Reading 6						
		Reading 7						
		Reading 8						
30		Average Rat per ho		1.0	0.0 (no movement)			
		anicsburg, PA		ADVAN DATE E	ATION METHOD: <u>Mini-</u> TAGE REPRESENTAT XCAVATED: <u>Septem</u> I/COMPILED BY: <u>B. W</u>	IVE: <u>B. Wi</u> ber 26, 20 ⁻		

		TES		OG		SHE	ET 1 OF 1	
PROJECT NAME: Westtown	School Oak Lane	- Infiltration		Т	TEST PIT NO.: TP-7			
ROJECT NO.: <u>1800331001</u> C	LIENT: <u>ELA Grou</u> r	<u>p, Inc.</u>		Т	TOP OF GROUND: <u>±313'</u>			
OCATION: See Exploration Plan	<u>ı (Figure 3)</u>			C	GROUNDWATER DAT	A: <u>Wet</u>		
FIELD SURVEYED		X TOPO ES	TIMATE	c	DEPTH: <u>6'</u>	Time:	<u>Completion</u>	
				I				
DEPTH (feet)			SOIL D	DESCRIPTION			REMARKS	
	0.0' - 1.3'	Brown organi	c soil				Tilled Soil	
	1.3' - 8.0'	1.3' - 8.0' Brown Sandy SILT Brown Silty SAND						
5	_						H ₂ O @ 6'	
							Stratum I	
			End of Te	est Pit at 8 Fee	t-			
10								
	Infi	iltration Tests C	Conducted	at 2 Feet (311') and 4 Feet (309')			
15								
	_	Test De	-	2'	4'			
			Time (min) 30	Drop (inches)	Drop (inches)			
20	_	Pre-soak 1	30	no movement				
20		Pre-soak 2 Reading 1	30	no movement				
	—	Reading 2		no movement				
	\neg	Reading 3		no movement				
	\neg	Reading 4	30	no movement				
25	\neg	Reading 5						
		Reading 6			1			
	7	Reading 7						
		Reading 8						
30		Average Rate per ho		0.0 (no movement	2.8			
435 Independence Avenu	vantage e	nanicsburg, PA		ADVANT/ DATE EX	TION METHOD: <u>Mini-e</u> AGE REPRESENTATIV CAVATED: <u>Septemt</u> COMPILED BY: <u>B. Wi</u>	VE: <u>B. Wil</u> Der 26, 20 ⁷	<u>Idasin</u>	

	TEST PIT LO	G	SHEET 1 OF 1		
PROJECT NAME: Westtown Sc	hool Oak Lane - Infiltration	TEST PIT NO.: TP-8			
PROJECT NO.: <u>1800331001</u> CLIE	ENT: ELA Group, Inc.	TOP OF GROUND: <u>±311'</u>			
LOCATION: See Exploration Plan (F	Figure 3)	GROUNDWATER DATA:	Wet		
FIELD SURVEYED	X TOPO ESTIMATE	DEPTH: <u>1.5'</u>	Time: Completion		
DEPTH (feet)	SOIL DES	CRIPTION	REMARKS		
	0.0' - 1.5' Brown organic soil		Tilled Soil		
	1.5' - 6.0' Brown Silty SAND		H ₂ O @ 1.5'		
5			Stratum I		
	-End of Test	Pit at 6 Feet-	Stratum I		
10					
	No infiltration tests conducted due	to groundwater at 1.5 Feet (309.5')			
15					
20					
25					
30					
 435 Independence Avenue, 	Intage engineers Suite C, Mechanicsburg, PA 17055 800 Fax: (717) 458-0801	EXCAVATION METHOD: <u>Mini-exca</u> ADVANTAGE REPRESENTATIVE: DATE EXCAVATED: <u>September 2</u> DRAWN/COMPILED BY: <u>B. Wildas</u>	<u>B. Wildasin</u> 26, 2018		
www.advan	tageengineers.com				

		TES	T PIT L	OG		SH	EET 1 OF 1	
PROJECT NAME: Westtown Sch	nool Oak Lane	- Infiltration			TEST PIT NO.: TP-9			
PROJECT NO.: <u>1800331001</u> CLIE	NT: <u>ELA Grou</u>	<u>o, Inc.</u>			TOP OF GROUND: <u>±30</u>	<u>3'</u>		
LOCATION: See Exploration Plan (Fi	qure 3)				GROUNDWATER DATA:	Dry		
FIELD SURVEYED	<u>,,,,,,</u>	X TOPO ES			DEPTH: Not Encountered		Completion	
						<u>.</u>		
DEPTH (feet)		SOIL DESCRIPTION						
	0.0' - 0.9'	Brown organi	c soil				Topsoil	
	0.9' - 10.0'	Brown Silty S	AND					
5		Brown Silty S	AND with (Gravel				
10							Stratum I	
	-Extent of Equiptment at 10 Feet-							
	-Extent of Equipment at 10 Feet-							
		Infiltratio	n Tests Co	onducted at 8	Feet (295')			
15								
		DOU	BLE RING	INFILTROME	TER DATA			
		Test De	-	8'	8'			
			Time (min)	Drop (inches)				
		Pre-soak 1	30	4.0	4.0			
20		Pre-soak 2	30	2.3	2.5			
		Reading 1	10	0.7	0.7			
		Reading 2	10 10	0.7	0.7			
		Reading 3 Reading 4	10	0.6	0.6			
25		Reading 5	10	0.0	0.0			
23		Reading 6						
		Reading 7						
		Reading 8						
		Average Rate	e (inches					
30		per ho		3.9	4.0			
adva	ntage e	enginee	rs	ADVAN	ATION METHOD: <u>Mini-ex</u> TAGE REPRESENTATIVE XCAVATED: <u>Septembe</u>	: <u>B. W</u>	<u>ildasin</u>	

DRAWN/COMPILED BY: B. Wildasin

	TEST PIT LOG SH						
PROJECT NAME: Westtown Sc	hool Oak Lane - Infiltrat	<u>tion</u>		TEST PIT NO	D.: TP-10		
PROJECT NO.: <u>1800331001</u> CLIE	ENT: <u>ELA Group, Inc.</u>			TOP OF GRO	DUND: <u>±305'</u>		
LOCATION: See Exploration Plan (F	Figure 3)			GROUNDWA	ATER DATA:	Dry	
FIELD SURVEYED		OPO ESTIMAT	Ē		-	Time: <u>Completion</u>	
		OI O LOTIMAT	L	DEI III. <u>1101</u>	Lincountered		
DEPTH (feet)		SC	DIL DESCRIPT	ION		REMARKS	
	0.0' - 0.9' Browr	n organic soil				Topsoil	
		n Silty SAND					
5							
						Stratum I	
	6.0' - 7.5' Brown Silty SAND with Gravel (highly weathered rock)						
· · · · · · · · · · · · · · · · · · ·	<u> </u>	Stratum II					
10			t Refusal at ' f Test Pit at '				
10							
	Infiltration T						
15							
	Test Depth:	1	4'		5.5'		
	Test Deptil.	Time (min)	Drop (inches)		Drop (inches	;)	
20	Pre-soak 1	30	2.2	30	3.5	·	
	Pre-soak 2	30	1.5	30	2.7		
	Reading 1	30	1.4	10	0.9		
	Reading 2	30	1.4	10	0.6		
	Reading 3	30	1.4	10	0.8		
25	Reading 4	30	1.4	10	0.8		
	Reading 5			10	0.8		
	Reading 6			10	0.8		
	Reading 7						
	Reading 8						
30	Average Rate (inch	es per hour)	2.8		4.8		
435 Independence Avenue,	Intage engi Suite C, Mechanicsb		AE DA	CAVATION METH DVANTAGE REPRE TE EXCAVATED: RAWN/COMPILED	SENTATIVE: I	<u>3. Wildasin</u> 8, 2018	

	TES	T PIT L	.OG		SHE	ET 1 OF 1	
PROJECT NAME: Westtown School Oak Lane - Infiltration				TEST PIT NO.: TP-11			
PROJECT NO.: <u>1800331001</u> CLIENT: ELA Group, Inc.				TOP OF GROUND: <u>±309'</u>			
LOCATION: See Exploration Plan (Figure 3)				GROUNDWATER DATA: <u>Dry</u>			
FIELD SURVEYED	X TOPO ES	C	DEPTH: Not Encountered Time: Completion				
DEPTH (feet)	SOIL DESCRIPTION				REMARKS		
0.0' - 0.	.8' Brown organi	c soil				Topsoil	
0.8' - 6	.0' Brown Silty S	AND					
5						Stratum I	
6.0' - 9.	.5' Brown Silty S	AND with	Gravel (highly w	veathered rock)		Stratum	
	2			,			
10						Stratum II	
	-Bucket Refusal at 9.5 Feet- -End of Test Pit at 9.5 Feet-						
				, -			
	Infiltration Tests Conducted at 6 Feet (303') and 7.5 Feet (301.5')						
15							
	DOU	BLE RING	INFILTROMET	ER DATA			
	Test De	·	6'	7.5'			
		Time (min)	Drop (inches)	Drop (inches)			
	Pre-soak 1	30 30	4.0	3.5 3.0			
20	Pre-soak 2 Reading 1	10	1.2	0.9			
	Reading 2	10	1.0	0.8			
	Reading 3		1.0	0.9			
	Reading 4	10	1.0	0.9			
25	Reading 5						
	Reading 6						
	Reading 7						
	Reading 8						
30	Average Rate (inches per hour) 6.0 5.4						
EXCAVATION METHOD: <u>Mini-excavator</u> ADVANTAGE REPRESENTATIVE: <u>B. Wilds</u> DATE EXCAVATED: <u>September 27, 2018</u> DRAWN/COMPILED BY: B. Wildasin							

	TEST PIT LOG s				
PROJECT NAME: Westtown Sc	hool Oak Lane - Infiltration	TEST PIT NO.: TP-12			
PROJECT NO.: <u>1800331001</u> CLIE	ENT: <u>ELA Group, Inc.</u>	TOP OF GROUND: ±	<u>-298'</u>		
LOCATION: See Exploration Plan (F	igure 3)	GROUNDWATER DAT	ГА: <u>Wet</u>		
FIELD SURVEYED	X TOPO ESTIMATE	DEPTH: <u>3.5'</u>	Time: Completion		
DEPTH (feet)	SOIL DES	REMARKS			
	0.0' - 2.3' Brown organic soil				
	2.3' - 6.0' Brown to gray Sandy CLA	H ₂ O @ 3.5'			
5	(Soil Mottling 2.5' - 6.0')		Otrestore III		
	-End of Test	Pit at 6 Feet-	Stratum III		
10	No infiltration tests conducted due to Groundwater at	Soil Mottling at 2.5 Feet (295.5') 3.5 Feet (294.5')) and		
15					
20					
25					
30					
435 Independence Avenue, Office: (717) 458-0	Intage engineers Suite C, Mechanicsburg, PA 17055 800 Fax: (717) 458-0801 tageengineers.com	EXCAVATION METHOD: <u>Mini-</u> ADVANTAGE REPRESENTAT DATE EXCAVATED: <u>Septem</u> DRAWN/COMPILED BY: <u>B. W</u>	IVE: <u>B. Wildasin</u> Iber 28, 2018		

	TEST PIT LOG st				
PROJECT NAME: Westtown So	chool Oak Lane - Infiltration	TEST PIT NO.: TP-13			
PROJECT NO.: <u>1800331001</u> CLII	ENT: <u>ELA Group, Inc.</u>	TOP OF GROUND:	<u>±286'</u>		
LOCATION: See Exploration Plan (F	Figure 3)	GROUNDWATER DA	.TA: <u>Wet</u>		
FIELD SURVEYED	X TOPO ESTIMATE	DEPTH: <u>1.5'</u>	Time: Completion		
DEPTH (feet)	SOIL DES	REMARKS			
	0.0' - 1.5' Brown organic soil	Topsoil			
5	1.5' - 6.0' Brown to gray Sandy CLA' (Soil Mottling 2.5' - 6.0')	H ₂ O @ 1.5'			
			Stratum III		
	-End of Test				
10	No infiltration tests conducted due to G Mottling at 2.5	roundwater at 1.5 Feet (284.5') 5 Feet (283.5')	and Soil		
15					
20					
25					
30					
435 Independence Avenue, Office: (717) 458-0	Suite C, Mechanicsburg, PA 17055 800 Fax: (717) 458-0801 atageengineers.com	EXCAVATION METHOD: <u>Mini</u> ADVANTAGE REPRESENTAT DATE EXCAVATED: <u>Septen</u> DRAWN/COMPILED BY: <u>B. V</u>	TIVE: <u>B. Wildasin</u> nber 28, 2018		

November 9, 2018

Westtown School 975 Westtown Road West Chester, PA 19382

c/o

Mr. Charles R. Haley, Jr., P.E. ELA Group, Inc. 743 South Broad Street Lititz, PA 17543

RE: Supplemental Infiltration Feasibility Report Westtown School Oak Lane – Supplemental Infiltration Westtown Township, Chester County, Pennsylvania Advantage Project Number: 1800331001

Dear Mr. Haley:

In accordance with your request, Advantage Engineers (Advantage) has completed supplemental infiltration testing for the above referenced project site. This correspondence serves to transmit the results of our supplemental evaluation.

SCOPE OF WORK

The objective of our work was to determine the permeability of the invert soils, identify any limiting zones (i.e. bedrock, groundwater, or seasonal high water table) within the proposed stormwater management facility, and address PADEP requirements as they relate to stormwater management. Our scope of work included the completion of a subsurface exploration and preparation of this report. This report presents a summary of the scope of work completed, conditions encountered, and results of the supplemental infiltration testing engineering analysis of subsurface conditions.

SUBSURFACE FIELD EXPLORATION

In order to characterize subsurface conditions, 3 test pits were excavated on October 31, 2018. Supervision and monitoring of the field exploration was provided by a representative of Advantage who field located the test locations based on the "Updated Sketch Plan", prepared by Site Engineering Concepts, LLC. The approximate test locations, referenced as TP-14 through TP-16, are shown on the attached *Exploration Plan* (Figure 1). Data pertaining to the subsurface exploration was documented in the field and is presented in detail on the *Test Pit Logs*, which contain detailed descriptions of the subsurface materials encountered and infiltration test depths/elevations. A general description of the soil conditions encountered is provided in the "Subsurface Conditions" section of this report.

SUBSURFACE CONDITIONS

Soil

Surficial Materials

Each test pit was covered by approximately 16 inches of tilled soil; however, the thickness of surficial materials may differ in unexplored areas of the project site.

Mr. Charles R. Haley, Jr., P.E. November 9, 2018 Advantage Project No.: 1800331001 Page 2 of 3

Stratum I – Brown Silty SAND/Sandy SILT

Stratum I was encountered within test pits TP-14 and TP-16 and extended to depths of approximately 5 feet below existing site grades. Upon review, the soils of Stratum I were found to be moderately well graded, non-plastic and comprised of Silty SAND and Sandy SILT.

Stratum II - Brown Silty SAND with Gravel (highly weathered rock)

Stratum II was only encountered within test pit TP-16 and extended to its termination depth of approximately 7 feet below existing site grades. Upon review, the soils of Stratum II were found to be well graded, non-plastic and predominately comprised of Silty SAND with Gravel. The soils of Stratum II represent the highly weathered bedrock surface.

Stratum III – Brown Sandy CLAY

Stratum III was only encountered within test pit TP-15 and extended to its termination depth of approximately 5 feet below existing site grades. Upon review, the soils of Stratum III were found to be poorly graded, plastic and comprised of Sandy CLAY.

Bedrock

The bedrock surface was not encountered within the test pits excavated. The bedrock surface would have been defined as the depth at which the bucket of the given excavation equipment could no longer excavate.

Groundwater/Soil Mottling

Neither groundwater nor soil mottling was encountered within the test pits excavated. These observations were made at the time of the field operation and groundwater table elevations will vary with daily, seasonal, and climatological variations.

INFILTRATION ANALYSIS

To evaluate the feasibility of stormwater infiltration within the proposed stormwater management facility, infiltration tests were completed utilizing the "double-ring" infiltrometer method in accordance with the <u>Pennsylvania</u> <u>Stormwater Best Management Practices Manual</u>, latest Edition. It should be noted that the shallow tests in both TP-14 and TP-15 were completed 6-inches below the proposed test elevations due to the thickness of the tilled soil. The test pit locations, approximate surface elevations, proposed test elevations, actual test elevations, presence of limiting zones, and the infiltration rates achieved at each location are presented in the table below.

INFILTRATION TEST RESULTS								
Test Location	Surface Elevation (ft)	Proposed Test Elevations (ft)	Actual Test Elevations (FT)	Limiting Zone Elevation (ft)	Infiltration Rate* (in/hr)			
TP-14	290	289	288.5	Not Encountered @	0.2			
19-14	290	287	287	285	1.0			
TP-15	290	289	288.5	Not Encountered @	0.0			
		287	287	285	0.0			
TP-16	292	289	289	Not Encountered @	2.7			
		287	287	285	6.0			

*Infiltration rates represent the rates recorded in the field and no safety factor has been applied

Mr. Charles R. Haley, Jr., P.E. November 9, 2018 Advantage Project No.: 1800331001 Page 3 of 3

SUMMARY OF DATA & CONCLUSIONS

Based on the results of our field exploration and engineering analysis of the data obtained, we offer the following comments with regard to the infiltration of stormwater at the project site.

- The infiltration tests were conducted within the naturally-occurring soils of Stratum I, Stratum II and Stratum III.
- No limiting zones (i.e. bedrock, groundwater and/or soil mottling) were encountered within the test pits excavated.
- The unfactored infiltration rates were found to range from no movement (0.0 inches per hour) to 6.0 inches per hour. The PADEP recommended rate for infiltration of stormwater is 0.1 to 10 inches per hour.

LIMITATIONS

The conclusions contained in this report are based upon the subsurface data collected and on details stated in this report. Should conditions arise which differ from those specifically stated herein, our office should be notified immediately, so that our recommendations can be reviewed and revised, if necessary.

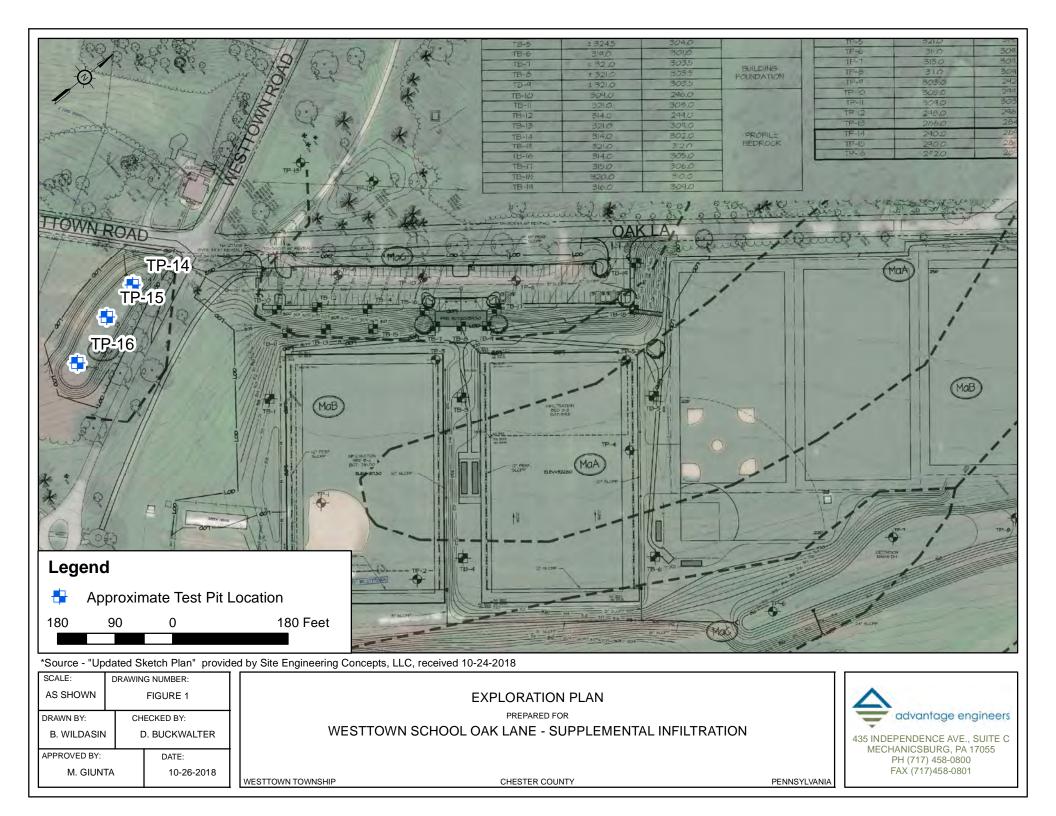
The conclusions presented herein should be applied only to the infiltration tests as depicted on the *Exploration Plan* for the proposed Westtown School improvements in Westtown Township, Chester County, Pennsylvania. Advantage takes no responsibility in utilizing this information for any other purposes.

The scope of work was limited to the exploration of the subsurface subsoils. Oil, hazardous waste, radioactivity, irritants, pollutants, radon or other dangerous substances and conditions were not the subject of this study. Their presence and/or absence are not implied, inferred or suggested by this report or results of this study.

We trust that this is the information you require. Should you have any questions or if we may be of further assistance, please don't hesitate to contact our office.

Respectfully, advantage engineers

Saily ean Wildow


Bailey J. Wildasin Geotechnical Specialist I

Afratic

David J. Buckwalter Senior Project Manager

Attachments:

Exploration Plan – Figure 1 Test Pit Logs

TEST PIT LOG SHE						SHEET 1 OF 1	
PROJECT NAME: Westtown School Oak Lane - Supplemental Infiltration					TEST PIT NO.: TP-14		
PROJECT NO.: <u>1800331001</u> CLIENT: <u>ELA Group, Inc.</u> TOP OF GROUND: <u>±290'</u>					<u>0'</u>		
LOCATION: See Exploration Plan (Figure 3)				GROUNDWATER DATA: <u>Dry</u>			
FIELD SURVEYED	<u>(</u>		STIMATE		DEPTH: Not Encountered Time: Completion		
			STIMATE		DEI III. <u>Not Encounterec</u>		
DEPTH (feet)	SOIL DESCRIPTION				REMARKS		
	0.0' - 1.3'	Brown organ	ic soil			Tilled Opil	
	1.3' - 5.0'	Brown Sand				Tilled Soil	
	1.5 5.0	Brown Silty S					
5		2.01 0,				Stratum I	
0			-End of Te	st Pit at 5 Fe	et-		
10							
	_						
	Infiltration Tests Conducted at 1.5 Feet (288.5') and 3 Feet (287')						
15							
		DOL	JBLE RING	INFILTROME	TER DATA		
		Test De	epth:	1.5'	3'		
			Time (min)	Drop (inches)	Drop (inches)		
		Pre-soak 1	30	0.3	0.8		
20		Pre-soak 2	30	0.2	0.7		
		Reading 1		0.1	0.5		
		Reading 2		0.1	0.5		
		Reading 3	30	0.1	0.5		
		Reading 4		0.1	0.5		
25		Reading 5					
		Reading 6					
		Reading 7					
		Reading 8					
30		Average Ra per ho		0.2	1.0		
adv	antage e	enginee	ers		ATION METHOD: <u>Backho</u> TAGE REPRESENTATIVE		

ADVANTAGE REPRESENTATIVE: <u>B. Wildas</u> DATE EXCAVATED: <u>October 31, 2018</u> DRAWN/COMPILED BY: <u>B. Wildasin</u>

TEST PIT LOG SHEE						ET 1 OF 1	
PROJECT NAME: Westtown School Oak Lane - Supplemental Infiltration					TEST PIT NO.: TP-15		
PROJECT NO.: <u>1800331001</u> CLIENT: <u>ELA Group, Inc.</u>					TOP OF GROUND: <u>+290'</u>		
LOCATION: See Exploration Plan (Figure 3)					GROUNDWATER DATA: <u>Dry</u>		
FIELD SURVEYED					DEPTH: Not Encountered Time: Completion		
		I TOPOLO			DEPTH. Not Encountere		
DEPTH (feet)	SOIL DESCRIPTION						REMARKS
	0.0' - 1.3'	Brown organi	c soil				
							Tilled Soil
	1.3' - 5.0'	Brown Sandy	CLAY				
5							Stratum III
			-End of Te	est Pit at 5 Fee	et-		
10	10						
	Infiltr	ation Tasts Co	nductod a	+ 1 5 East (200	5') and 2 East (297')		
	Infiltration Tests Conducted at 1.5 Feet (288.5') and 3 Feet (287')						
15							
15	DOUBLE RING INFILTROMETER DATA						
		Test Depth: 1.5' 3'					
			Time (min)	Drop (inches)	Drop (inches)		
		Pre-soak 1	30	0.2	0.0		
20		Pre-soak 2	30	0.0	0.0		
		Reading 1	30	0.0	0.0		
		Reading 2	30	0.0	0.0		
		Reading 3	30	0.0	0.0		
		Reading 4	30	0.0	0.0		
25		Reading 5					
		Reading 6					
		Reading 7					
		Reading 8					
		Average Rat		0.0	0.0		
30		per ho	ur)	(no movemen	t) (no movement)		
EXCAVATION METHOD: <u>Backhoe</u> ADVANTAGE REPRESENTATIVE: <u>B. Wildasin</u> DATE EXCAVATED: <u>October 31, 2018</u>					<u>dasin</u>		

DRAWN/COMPILED BY: B. Wildasin

		TEST PI	IT LOG	İ		SH	EET 1 OF 1
PROJECT NAME: Westtown School Oak Lane - Supplemental Infiltration				TEST PIT NO.: TP-16			
PROJECT NO.: <u>1800331001</u> CLIENT: <u>ELA Group, Inc.</u>					TOP OF GROUND: <u>±292'</u>		
LOCATION: See Exploration Plan (F	Figure 3)				GROUNDWA	TER DATA: Dry	
FIELD SURVEYED		OPO ESTIMAT	ſF		DEPTH: <u>Not Encountered</u> Time: <u>Completion</u>		
					<u></u>		
DEPTH (feet)	SOIL DESCRIPTION					REMARKS	
	0.0' - 1.3' Brow	n organic soil					Tilled Soil
	1.3' - 5.0' Brow	n Silty SAND					
5							Stratum I
	5.0' - 7.0' Brow	n Silty SAND	with Grav	el (highly	weathered r	ock)	
							Stratum II
		-End	of Test P	it at 7 Fe	et-		
10							
	Infiltration Tests Conducted at 3 Feet (289') and 5 Feet (287')						
45	_						
15	-						
	DOUBLE RING INFILTROMETER DATA						
	Test Depth:		3'			5'	
		Time (min)	Drop (inc	hes)	Time (min)	Drop (inches)	
20	Pre-soak 1	30	1.9		30	5.0	
	Pre-soak 2	30	1.4		30	5.0	
	Reading 1	30	1.4		10	1.0	
	Reading 2	30	1.3		10	1.0	
	Reading 3	30	1.3		10	1.0	
25	Reading 4	30	1.4		10	1.0	
	Reading 5				10	1.0	
	Reading 6						
	Reading 7 Reading 8						
20	Average Rate (inch	les per hour)	2.7			6.0	
30	Average rate (IIIC		2.1	<u> </u>		0.0	<u> </u>
Advantage engineersEXCAVATION METHOD: BackhoeAdvantage engineersADVANTAGE REPRESENTATIVE: B. Wildasin435 Independence Avenue, Suite C, Mechanicsburg, PA 17055DRAWN/COMPILED BY: B. Wildasin							