PRELIMINARY STORMWATER MANAGEMENT REPORT

for

STOKES ESTATE 85 RESIDENTIAL LOTS

Residential Development Westtown Township Chester County, Pennsylvania

> March 17, 2023 Revised June 13, 2023

> > Howell Job# 3868

Prepared for:

Fox Clearing, LLC 227 Granite Run Drive, Suite 100 Lancaster, PA 17601

Prepared by: HOWELL ENGINEERING

> 1250 Wrights Lane, West Chester, PA 19380 Phone: 610-918-9002 Fax: 610-918-9003

TABLE OF CONTENTS

Section	L	Pa	age
1.0	1.1 1.2	DUCTION Land Use Site Soils Soil/Geologic Limitations	1 1
2.0	RUNOI	FF MANAGEMENT	4
3.0	PERMA	ANENT BMPs	4
4.0	CONCI	LUSIONS	5

LIST OF FIGURES

Figure 1-1	Site Location Man	
rigule 1-1	She Location Map	

APPENDICES

Appendix A	Stormwater Volume Calculations
Appendix B	Peak Flow Summary
Appendix C	SCS Runoff Coefficients Calculations
Appendix D	SCS Hydrograph Reports & Basin Routings
Appendix E	USDA NRCS Soil Report
Appendix F	Stormwater Infiltration Testing Report

Page i

1.0 INTRODUCTION

This Stormwater Management Report presents the preliminary permanent control measures/facilities required to support construction activities for the Stokes Estate Residential Development . The 80 +/-acre combined tract is located in Westtown Township (Figure 1-1).

The proposed land development consists of constructing 82 residential dwelling units combined with three (3) existing dwellings (total 85 homes), access roads, stormwater management facilities, and public utilities. Two (2) access points to the parcel will be off Shiloh Road. The buildings and roads will be constructed to comply with design standards and safety requirements of the Townships and local Fire Marshals.

1.1 LAND USE

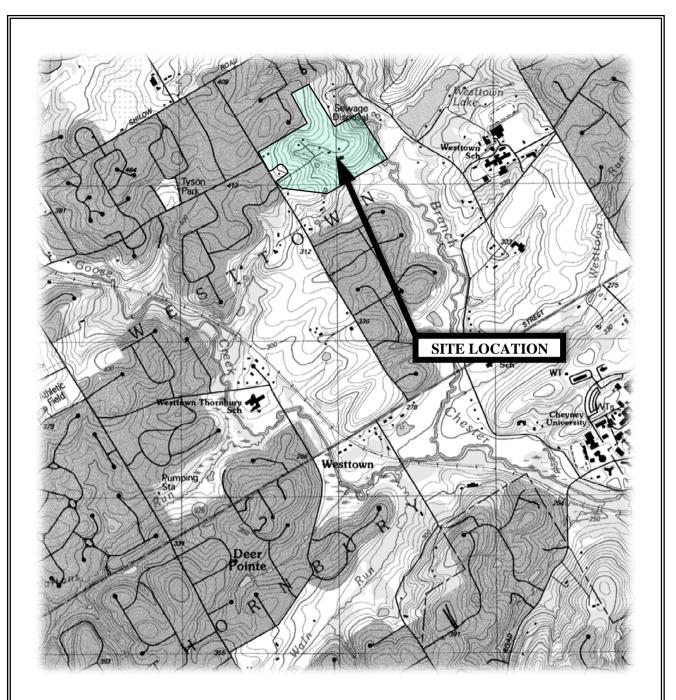
The existing land is currently utilized for agriculture and residential with pastures for livestock, with a few hedgerows and mature trees scattered throughout, mostly along the existing driveway and near the existing residence and outbuildings. The site generally drains to two separate water bodies, where the southern portion of the property drains to an Unnamed Tributary to the East Branch of Chester Creek that flows through the property, and the eastern end of the site drains directly to the East Branch of Chester Creek, also on the property. Therefore, the entire site is located in the Chester Creek watershed. Per Pennsylvania Department of Environmental Protection, 25 Pa. Code, 93.9g "Water Quality Standards" Chester Creek is classified as Trout Stocking Fishery (TSF).

1.2 SITE SOILS

Site soils mapping provided by the United States Department of Agriculture Natural Resources Conservation Service – Web Soil Survey. According to the Web Soil Survey mapping, the following soil types are located within the project study area;

Baile Silt Loam (Ba) Codorus Silt Loam (Co) Gladstone Gravelly Loam (GdB) (GdC) (GfD) Hatboro Silt Loam (Ha) Manor Loam (MaD) Urban land – Gladstone complex, 0 to 8 percent

Refer to Appendix E for Soils Map and report.


1.3 SOIL/GEOLOGIC LIMITATIONS:

Some groundwater and rock were encountered in a few locations during infiltration testing. Howell has taken into consideration these known soil limitations when designing the infiltration BMPs for the project. The stormwater infiltration facilities have either been relocated to areas where limiting areas weren't encountered or has been set a minimum of 2 feet higher than any prohibitive soil limitation elevations witnessed during infiltration testing and adequate infiltration results have been achieved at the adjusted elevations.

If during construction, any other unknown soil limitation (i.e. bedrock or high water) is discovered the contractor is responsible for immediately contacting the site geo-technical engineer, design engineer, conservation district and the township engineer for an appropriate solution. The site design drawings contain a pumped water filter bag detail which should be utilized if any excavations need to be dewatered due to high groundwater or excessive rainfall.

<u>Geologic formations/soil conditions that may have the potential to cause pollution:</u>

Furthermore, there are no known geologic formations or soil conditions that have the potential to cause pollution during earth disturbance activities. If during construction, an unknown geologic formations or soil conditions is discovered the contractor is responsible for immediately contacting the Chester County Conservation District and the design engineer.

Source:

United States Department of the Interior Geological Survey 7.5 Minute Series (Topographic) Map West Chester, Pennsylvania Quadrangle Scale 1:24000

Stokes Estate (+)

Westtown Township Chester County, Pennsylvania Figure Number: FIGURE 1-1

Title: SITE LOCATION MAP

2.0 RUNOFF MANAGEMENT

The purpose of the stormwater management design is to quantify and control stormwater runoff generated by the modifications of the ground surface conditions to the site (i.e. roads, buildings, driveways, etc.). Post-development stormwater management is achieved at the site through five (5) combination surface/subsurface infiltration basins strategically located throughout the site to control runoff.

The infiltration basins with stone beds have been designed utilizing Soil Conservation Service (SCS) method for infiltration and peak flow requirements and Westttown Township regulations for peak flow calculations (See Appendices for worksheets). The stormwater management control for this project was designed to include all impervious surfaces associated with this subdivision application, with an assumption of 3,800 SF of impervious coverage per single family lot. These systems are designed to provide an overall reduction in the post-developed runoff for the 2-year, 10-year, 25-year, 50-year, and 100-year, 24-hour storm event to less than 50% of the pre-development runoff rates for the equivalent storm events based on the Chester Creek Watershed Release Rate Map. A stormwater conveyance system will be utilized to convey runoff from the proposed improvements to the proposed stormwater facilities. The stormwater conveyance system will be designed to convey flows up to the 100-year storm event. Flows to the pipes will be generated using the Universal Rational Method and the pipes sized using Manning's Method and Hydraulic Grade Line calculations will also be provided. The infiltration basins have been designed and sized to fully infiltrate the increase in volume, pre to post-development for the 2-year storm as required by the NPDES Phase II regulations.

3.0 NPDES STORMWATER COMPLIANCE

As stated above, the infiltration facilities have been designed and sized to fully infiltrate the 2-year increase in volume; therefore the NPDES Phase II infiltration requirement has been met. Furthermore, as described above, the infiltration basins have been designed to incorporate Pennsylvania Department of Environmental Protection's infiltration guidelines, as stated in Appendix C of the Pennsylvania Stormwater Best Management Practices Manual dated December 2006. The stormwater management systems have been designed to maximize infiltration best management practice (BMP) technologies and minimize point source discharges. This plan will further act to perform/provide the following:

- Preserve the integrity of stream channels and maintain and protect the physical, biological and chemical qualities of the receiving stream by utilizing several BMPs to handle the increase in runoff and volume prior to reaching the stream.
- Prevent an increase in the rate of stormwater runoff by utilizing BMPs to reduce the peak flow rate of all storm events up to the 100 year to below the equivalent storm in the pre developed condition.
- Minimize any increase in stormwater runoff volume by utilizing infiltration BMPs which are designed and sized to fully infiltrate the 2-year increase in volume.
- Minimize impervious areas
- Maximize the protection of existing drainage features and existing vegetation by capturing stormwater runoff from the proposed impervious areas then conveying the flow to stormwater BMPs facilities prior to any release to the existing stream, thereby protecting it from any sediment.
- Minimize land clearing and grading by protecting and preserving the majority of the existing woodlands, and natural areas.
- Minimize soil compaction by specifying the installation of orange construction fencing to protect the areas of the proposed infiltration BMPs.
- Utilize other structural or nonstructural BMPs that prevent or minimize changes in stormwater runoff. The structural BMPs are infiltration beds, and water quality filters, while the non-

structural BMPs are protecting existing riparian buffers, minimizing total disturbed area, and protecting sensitive features.

Howell Engineering has designed Best management Practices (BMP's) consistent with Chapter 6 of the PA Stormwater Best Management Practices Manual within the stormwater collection and conveyance system in addition to infiltrating the net increase in volume from pre to post-development for the 2-year storm event.

The applicant has been able to demonstrate compliance with 102.8(b), through the use of infiltration.

Permanent BMP's proposed for the developed site are as follows:

- Vegetated Swales
- Infiltration Basins/Beds
- Forebays
- Level Spreaders

4.0 CONCLUSIONS

Howell Engineering has completed a preliminary stormwater engineering design for the proposed project in Westtown Township, Chester County, Pennsylvania. Using site-specific topography, soils, land cover, hydrologic data, and Township Ordinances, Howell Engineering designed the stormwater management system for the proposed facilities. The objective of the stormwater design was to develop site-specific stormwater management structures that reduced post-development runoff to pre-development runoff rates and provided volumetric storage per PADEP NPDES Phase II requirements. Post-development stormwater management is achieved through a stormwater collection system consisting of curbed inlets, swales, catch basins, and stormwater infiltration basins/beds.

APPENDIX A

STORMWATER VOLUME CALCULATIONS

CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

Worksheet 4, Pennsylvania Stormwater Best Management Practices Manual

Total Olic Alca.		40100
Protected Site Area:		acres
Managed Area:	13.67	acres

Existing Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	s	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	Α		0.00	25	30.0000	6.0000	0.29	
Meadow	Α		0.00	30	23.3333	4.6667	0.10	
Impervious	Α		0.00	98	0.20	0.04	2.97	
Woodland	В	121,182	2.78	55	8.1818	1.6364	0.25	2,534
Meadow	В	550,949	12.65	58	7.2414	1.4483	0.34	15,666
Meadow (20% Imperv)	В		0.00	58	7.2414	1.4483	0.34	
Impervious (80%)	В		0.00	98	0.2041	0.0408	2.97	
Woodland	С		0.00	70	4.2857	0.8571	0.83	
Meadow	С		0.00	71	4.0845	0.8169	0.88	
Impervious	С		0.00	98	0.2041	0.0408	2.97	
Woodland	D		0.00	77	2.9870	0.5974	1.21	
Meadow	D		0.00	78	2.8205	0.5641	1.27	
Impervious	D		0.00	98	0.2041	0.0408	2.97	
TOTAL:		672,131	15.43					18,199

Developed Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	415,342	9.53	61	6.3934	1.2787	0.44	15,366
Impervious	N/A	153,121	3.52	98	0.2041	0.0408	2.97	37,865
Woods (Existing)	В	27,093	0.62	55	8.1818	1.6364	0.25	566
			0.00					
			0.00					
			0.00					
			0.00					
			0.00					
TOTAL:		595,556	13.67					53,798

2-Year Volume Increase (ft³):

35,599

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = (P - 0.2S)2 / (P + 08.S) P = 2-Year Rainfall (in) S = (1000/CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in) Area = Land Use Area (Sq. Ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

Worksheet 4, Pennsylvania Stormwater Best Management Practices Manual

PROJECT:	Rustin Residential				
Drainage Area:	DP002 UNT Chester Creek				
2-Year Rainfall:	3.2 in				

Total Site Area:		acres
Protected Site Area:		acres
Managed Area:	20.97	acres

Existing Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	Α		0.00	25	30.0000	6.0000	0.29	
Meadow	Α		0.00	30	23.3333	4.6667	0.10	
Impervious	Α		0.00	98	0.20	0.04	2.97	
Woodland	В		0.00	55	8.1818	1.6364	0.25	
Meadow	В	745,375	17.11	58	7.2414	1.4483	0.34	21,194
Meadow (20% Imperv)	В		0.00	58	7.2414	1.4483	0.34	
Impervious (80%)	В		0.00	98	0.2041	0.0408	2.97	
Woodland	С		0.00	70	4.2857	0.8571	0.83	
Meadow	С	91,390	2.10	71	4.0845	0.8169	0.88	6,687
Impervious	С		0.00	98	0.2041	0.0408	2.97	
·							•	
Woodland	D		0.00	77	2.9870	0.5974	1.21	
Meadow	D		0.00	78	2.8205	0.5641	1.27	
Impervious	D		0.00	98	0.2041	0.0408	2.97	
			·			·	•	
TOTAL:		836,765	19.21			1		27,882

Developed Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	С	75,360	1.73	74	3.5135	0.7027	1.04	6,516
Lawn	В	563,811	12.94	61	6.3934	1.2787	0.44	20,859
Impervious	N/A	274,153	6.29	98	0.2041	0.0408	2.97	67,795
			0.00					
			0.00					
			0.00					
			0.00					
			0.00					
			0.00					
TOTAL:		913,324	20.97					95,170

2-Year Volume Increase (ft³):

crease (ft³): 67,289

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = (P - 0.2S)2 / (P + 08.S) P = 2-Year Rainfall (in) S = (1000/CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12 Q = Runoff (in) Area = Land Use Area (Sq. Ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

Worksheet 4, Pennsylvania Stormwater Best Management Practices Manual

PROJECT: Drainage Area:	Stokes Estate DP003 UNT Chester Creek				
2-Year Rainfall:	3.2 in				
Total Site Area:	acres				

lotal olto / lotal		
Protected Site Area:		acres
Managed Area:	7.87	acres

Existing Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	Α		0.00	25	30.0000	6.0000	0.29	
Meadow	Α		0.00	30	23.3333	4.6667	0.10	
Impervious	Α		0.00	98	0.20	0.04	2.97	
Woodland	В		0.00	55	8.1818	1.6364	0.25	
Meadow	В	104,108	2.39	58	7.2414	1.4483	0.34	2,960
Meadow (20% Imperv)	В		0.00	58	7.2414	1.4483	0.34	
Impervious (80%)	В		0.00	98	0.2041	0.0408	2.97	
Woodland	С		0.00	70	4.2857	0.8571	0.83	
Meadow	С	211,266	4.85	71	4.0845	0.8169	0.88	15,459
Impervious	C		0.00	98	0.2041	0.0408	2.97	
Woodland	D		0.00	77	2.9870	0.5974	1.21	
Meadow	D	41,382	0.95	78	2.8205	0.5641	1.27	4,391
Impervious	D		0.00	98	0.2041	0.0408	2.97	
TOTAL		050 750	0.40	-				00.011
TOTAL:		356,756	8.19					22,811

Chapter 8

Developed Conditions

Cover Type/Conditions	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	49,632	1.14	61	6.3934	1.2787	0.44	1,836
Impervious	N/A	98,822	2.27	98	0.2041	0.0408	2.97	24,438
Lawn	С	175,962	4.04	78	2.8205	0.5641	1.27	18,672
Lawn	D	32,340	0.74	81	2.3457	0.4691	1.47	3,959
			0.00					
			0.00					
			0.00					
			0.00					
TOTAL:		356,756	8.19					48,905

2-Year Volume Increase (ft³):

26,094

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = (P - 0.2S)2 / (P + 08.S) P = 2-Year Rainfall (in) S = (1000/CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in) Area = Land Use Area (Sq. Ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

STRUCTURAL BMP VOLUME CREDITS

Worksheet 5, Pennsylvania Stormwater Best Management Practices Manual

PROJECT:	Stokes Estate		
Sub-Basin	Cnester	Creek DP001	
Required Control Volume Non-Structural Volume Credit Structure Volume Requirement	35,599 0 35,599	Cubic Feet Cubic Feet Cubic Feet	

Section	Proposed BMP	Area (sf)	Storage Volume (ft ³)
6.4.1	Porous Pavement		
6.4.2	Infiltration Basin		35,889
6.4.3	Infltration Bed		
6.4.4	Infiltration Trench		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well/Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Infiltration Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-Use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond/Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
	Other		
		0	35,889

Total Structural Volume (cf)	35,889
Structural Volume Requirement (cf)	35,599
DIFFERENCE	290

STRUCTURAL BMP VOLUME CREDITS

Worksheet 5, Pennsylvania Stormwater Best Management Practices Manual

PROJECT:	Stokes Estate		
Sub-Basin	UNT Chester Creek DP002		
Required Control Volume Non-Structural Volume Credit Structure Volume Requirement	67,289 0 67,289	Cubic Feet Cubic Feet Cubic Feet	

Section	Proposed BMP	Area (sf)	Storage Volume (ft ³)
6.4.2	Infiltration Basin 1 Combined		34,254
6.4.2	Infiltration Basin 2		33,072
6.4.3	Infltration Bed(s)		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well/Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Infiltration Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-Use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond/Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
	Other		
		0	67,326

Total Structural Volume (cf)	67,326
Structural Volume Requirement (cf)	67,289
DIFFERENCE	37

STRUCTURAL BMP VOLUME CREDITS

Worksheet 5, Pennsylvania Stormwater Best Management Practices Manual

PROJECT:	Stokes Estate		
Sub-Basin	UNT Chester Creek DP003		
Required Control Volume Non-Structural Volume Credit	26,094 0	Cubic Feet Cubic Feet	
Structure Volume Requirement	26,094	Cubic Feet	

Section	Proposed BMP	Area (sf)	Storage Volume (ft ³)
6.4.2	Basin 4	Ī	14,188
6.4.3	UG Bed 1 w/ Basin		12,096
6.4.3	Infltration Bed(s)		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well/Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Infiltration Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-Use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond/Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
	Other		
		0	26,284

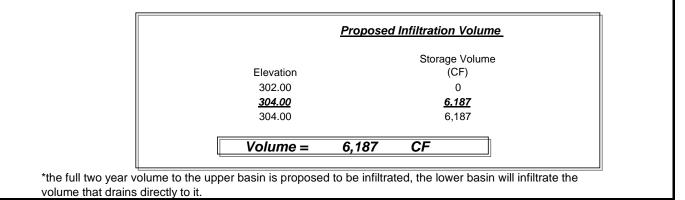
Total Structural Volume (cf)	26,284
Structural Volume Requirement (cf)	26,094
DIFFERENCE	190

INFILTRATION VOLUME CALCULATION Basin 1 Upper

PROJECT NAME:	Stokes Estate		
LOCATION:	Westtown Township		
PREPARED BY:	DWG	DATE:	3/30/2021
CHECKED BY:	DLH	DATE:	

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLUME (CUBIC F	
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
320.00	13,236	(0 4.1 1)	(* = = * /		0
		14,996	2.00	29991	
322.00	16,755				29,991
		18,686	2.00	37372	
324.00	20,617				67,363
		22,559	2.00	45117	
326.00	24,500				112,480

<u> -</u>	Proposed Infiltration Volu
	Storage Volur
Elevation	(CF)
322.00	29,991
<u>322.50</u>	<u>39,334</u>
324.00	67,363
Volume = 3	39,334 CF


*Only 34,254 CF drains to the basin in the 2 year storm, therefore only 34,254 CF is being taken credit for

INFILTRATION VOLUME CALCULATION Basin 1 Lower

PROJECT NAME:	Stokes Estate		
LOCATION:	Westtown Township		
PREPARED BY:	DWG	DATE:	3/30/2021
CHECKED BY:	DLH	DATE:	

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
302.00	2,215				0
		3,094	2.00	6187	
304.00	3,972				6,187
		7,254	2.00	14507	
306.00	10,535				20,694
		12,703	2.00	25405	
308.00	14,870				46,099

INFILTRATION VOLUME CALCULATION Basin 2

PROJECT NAME: Stokes Estate		
LOCATION: Westtown Township		
PREPARED BY: DWG	DATE:	3/30/2021
CHECKED BY: DLH	DATE:	

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
306.00	8,255				0
		10,349	2.00	20698	
308.00	12,443				20,698
		14,558	2.00	29116	
310.00	16,673				49,814
		18,892	2.00	37783	
312.00	21,110				87,597

			•	
			Stora	ige Volume
Eleva				(CF)
308.	.00		:	20,698
<u>308.</u>	.85		2	<u>33,072</u>
310.	.00			49,814
Volui	me =	33,072	CF	
Volui	<i>iii</i> =	33,072		

INFILTRATION VOLUME CALCULATION Basin 3

PROJECT NAME:	Stokes Estate		
LOCATION:	Westtown Township		
PREPARED BY:	DWG	DATE:	3/30/2021
CHECKED BY:	DLH	DATE:	

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
316.00	15,345				0
		17,505	2.00	35010	
318.00	19,665				35,010
		21,938	2.00	43876	
320.00	24,211				78,886
		25,391	1.00	25391	
321.00	26,570				104,277

	<u>Propos</u>	ed Infiltration Volu
		Storage Volur
Elevatio	n	(CF)
318.00)	35,010
<u>318.50</u>	2	<u>45,979</u>
320.00)	78,886
Volume	e = 45,979) CF
Volum	c = +0,070	

*Only 35,889 CF drains to the basin in the 2 year storm, therefore only 35,889 CF is being taken credit for

INFILTRATION VOLUME CALCULATION Basin 4

PROJECT NAME: S	Stokes Estate		
LOCATION: N	Vesttown Township		
PREPARED BY: D	DWG	DATE:	3/17/2023
CHECKED BY: D	DLH	DATE:	

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
342.00	Stone				0
			2.00	0	
344.00	4,413				1,063
		5,565	2.00	11130	
346.00	6,717				12,193
		7,982	2.00	15963	
348.00	9,246				28,156
		10,623	2.00	21246	
350.00	12,000				49,402

	Proposed Infiltration Volur
	Storage Volum
Elevation	(CF)
346.00	12,193
<u>346.25</u>	<u>14,188</u>
348.00	28,156
Volume =	14,188 CF

INFILTRATION VOLUME CALCULATION UG BED 1 w/ Basin

PROJECT NAME:	Stokes Estate		
LOCATION:	Westtown Township		
PREPARED BY:	DWG	DATE:	3/17/2023
CHECKED BY:	DLH	DATE:	

WATER SURFACE	AREA	AVERAGE	DIFFERENCE	STORAGE VOLU	ME (CUBIC FEET)
ELEVATION (FEET)	AREA (SQ.FT.)	AREA (SQ.FT.)	IN ELEVATION (FEET)	INCREMENTAL	TOTAL
336.00	Stone				0
			3.00	0	
339.00	Stone				6,750
			1.00	0	
340.00	3,380				11,253
		4,215	2.00	8430	
342.00	5,050				19,683
		5,998	2.00	11995	
344.00	6,945				31,678

· · · · · · · · · · · · · · · · · · ·	Proposed Infiltration Volum
	Storage Volume
Elevation	(CF)
340.00	11,253
<u>340.20</u>	<u>12,096</u>
342.00	19,683
Volume =	12,096 CF

APPENDIX B TOWNSHIP POST DEVELOPMENT FLOW REDUCTION SUMMARIES

3868

PROJECT:

Stormwater Summary Peak Flow Reduction Requirements

TOWNSHIP: Westtown

DATE: 9/30/2021

> DWG BY:

JOB NO.: DESCRIPTION:

Stokes Estate Stormwater Summary DP001 Chester Creek

% Reduction				
55%	Hydrograph 1	1.30 cfs	Pre-Developed	1-year
55%	Hydrograph 8	0.58 cfs	Post-Developed	1-year
73%	Hydrograph 1	4.32 cfs	Pre-Developed	2-year
1070	Hydrograph 8	1.15 cfs	Post-Developed	2-year
200/	Hydrograph 1	12.58 cfs	Pre-Developed	5-year
82%	Hydrograph 8	2.31 cfs	Post-Developed	5-year
		00 75 ofo	Dra Davalanad	10 1007
84%	Hydrograph 1	20.75 cfs	Pre-Developed	10-year
	Hydrograph 8	3.35 cfs	Post-Developed	10-year
770/	Hydrograph 1	33.98 cfs	Pre-Developed	25-year
77%	Hydrograph 8	7.70 cfs	Post-Developed	25-year
		10.00		50
51%	Hydrograph 1	46.28 cfs	Pre-Developed	50-year
0170	Hydrograph 8	22.70 cfs	Post-Developed	50-year
52%	Hydrograph 1	60.31 cfs	Pre-Developed	100-year
52%	Hydrograph 8	29.25 cfs	Post-Developed	100-year

CHESTER CREEK 0.50 RELEASE RATE AREA

Post Developed 2 Year Flow =	1.15	cfs	
Pre Developed 1 Year Flow =	1.30	cfs	SATISFIED
Post Developed 5 Year Flow =	2.31	cfs	SATISFIED
50% Pre Developed 5 Year Flow =	6.29	cfs	SATISFIED
Post Developed 10 Year Flow =	3.35	cfs	SATISFIED
50% Pre Developed 10 Year Flow =	10.38	cfs	SATISFIED
Post Developed 25 Year Flow =	7.70	cfs	
50% Pre Developed 25 Year Flow =	16.99	cfs	SATISFIED
Post Developed 50 Year Flow =	22.70	cfs	
50% Pre Developed 50Year Flow =	23.14	cfs	SATISFIED
Post Developed 100 Year Flow =	29.25	cfs	
50% Pre Developed 100 Year Flow =	30.16	cfs	SATISFIED

3868

PROJECT:

Stormwater Summary Peak Flow Reduction Requirements

TOWNSHIP: Westtown

DATE: 9/30/2021

> DWG BY:

JOB NO.: DESCRIPTION:

Stokes Estate Stormwater Summary DP002 UNT Chester Creek

% Reduction				
83%	Hydrograph 2	2.47 cfs	Pre-Developed	1-year
0376	Hydrograph 16	0.42 cfs	Post-Developed	1-year
		0.05 (
86%	Hydrograph 2	6.85 cfs	Pre-Developed	2-year
	Hydrograph 16	0.96 cfs	Post-Developed	2-year
88%	Hydrograph 2	18.02 cfs	Pre-Developed	5-year
00 %	Hydrograph 16	2.12 cfs	Post-Developed	5-year
		00.04.4		10
89%	Hydrograph 2	28.64 cfs	Pre-Developed	10-year
0070	Hydrograph 16	3.17 cfs	Post-Developed	10-year
2 22/	Hydrograph 2	45.70 cfs	Pre-Developed	25-year
86%	Hydrograph 16	6.17 cfs	Post-Developed	25-year
54%	Hydrograph 2	46.28 cfs	Pre-Developed	50-year
5478	Hydrograph 16	21.32 cfs	Post-Developed	50-year
500/	Hydrograph 2	79.34 cfs	Pre-Developed	100-year
52%	Hydrograph 16	37.69 cfs	Post-Developed	100-year

CHESTER CREEK 0.50 RELEASE RATE AREA

Post Developed 2 Year Flow =	0.96	cfs	
Pre Developed 1 Year Flow =	2.47	cfs	SATISFIED
Post Developed 5 Year Flow =	2.12	cfs	SATISFIED
50% Pre Developed 5 Year Flow =	9.01	cfs	SATISFIED
Post Developed 10 Year Flow =	3.17	cfs	SATISFIED
50% Pre Developed 10 Year Flow =	14.32	cfs	SATISFIED
Post Developed 25 Year Flow =	6.17	cfs	CATIONED
50% Pre Developed 25 Year Flow =	22.85	cfs	SATISFIED
Post Developed 50 Year Flow =	21.32	cfs	
50% Pre Developed 50Year Flow =	23.14	cfs	SATISFIED
Post Developed 100 Year Flow =	37.69	cfs	
50% Pre Developed 100 Year Flow =	39.67	cfs	SATISFIED

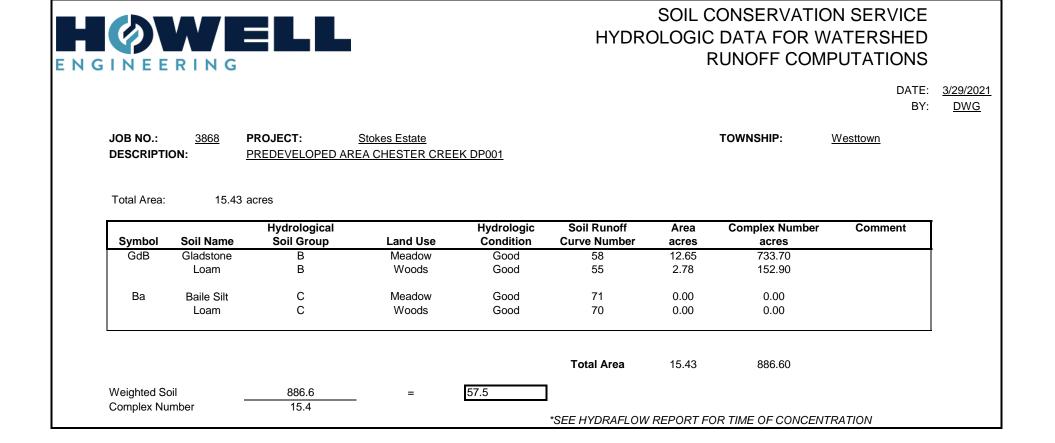
3868

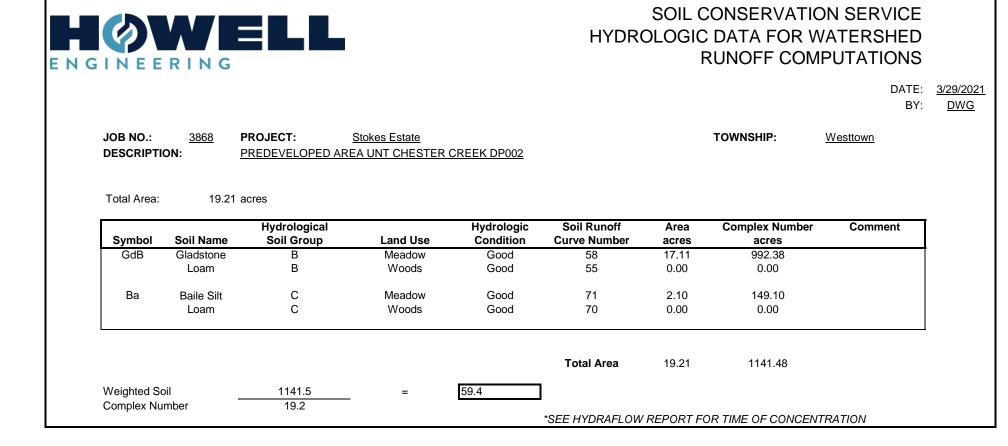
Stormwater Summary **Peak Flow Reduction Requirements**

DATE: <u>3/13/2023</u> BY: DWG REV: <u>0</u>

JOB NO.: DESCRIPTION:

DJECT: mwater Summ	Stokes Estate ary DP003 UNT Chester Creek	TOWNSHIP: Westtown	1
1-year	Pre-Developed	4.79 cfs	Hydrograph :
1-year	Post-Developed	0.97 cfs	Hydrograph 2
1-year	Peak Flow (Outside LOD) ¹	0.27 cfs	Hydrograph 4
2-year	Pre-Developed	8.02 cfs	Hydrograph 3
2-year	Post-Developed	1.59 cfs	Hydrograph 2
2-year	Peak Flow (Outside LOD) ¹	0.57 cfs	Hydrograph 4
5-year	Pre-Developed	14.55 cfs	Hydrograph 3
5-year	Post-Developed	2.82 cfs	Hydrograph 2
5-year	Peak Flow (Outside LOD) ¹	1.20 cfs	Hydrograph -
10-year	Pre-Developed	20.20 cfs	Hydrograph
10-year	Post-Developed	3.88 cfs	Hydrograph 2
10-year	Peak Flow (Outside LOD) ¹	1.77 cfs	Hydrograph -
25-year	Pre-Developed	28.88 cfs	Hydrograph
25-year	Post-Developed	9.90 cfs	Hydrograph 2
25-year	Peak Flow (Outside LOD) ¹	2.65 cfs	Hydrograph -
50-year	Pre-Developed	36.78 cfs	Hydrograph
50-year	Post-Developed	16.09 cfs	Hydrograph 2
50-year	Peak Flow (Outside LOD) ¹	3.46 cfs	Hydrograph -
100-year	Pre-Developed	45.54 cfs	Hydrograph
100-year	Post-Developed	24.22 cfs	Hydrograph 2
100-year	Peak Flow (Outside LOD) ¹	4.36 cfs	Hydrograph 4


¹This area is outside the regulated activity (ORA) (or outside the limit of disturbance (LOD)), therefore is not subject to peak flow rate control requirements. As such, the flow from the area outside the LOD is added to the Pre Developed flow that is within the regulated activity to determine the allowable post developed flow.


CHESTER CREEK 0.50 RELEASE RATE AREA

	cfs	1.59	Post Developed 2 Year Flow =
SATISFIE			•
	cfs	5.36	Pre Developed 1 Year Flow + 2 Year Outside LOD =
CATIONIC	cfs	2.82	Post Developed 5 Year Flow =
SATISFIE	cfs	8.48	50% Pre Developed 5 Year Flow + 5 Year Outside LOD =
04710515	cfs	3.88	Post Developed 10 Year Flow =
SATISFIE	cfs	11.87	50% Pre Developed 10 Year Flow + 10 Year Outside LOD =
CATION	cfs	9.90	Post Developed 25 Year Flow =
SATISFIE	cfs	17.09	50% Pre Developed 25 Year Flow + 25 Year Outside LOD =
	cfs	16.09	Post Developed 50 Year Flow =
SATISFIE	cfs	21.85	50% Pre Developed 50 Year Flow + 50 Year Outside LOD =
	cfs	24.22	Post Developed 100 Year Flow =
SATISFIE	cfs	27.13	50% Pre Developed 100 Year Flow + 100 Year Outside LOD =

APPENDIX C

SCS METHOD CURVE NUMBER (CN) CALCULATIONS

SOIL CONSERVATION SERVICE HYDROLOGIC DATA FOR WATERSHED RUNOFF COMPUTATIONS

DATE: <u>3/29/2021</u>

BY: <u>DWG</u>

Total Area: 8.19 acres								
Symbol	Soil Name	Hydrological Soil Group	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area acres	Complex Number acres	Comment
GdB	Gladstone	В	Meadow	Good	58	2.39	138.62	
	Loam	В	Woods	Good	55	0.00	0.00	
Ва	Baile Silt	С	Meadow	Good	71	4.85	344.35	
	Loam	С	Woods	Good	70	0.00	0.00	
Са	Califon	D	Meadow	Good	80	0.95	76.00	
					Total Area	8.19	558.97	

SOIL CONSERVATION SERVICE HYDROLOGIC DATA FOR WATERSHED RUNOFF COMPUTATIONS

DATE: <u>3/29/2021</u>

BY: DWG

otal Area:	0.81 a	acres						
Symbol	Soil Name	Hydrological Soil Group	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area acres	Complex Number acres	Comment
GdB	Gladstone	B	Meadow	Good	58	0.73	42.34	
Cub	Loam	В	Woods	Good	55	0.00	0.00	
		B	Impervious	N/A	98	0.08	7.84	Existing Drive
Ва	Baile Silt	С	Meadow	Good	71	0.00	0.00	J.
	Loam	С	Woods	Good	70	0.00	0.00	
					Total Area	0.81	50.18	

GINEE					HYDRO	OLOGIO	CONSERVATI C DATA FOR V RUNOFF CON	WATERS	HED	
JOB NO.: DESCRIPTIO	<u></u>	PROJECT: POST DEVELOPED B	<u>Stokes Estate</u> ASIN 3				TOWNSHIP:	Westtown	DATE: BY:	<u>3/29/202</u> DWG
Total Area:	12.15 a	Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comme	ent	
Symbol	Soil Namo	Soil Group	I and lleo	Condition	Curvo Numbor	20100	20106			
Symbol GdB	Soil Name Gladstone	Soil Group B	Land Use Woods	Condition Good	Curve Number 55	0.62	acres 34.10			
		B	Woods Lawn	Good Good	55 61	0.62 8.10	34.10 494.23			
GdB	Gladstone Loam	B B N/A	Woods Lawn Impervious	Good Good N/A	55 61 98	0.62 8.10 3.43	34.10 494.23 335.94			
	Gladstone Loam Baile Silt	B B N/A C	Woods Lawn Impervious Meadow	Good Good N/A Good	55 61 98 71	0.62 8.10 3.43 0.00	34.10 494.23 335.94 0.00			
GdB	Gladstone Loam	B B N/A	Woods Lawn Impervious	Good Good N/A	55 61 98	0.62 8.10 3.43	34.10 494.23 335.94			
GdB	Gladstone Loam Baile Silt	B B N/A C	Woods Lawn Impervious Meadow	Good Good N/A Good	55 61 98 71	0.62 8.10 3.43 0.00	34.10 494.23 335.94 0.00			
GdB Ba	Gladstone Loam Baile Silt Loam	B B N/A C	Woods Lawn Impervious Meadow	Good Good N/A Good	55 61 98 71 74	0.62 8.10 3.43 0.00 0.00	34.10 494.23 335.94 0.00 0.00			
GdB	Gladstone Loam Baile Silt Loam	B B N/A C C	Woods Lawn Impervious Meadow Lawn	Good Good N/A Good Good	55 61 98 71 74	0.62 8.10 3.43 0.00 0.00	34.10 494.23 335.94 0.00 0.00			

GINEE					HYDRO	OLOGIC	CONSERVATI C DATA FOR N RUNOFF CON	WATERS	HED	
									DATE: BY:	<u>3/29/20</u> DWG
JOB NO.: DESCRIPTIO		PROJECT: POST DEVELOPED B	Stokes Estate				TOWNSHIP:	<u>Westtown</u>		
Total Area:	1.49 a	acros								
Symbol	Soil Name	Hydrological Soil Group	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area acres	Complex Number acres	Comm	ent	
		Hydrological	Land Use Meadow					Comm	ent	
Symbol	Soil Name	Hydrological Soil Group B B	Meadow Lawn	Condition Good Good	Curve Number 58 61	acres 0.00 1.40	acres 0.00 85.40	- Comme	ent	
Symbol GdB	Soil Name Gladstone Loam	Hydrological Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	acres 0.00 1.40 0.09	acres 0.00 85.40 8.55	Comm	ent	
Symbol	Soil Name Gladstone Loam Baile Silt	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 1.40 0.09 0.00	acres 0.00 85.40 8.55 0.00	Comm	ent	
Symbol GdB	Soil Name Gladstone Loam	Hydrological Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	acres 0.00 1.40 0.09	acres 0.00 85.40 8.55	Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 1.40 0.09 0.00	acres 0.00 85.40 8.55 0.00	Comm	ent	
Symbol GdB Ba	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good N/A Good Good	Curve Number 58 61 98 71 74	acres 0.00 1.40 0.09 0.00 0.00	acres 0.00 85.40 8.55 0.00 0.00	- Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B B N/A C C	Meadow Lawn Impervious Meadow Lawn	Condition Good Good N/A Good	Curve Number 58 61 98 71 74	acres 0.00 1.40 0.09 0.00 0.00	acres 0.00 85.40 8.55 0.00 0.00	- Comm	ent	

GINEE					HYDRO	OLOGIC	CONSERVATI C DATA FOR RUNOFF COM	WATERS	HED	
JOB NO.: DESCRIPTIO	<u></u> ·	PROJECT: POST DEVELOPED B	<u>Stokes Estate</u> BASIN 1				Township:	Westtown	DATE: BY:	<u>3/29/202</u> DWG
Total Area:	10.95 a									
rotal Area.	10.95 a				0.11.0					
	Soil Name	Hydrological	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area acres	Complex Number acres	r Comm	ent	
Symbol GdB			Land Use Meadow				-	r Comm	ent	
Symbol	Soil Name	Hydrological Soil Group		Condition	Curve Number	acres	acres	r Comm	ent	
Symbol	Soil Name Gladstone	Hydrological Soil Group B	Meadow	Condition Good	Curve Number 58	acres 0.00	acres 0.00	r Comm	ent	
Symbol	Soil Name Gladstone	Hydrological Soil Group B B N/A C	Meadow Lawn	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 7.57 3.08 0.00	0.00 461.77 301.86 0.00	r Comm	ent	
Symbol GdB	Soil Name Gladstone Loam	Hydrological Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	acres 0.00 7.57 3.08	0.00 461.77 301.86	r Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 7.57 3.08 0.00	0.00 461.77 301.86 0.00	r Comm	ent	
Symbol GdB Ba	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B N/A C C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good Good	Curve Number 58 61 98 71 74	acres 0.00 7.57 3.08 0.00 0.30	acres 0.00 461.77 301.86 0.00 22.20	r Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow Lawn	Condition Good Good N/A Good	Curve Number 58 61 98 71 74	acres 0.00 7.57 3.08 0.00 0.30	acres 0.00 461.77 301.86 0.00 22.20	r Comm	ent	

GINEE					HYDRO	DLOGIC	CONSERVATI C DATA FOR \ RUNOFF CON	WATERS	HED	
									DATE: BY:	<u>3/29/20</u> DWC
JOB NO.: DESCRIPTIO		PROJECT: POST DEVELOPED B	<u>Stokes Estate</u> 3ASIN 2				TOWNSHIP:	<u>Westtown</u>		
Total Area:	8.54 a			Hydrologic	Soil Pupoff	Area	Complex Number	r Comm	ont	
		Hydrological	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area	Complex Number acres	r Comm	ent	
Total Area: Symbol GdB	8.54 a Soil Name Gladstone		Land Use Meadow	Hydrologic Condition Good	Soil Runoff Curve Number 58	Area acres	Complex Number acres	r Comm	ent	
Symbol	Soil Name	Hydrological Soil Group		Condition	Curve Number	acres	acres	r Comm	lent	
Symbol	Soil Name Gladstone	Hydrological Soil Group B	Meadow	Condition Good	Curve Number 58	acres 0.00	acres 0.00	r Comm	lent	
Symbol	Soil Name Gladstone	Hydrological Soil Group B B	Meadow Lawn	Condition Good Good	Curve Number 58 61	acres 0.00 4.41	0.00 269.01	r Comm	lent	
Symbol GdB	Soil Name Gladstone Loam	Hydrological Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	0.00 4.41 3.23	0.00 269.01 316.23	r Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 4.41 3.23 0.00	acres 0.00 269.01 316.23 0.00	r Comm	lent	
Symbol GdB Ba	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B B N/A C C	Meadow Lawn Impervious Meadow Lawn	Condition Good Ood N/A Good Good	Curve Number 58 61 98 71 74	acres 0.00 4.41 3.23 0.00 0.90	acres 0.00 269.01 316.23 0.00 66.60	r Comm	lent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71 74	acres 0.00 4.41 3.23 0.00 0.90	acres 0.00 269.01 316.23 0.00 66.60	r Comm	lent	

GINEE					HYDRO	OLOGIC	CONSERVATION CONSERVATION DATA FOR V RUNOFF COM	WATERS	HED	
									DATE: BY:	<u>3/29/20</u> DWC
JOB NO.: DESCRIPTIC	<u></u> ·	PROJECT: POST DEVELOPED B	Stokes Estate YPASS DP002				TOWNSHIP:	<u>Westtown</u>		
Total Area:	1.54 a	acres								
		Hvdrological		Hvdrologic	Soil Runoff	Area	Complex Number	Comm	ent	
Symbol	Soil Name	Hydrological Soil Group	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area acres	Complex Number acres	Commo	ent	
Symbol GdB	Soil Name Gladstone		Land Use Meadow					Commo	ent	
		Soil Group		Condition	Curve Number	acres	acres	Comm	ent	
	Gladstone	Soil Group B	Meadow	Condition Good	Curve Number 58	acres 0.00	acres 0.00	Comm	ent	
	Gladstone	Soil Group B B	Meadow Lawn	Condition Good Good	Curve Number 58 61 98 71	acres 0.00 1.54	acres 0.00 93.94	Commo	ent	
GdB	Gladstone Loam	Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	acres 0.00 1.54 0.00	acres 0.00 93.94 0.00	Comm	ent	
GdB	Gladstone Loam Baile Silt	Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 1.54 0.00 0.00	acres 0.00 93.94 0.00 0.00	Comm	ent	
GdB Ba	Gladstone Loam Baile Silt Loam	Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71 74	acres 0.00 1.54 0.00 0.00 0.00	acres 0.00 93.94 0.00 0.00 0.00	Comm	ent	
GdB	Gladstone Loam Baile Silt Loam	Soil Group B B N/A C C C	Meadow Lawn Impervious Meadow Lawn	Condition Good Good N/A Good Good	Curve Number 58 61 98 71 74	acres 0.00 1.54 0.00 0.00 0.00	acres 0.00 93.94 0.00 0.00 0.00	Comm	ent	

GINEE					HYDRO	OLOGIC	CONSERVATION C DATA FOR V RUNOFF COM	WATERSHED)
								DATE BY	
JOB NO.: DESCRIPTIC	ON: <u>F</u>	PROJECT: POST DEVELOPED B	Stokes Estate 3ASIN 4				TOWNSHIP:	Westtown	
Total Area:	4.42 a	Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comment	Т
Symbol	Soil Name	Soil Group	Land Use	Condition	Curve Number	acres	acres	Comment	
GdB	Gladstone	B	Meadow	Good	58	0.00	0.00		1
	Loam	В	Lawn	Good	61	1.77	107.97		
		D	Lawin	0000		1.77	101.51		
		N/A	Impervious	N/A	98	1.30	127.47		
Ва	Baile Silt	_			98 71				
Ва	Baile Silt Loam	N/A	Impervious	N/A		1.30	127.47		
Ва		N/A C	Impervious Meadow	N/A Good	71	1.30 0.00	127.47 0.00		
Ba Weighted So Complex Nu	Loam	N/A C	Impervious Meadow	N/A Good	71 74	1.30 0.00 1.35	127.47 0.00 99.90		

GINEE					HYDRO	OLOGIO	CONSERVATI C DATA FOR N RUNOFF CON	NATERSHED	
								DATE: BY:	
JOB NO.: DESCRIPTIO	ON: <u>F</u>	PROJECT: POST DEVELOPED L	<u>Stokes Estate</u> J <u>G BED 1</u>				TOWNSHIP:	Westtown	
Total Area:	2.82 a			Undralagia	Cail Duraff	A	Complex Number	Commont	T
Symbol	Soil Name	Hydrological Soil Group	Land Use	Hydrologic Condition	Soil Runoff Curve Number	Area acres	Complex Number acres	Comment	
									4
GdB	Gladstone	В	Meadow	Good	58	0.00	0.00		
			Meadow Lawn	Good Good	58 61	0.00 0.72	0.00 43.92		
	Gladstone	В							
	Gladstone	B	Lawn	Good	61	0.72	43.92		
GdB	Gladstone Loam	B B N/A	Lawn Impervious	Good N/A	61 98	0.72 1.08	43.92 105.53		
GdB	Gladstone Loam Baile Silt	B B N/A C	Lawn Impervious Meadow	Good N/A Good	61 98 71	0.72 1.08 0.00	43.92 105.53 0.00		
GdB	Gladstone Loam Baile Silt Loam	B B N/A C	Lawn Impervious Meadow	Good N/A Good	61 98 71 74	0.72 1.08 0.00 1.02	43.92 105.53 0.00 75.48		
GdB Ba	Gladstone Loam Baile Silt Loam	B B N/A C C	Lawn Impervious Meadow Lawn	Good N/A Good Good	61 98 71 74	0.72 1.08 0.00 1.02	43.92 105.53 0.00 75.48		

					HYDRO	OLOGIC	CONSERVATION CONSERVATION DATA FOR V RUNOFF COM	WATERS	HED	
									DATE: BY:	<u>3/29/20</u> <u>DWG</u>
JOB NO.: DESCRIPTIC	<u></u> -	PROJECT: POST DEVELOPED B	Stokes Estate SYPASS DP002				TOWNSHIP:	<u>Westtown</u>		
Total Area:	1.34 a	Hydrological		Hydrologic	Soil Runoff	Area	Complex Number	Comm	ent	
Total Area: Symbol	1.34 a Soil Name		Land Use	Condition	Curve Number	Area acres	Complex Number acres	Commo	ent	
	Soil Name Gladstone	Hydrological Soil Group B	Meadow	Condition Good	Curve Number 58	acres 0.00	acres 0.00	Comme	ent	
Symbol	Soil Name	Hydrological Soil Group B B	Meadow Lawn	Condition Good Good	Curve Number 58 61	acres 0.00 0.80	acres 0.00 48.80	Comme	ent	
Symbol GdB	Soil Name Gladstone Loam	Hydrological Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	acres 0.00 0.80 0.09	acres 0.00 48.80 8.55	Comm	ent	
Symbol	Soil Name Gladstone Loam Baile Silt	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 0.80 0.09 0.00	acres 0.00 48.80 8.55 0.00	Comm	ent	
Symbol GdB	Soil Name Gladstone Loam	Hydrological Soil Group B B N/A	Meadow Lawn Impervious	Condition Good Good N/A	Curve Number 58 61 98	acres 0.00 0.80 0.09	acres 0.00 48.80 8.55	Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good	Curve Number 58 61 98 71	acres 0.00 0.80 0.09 0.00	acres 0.00 48.80 8.55 0.00	Comm	ent	
Symbol GdB Ba	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B N/A C C	Meadow Lawn Impervious Meadow	Condition Good Good N/A Good Good	Curve Number 58 61 98 71 74	acres 0.00 0.80 0.09 0.00 0.45	acres 0.00 48.80 8.55 0.00 33.30	Comm	ent	
Symbol GdB	Soil Name Gladstone Loam Baile Silt Loam	Hydrological Soil Group B B N/A C	Meadow Lawn Impervious Meadow Lawn	Condition Good Good N/A Good	Curve Number 58 61 98 71 74	acres 0.00 0.80 0.09 0.00 0.45	acres 0.00 48.80 8.55 0.00 33.30	Comm	ent	

APPENDIX D

HYDRAFLOW HYDROGRAPH REPORTS

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hydrograph Return Period Recap..... 1

- Year	
Summary Report	2
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	3
TR-55 Tc Worksheet	4
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	5
TR-55 Tc Worksheet	6
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	7
TR-55 Tc Worksheet	8
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	9
Hydrograph No. 5, SCS Runoff, Post Basin 3	
Hydrograph No. 6, Reservoir, Basin 3 Routed	
Pond Report - Basin 3	12
Hydrograph No. 7, SCS Runoff, Post Bypass DP001	
Hydrograph No. 8, Combine, Post Total DP001	
Hydrograph No. 10, SCS Runoff, Post Basin 1	
Hydrograph No. 11, Reservoir, Basin 1 Upper Routed	. 16
Pond Report - Basin 1 Upper	
Hydrograph No. 12, Reservoir, Basin 1 Lower Routed	
Pond Report - Basin 1 Lower	
Hydrograph No. 13, SCS Runoff, Post Basin 2	
Hydrograph No. 14, Reservoir, Basin 2 Routed	
Pond Report - Basin 2	
Hydrograph No. 15, SCS Runoff, Post Bypass DP002	23
Hydrograph No. 16, Combine, Post Total DP002	
Hydrograph No. 18, SCS Runoff, Post to Basin 4	
Hydrograph No. 19, Reservoir, Basin 4 Routed	
Pond Report - Basin 4	
Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	
Pond Report - UG Bed 1/Basin	
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	
Hydrograph No. 23, Combine, Post Total DP003	32

2 - Year

Summary Report	33
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	35
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	36
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	37
Hydrograph No. 5, SCS Runoff, Post Basin 3	38
Hydrograph No. 6, Reservoir, Basin 3 Routed	39
Hydrograph No. 7, SCS Runoff, Post Bypass DP001	40
Hydrograph No. 8, Combine, Post Total DP001	41
Hydrograph No. 10, SCS Runoff, Post Basin 1	42

	4.0
Hydrograph No. 11, Reservoir, Basin 1 Upper Routed	
Hydrograph No. 12, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 13, SCS Runoff, Post Basin 2	
Hydrograph No. 14, Reservoir, Basin 2 Routed	
Hydrograph No. 15, SCS Runoff, Post Bypass DP002	. 47
Hydrograph No. 16, Combine, Post Total DP002	
Hydrograph No. 18, SCS Runoff, Post to Basin 4	. 49
Hydrograph No. 19, Reservoir, Basin 4 Routed	. 50
Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	. 51
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	
Hydrograph No. 23, Combine, Post Total DP003	
5 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	59
Hydrograph No. 5, SCS Runoff, Post Basin 3	60
Hydrograph No. 6, Reservoir, Basin 3 Routed	. 61
Hydrograph No. 7, SCS Runoff, Post Bypass DP001	. 62
Hydrograph No. 8, Combine, Post Total DP001	. 63
Hydrograph No. 10, SCS Runoff, Post Basin 1	. 64
Hydrograph No. 11, Reservoir, Basin 1 Upper Routed	65
Hydrograph No. 12, Reservoir, Basin 1 Lower Routed	. 66
Hydrograph No. 13, SCS Runoff, Post Basin 2	
Hydrograph No. 14, Reservoir, Basin 2 Routed	
Hydrograph No. 15, SCS Runoff, Post Bypass DP002	
Hydrograph No. 16, Combine, Post Total DP002	
Hydrograph No. 18, SCS Runoff, Post to Basin 4	
Hydrograph No. 19, Reservoir, Basin 4 Routed	
Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	
Hydrograph No. 23, Combine, Post Total DP003	
10 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	
Hydrograph No. 5, SCS Runoff, Post Basin 3	. 82

Hydrograph No. 6, Reservoir, Basin 3 Routed.83Hydrograph No. 7, SCS Runoff, Post Bypass DP001.84Hydrograph No. 8, Combine, Post Total DP001.85Hydrograph No. 10, SCS Runoff, Post Basin 1.86

Hydrograph No. 11, Reservoir, Basin 1 Upper Routed Hydrograph No. 12, Reservoir, Basin 1 Lower Routed Hydrograph No. 13, SCS Runoff, Post Basin 2 Hydrograph No. 14, Reservoir, Basin 2 Routed Hydrograph No. 15, SCS Runoff, Post Bypass DP002 Hydrograph No. 16, Combine, Post Total DP002 Hydrograph No. 18, SCS Runoff, Post to Basin 4 Hydrograph No. 19, Reservoir, Basin 4 Routed Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	88 89 90 91 92 93 94 95
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	
Hydrograph No. 23, Combine, Post Total DP003	. 98
25 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	
Hydrograph No. 5, SCS Runoff, Post Basin 3	
Hydrograph No. 6, Reservoir, Basin 3 Routed	
Hydrograph No. 7, SCS Runoff, Post Bypass DP001	
Hydrograph No. 8, Combine, Post Total DP001	
Hydrograph No. 10, SCS Runoff, Post Basin 1	
Hydrograph No. 11, Reservoir, Basin 1 Upper Routed	109
Hydrograph No. 12, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 13, SCS Runoff, Post Basin 2	
Hydrograph No. 14, Reservoir, Basin 2 Routed	
Hydrograph No. 15, SCS Runoff, Post Bypass DP002	
Hydrograph No. 16, Combine, Post Total DP002	
Hydrograph No. 18, SCS Runoff, Post to Basin 4	
Hydrograph No. 19, Reservoir, Basin 4 Routed	
Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	
Hydrograph No. 23, Combine, Post Total DP003	120
50 - Year	404
Summary Report	
Hydrograph Reports	122

Hydrograph Reports	122
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	123
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	124
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	125
Hydrograph No. 5, SCS Runoff, Post Basin 3	126
Hydrograph No. 6, Reservoir, Basin 3 Routed	127
Hydrograph No. 7, SCS Runoff, Post Bypass DP001	128
Hydrograph No. 8, Combine, Post Total DP001	129
Hydrograph No. 10, SCS Runoff, Post Basin 1	130

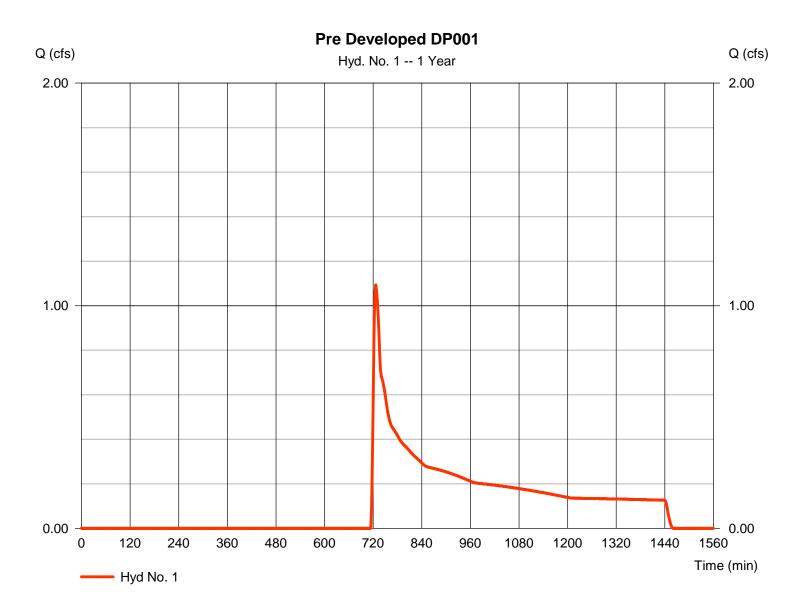
Hydrograph No. 11, Reservoir, Basin 1 Upper Routed	. 131
Hydrograph No. 12, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 13, SCS Runoff, Post Basin 2	133
Hydrograph No. 14, Reservoir, Basin 2 Routed	134
Hydrograph No. 15, SCS Runoff, Post Bypass DP002	135
Hydrograph No. 16, Combine, Post Total DP002	
Hydrograph No. 18, SCS Runoff, Post to Basin 4	137
Hydrograph No. 19, Reservoir, Basin 4 Routed	
Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	139
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	140
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	141
Hydrograph No. 23, Combine, Post Total DP003	142
100 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Pre Developed DP001	
Hydrograph No. 2, SCS Runoff, Pre Developed DP002	
Hydrograph No. 3, SCS Runoff, Pre Developed DP003	
Hydrograph No. 4, SCS Runoff, Pre Developed DP003 ORA	
Hydrograph No. 5, SCS Runoff, Post Basin 3	
Hydrograph No. 6, Reservoir, Basin 3 Routed	
Hydrograph No. 7, SCS Runoff, Post Bypass DP001	
Hydrograph No. 8, Combine, Post Total DP001	
Hydrograph No. 10, SCS Runoff, Post Basin 1	
Hydrograph No. 11, Reservoir, Basin 1 Upper Routed	
Hydrograph No. 12, Reservoir, Basin 1 Lower Routed	
Hydrograph No. 13, SCS Runoff, Post Basin 2	
Hydrograph No. 14, Reservoir, Basin 2 Routed	
Hydrograph No. 15, SCS Runoff, Post Bypass DP002	
Hydrograph No. 16, Combine, Post Total DP002	
Hydrograph No. 18, SCS Runoff, Post to Basin 4	
Hydrograph No. 19, Reservoir, Basin 4 Routed	
Hydrograph No. 20, SCS Runoff, Post to Bed 1/Basin	
Hydrograph No. 21, Reservoir, UG Bed 1/Basin Routed	
Hydrograph No. 22, SCS Runoff, Post Bypass DP003	
Hydrograph No. 23, Combine, Post Total DP003	164

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

yd. o.	Hydrograph	Inflow	Peak Outflow (cfs)							Hydrograph	
) .	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
	SCS Runoff		1.093	3.942		11.91	19.95	33.01	45.18	59.08	Pre Developed DP001
	SCS Runoff		2.474	6.847		18.02	28.64	45.70	61.46	79.34	Pre Developed DP002
	SCS Runoff		4.785	8.022		14.55	20.20	28.88	36.78	45.54	Pre Developed DP003
	SCS Runoff		0.265	0.566		1.200	1.766	2.654	3.460	4.363	Pre Developed DP003 ORA
	SCS Runoff		11.87	18.03		30.10	40.29	55.64	69.54	84.80	Post Basin 3
	Reservoir	5	0.000	0.000		0.593	1.664	7.032	20.11	24.42	Basin 3 Routed
	SCS Runoff		0.583	1.146		2.314	3.349	4.966	6.425	8.052	Post Bypass DP001
	Combine	6, 7	0.583	1.146		2.314	3.349	7.699	22.70	29.25	Post Total DP001
)	SCS Runoff		11.30	16.97		28.01	37.29	51.31	63.94	77.75	Post Basin 1
	Reservoir	10	0.000	0.000		0.510	1.244	3.633	10.69	30.18	Basin 1 Upper Routed
2	Reservoir	11	0.000	0.000		0.375	0.928	2.071	5.226	13.13	Basin 1 Lower Routed
3	SCS Runoff		12.13	17.09		26.44	34.26	46.02	56.20	67.22	Post Basin 2
1	Reservoir	13	0.000	0.120		0.682	1.706	5.509	18.98	33.12	Basin 2 Routed
5	SCS Runoff		0.417	0.956		2.121	3.170	4.826	6.335	8.028	Post Bypass DP002
6	Combine	12, 14, 15	0.417	0.956		2.121	3.170	6.169	21.32	37.69	Post Total DP002
3	SCS Runoff		6.085	8.620		13.42	17.42	23.48	28.74	34.43	Post to Basin 4
Э	Reservoir	18	0.000	0.097		0.462	1.213	3.037	4.304	10.36	Basin 4 Routed
D	SCS Runoff		4.701	6.430		9.677	12.38	16.34	19.73	23.40	Post to Bed 1/Basin
1	Reservoir	20	0.000	0.073		0.351	1.100	4.714	7.370	10.57	UG Bed 1/Basin Routed
2	SCS Runoff		0.972	1.588		2.821	3.883	5.505	6.944	8.571	Post Bypass DP003
3	Combine	19, 21, 22	0.972	1.588		2.821	3.883	9.903	16.09	24.22	Post Total DP003
-	j. file: SWM.								· · · · ·		6 / 13 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.093	2	726	9,987				Pre Developed DP001
2	SCS Runoff	2.474	2	724	15,638				Pre Developed DP002
3	SCS Runoff	4.785	2	722	15,004				Pre Developed DP003
4	SCS Runoff	0.265	2	718	787				Pre Developed DP003 ORA
5	SCS Runoff	11.87	2	718	24,737				Post Basin 3
6	Reservoir	0.000	2	n/a	0	5	317.29	24,737	Basin 3 Routed
7	SCS Runoff	0.583	2	718	1,570				Post Bypass DP001
8	Combine	0.583	2	718	1,570	6, 7			Post Total DP001
10	SCS Runoff	11.30	2	718	23,379				Post Basin 1
11	Reservoir	0.000	2	n/a	0	10	321.56	23,379	Basin 1 Upper Routed
12	Reservoir	0.000	2	n/a	0	11	302.20	0.000	Basin 1 Lower Routed
13	SCS Runoff	12.13	2	718	24,366				Post Basin 2
14	Reservoir	0.000	2	n/a	0	13	308.25	24,366	Basin 2 Routed
15	SCS Runoff	0.417	2	720	1,355				Post Bypass DP002
16	Combine	0.417	2	720	1,355	12, 14, 15			Post Total DP002
18	SCS Runoff	6.085	2	718	12,240				Post to Basin 4
19	Reservoir	0.000	2	n/a	0	18	346.01	12,240	Basin 4 Routed
20	SCS Runoff	4.701	2	718	9,401				Post to Bed 1/Basin
21	Reservoir	0.000	2	n/a	0	20	339.59	9,401	UG Bed 1/Basin Routed
22	SCS Runoff	0.972	2	718	2,149				Post Bypass DP003
23	Combine	0.972	2	718	2,149	19, 21, 22			Post Total DP003
SW	M.gpw				Return I	Period: 1 Ye	ear	Tuesday, 0	06 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

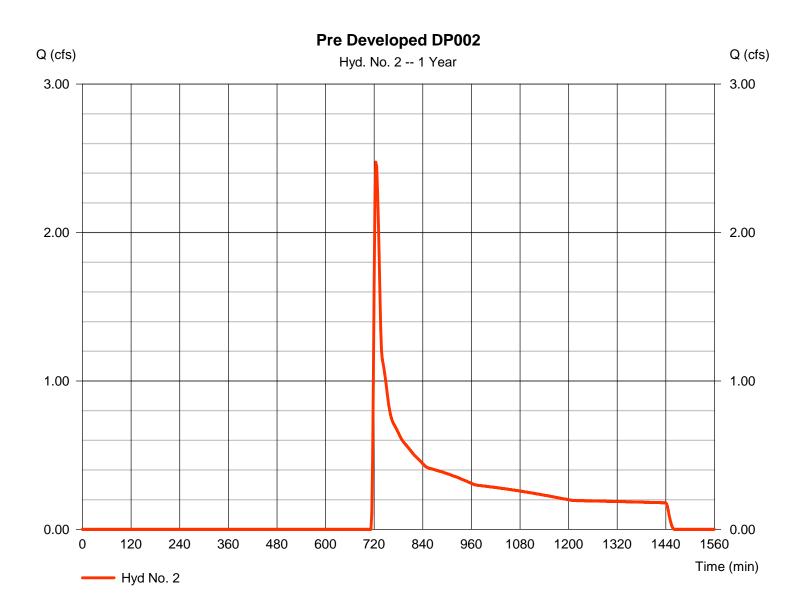
Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 1.093 cfs
Storm frequency	= 1 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 9,987 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.20 = 4.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 10.81	+	0.00	+	0.00	=	10.81
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 330.00 = 9.00 = Unpaved =4.84	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.14	+	0.00	+	0.00	=	1.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

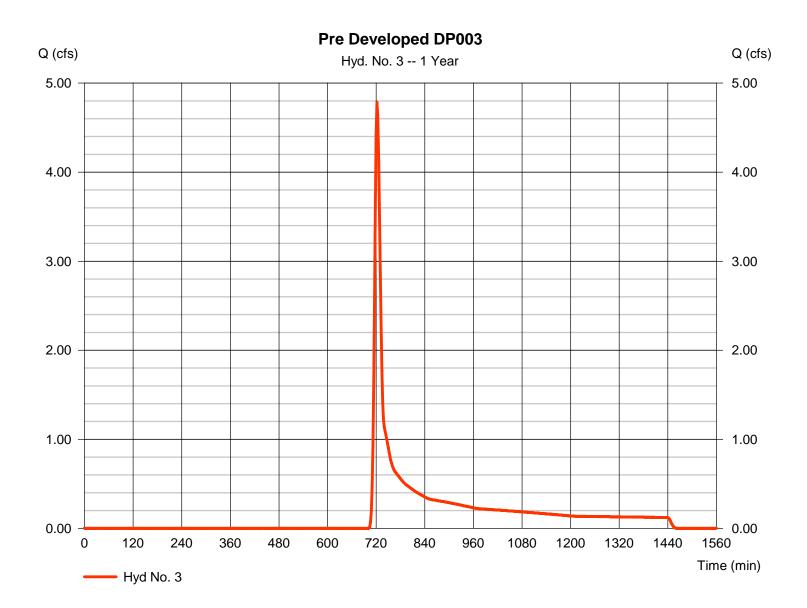
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 2.474 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 15,638 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


Hyd. No. 2

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.20 = 7.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.65	+	0.00	+	0.00	=	8.65
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 957.00 = 8.90 = Unpaved =4.81	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.31	+	0.00	+	0.00	=	3.31
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							12.00 min

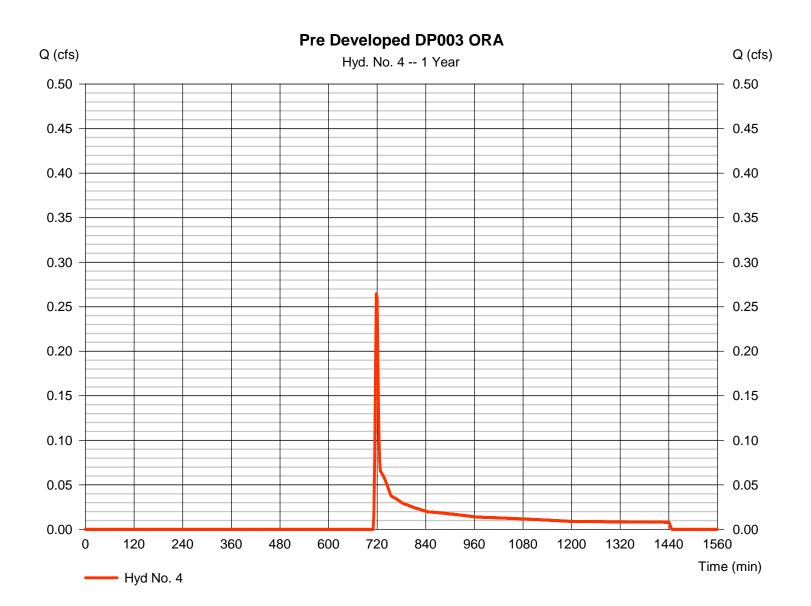
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 4.785 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 15,004 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

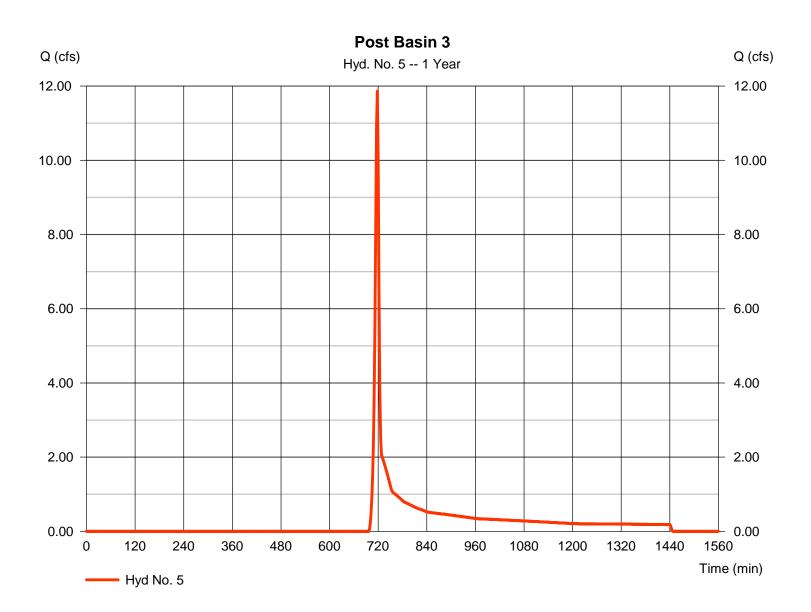

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.20 = 10.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.50	+	0.00	+	0.00	=	7.50
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 566.00 = 8.80 = Unpaved =4.79	Ы	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.97	+	0.00	+	0.00	=	1.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.50 = 3.00 = 3.40 = 0.035 =4.93		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})440.0		0.0		0.0		
Travel Time (min)	= 1.49	+	0.00	+	0.00	=	1.49
Total Travel Time, Tc							11.00 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 0.265 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 787 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

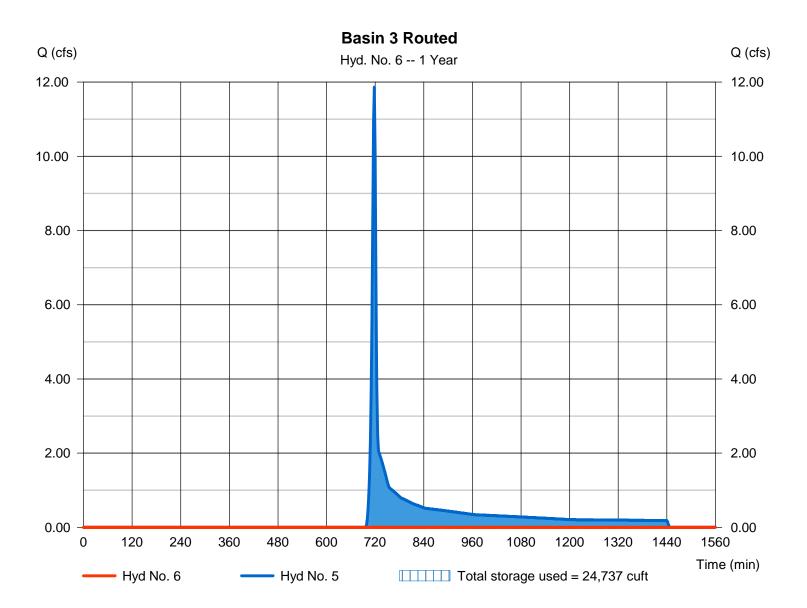


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 11.87 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 24,737 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 5 - Post Basin 3	Max. Elevation	= 317.29 ft
Reservoir name	= Basin 3	Max. Storage	= 24,737 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 5 - Basin 3

Pond Data

Crapter.orisl-Ussettedeflined/Cent30r@xe28.04%eSigle shapere@r08th.orBastedr@levalun384\$al0uttatDepBegihi89 fEleVation=401.60% ft

Stage / Storage Table

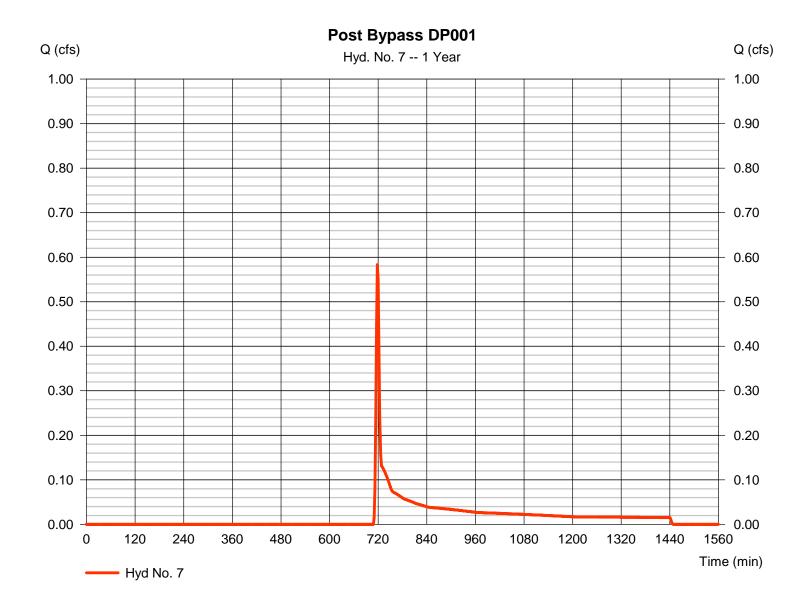
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	314.00	2,600	0	0
0.20	314.20	2,600	207	207
0.40	314.40	2,600	207	414
0.60	314.60	2,600	207	621
0.80	314.80	2,600	207	828
1.00	314.99	2,600	207	1,035
1.19	315.19	2,600	207	1,242
1.39	315.39	2,600	207	1,449
1.59	315.59	2,600	207	1,656
1.79	315.79	2,600	207	1,863
1.99	315.99	2,600	207	2,070
2.00	316.00	15,345	90	2,159
4.00	318.00	19,665	35,010	37,169
6.00	320.00	24,211	43,876	81,045
7.00	321.00	26,570	25,391	106,436

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] 0.00 Rise (in) = 18.00 0.00 0.00 Crest Len (ft) = 12.00 1.00 100.00 0.00 Span (in) = 18.00 0.00 0.00 0.00 Crest El. (ft) = 318.50 318.00 319.75 0.00 No. Barrels = 1 0 Weir Coeff. = 3.33 3.33 2.60 3.33 0 0 Invert El. (ft) = 312.00 0.00 0.00 0.00 Weir Type Rect = 1 Broad ----Length (ft) = 50.00 0.00 0.00 0.00 Multi-Stage = Yes Yes No No Slope (%) = 5.00 0.00 0.00 n/a = .013 .013 .013 N-Value n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = n/a No No No TW Elev. (ft) = 0.00 Multi-Stage

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Discharge Stage (ft) Elev (ft) 322.00 8.00 6.00 320.00 4.00 318.00 2.00 316.00 0.00 314.00 0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 320.0 360.0 400.0 Discharge (cfs) Total Q

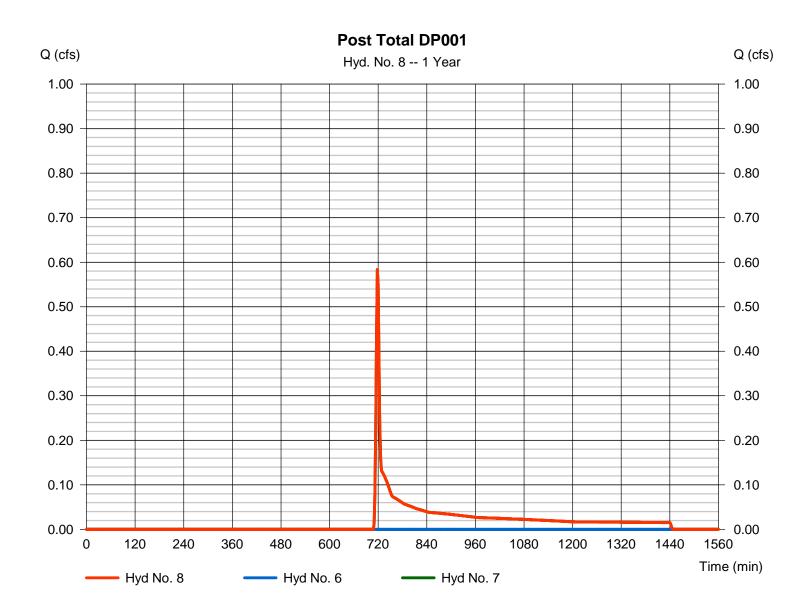

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Post Bypass DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 0.583 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 1,570 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

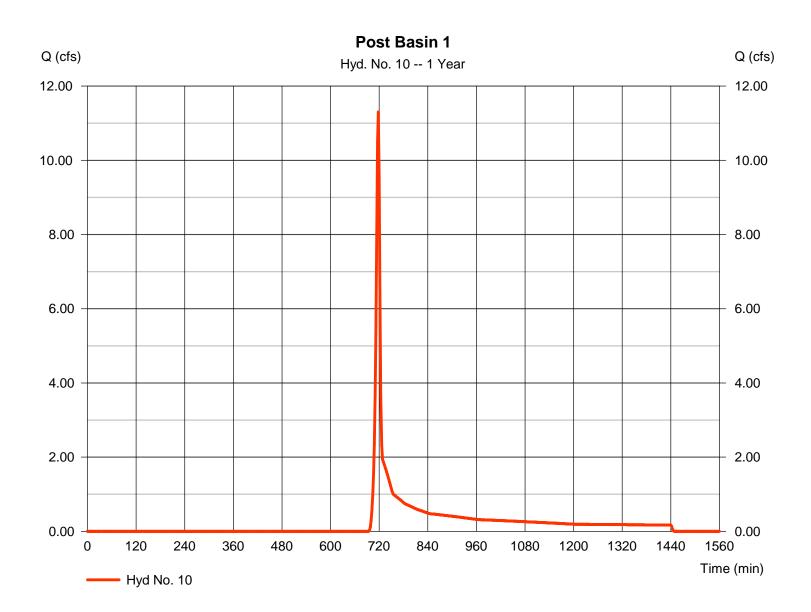


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

Hydrograph type	= Combine	Peak discharge	 = 0.583 cfs = 718 min = 1,570 cuft = 1.440 ac
Storm frequency	= 1 yrs	Time to peak	
Time interval	= 2 min	Hyd. volume	
Inflow hyds.	= 6, 7	Contrib. drain. area	
	- , -		

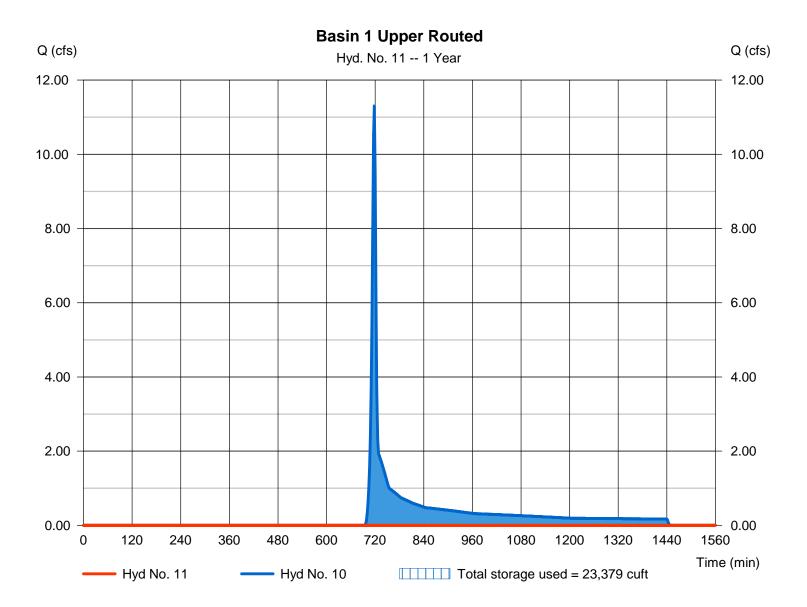


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 11.30 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 23,379 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Basin 1 Upper Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 10 - Post Basin 1	Max. Elevation	= 321.56 ft
Reservoir name	= Basin 1 Upper	Max. Storage	= 23,379 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

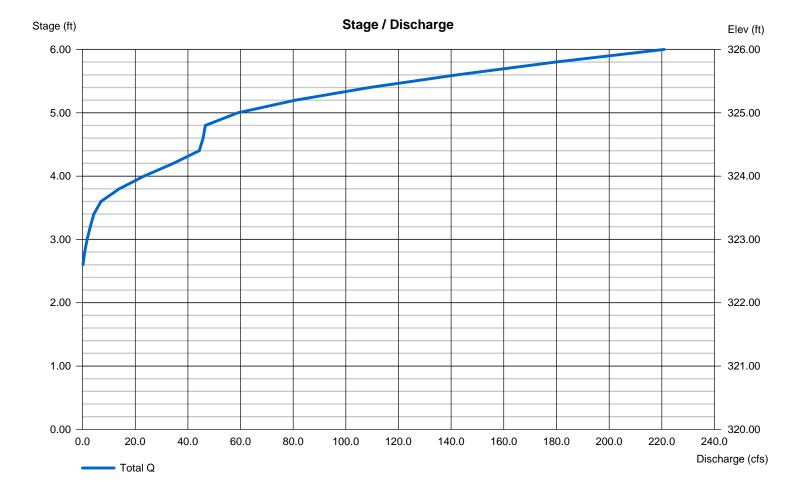
Pond No. 2 - Basin 1 Upper

Pond Data

N-Value

Orifice Coeff.

Multi-Stage

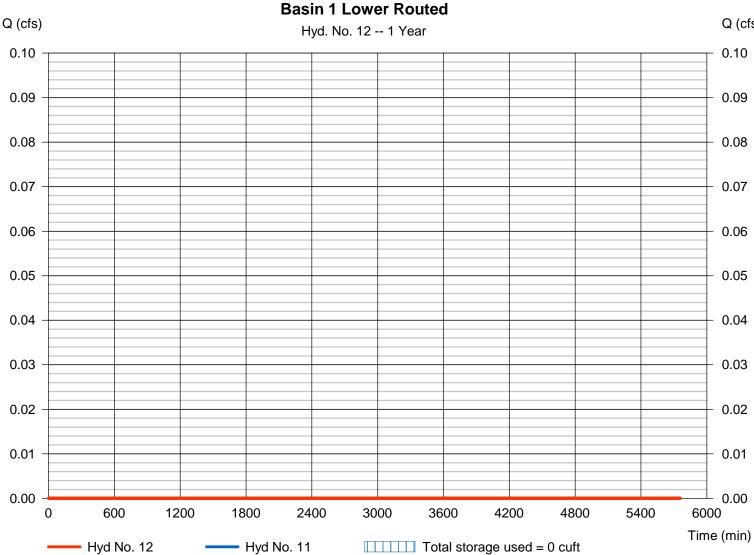

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 320.00 ft

Stage / Storage Table

elage, elen	0								
Stage (ft)	Elevation ((ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)		
0.00	320.00		13,236	;	0		0		
2.00	322.00		16,755	5	29,991	29,9	991		
4.00	324.00		20,617	,	37,372	67,	363		
6.00	326.00		24,500)	45,117	112,4	480		
Culvert / Ori	fice Structur	es			Weir Structu	res			
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 12.00	1.50	50.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 323.50	322.50	324.80	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 314.00	0.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					

= .013 .013 .013 n/a 0.60 0.60 = 0.000 (by Contour) = 0.60 0.60 Exfil.(in/hr) = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 11 - Basin 1 Upper Routed	Max. Elevation	= 302.20 ft
Reservoir name	= Basin 1 Lower	Max. Storage	= 0 cuft

Storage Indication method used.

Q (cfs)

Pond Report

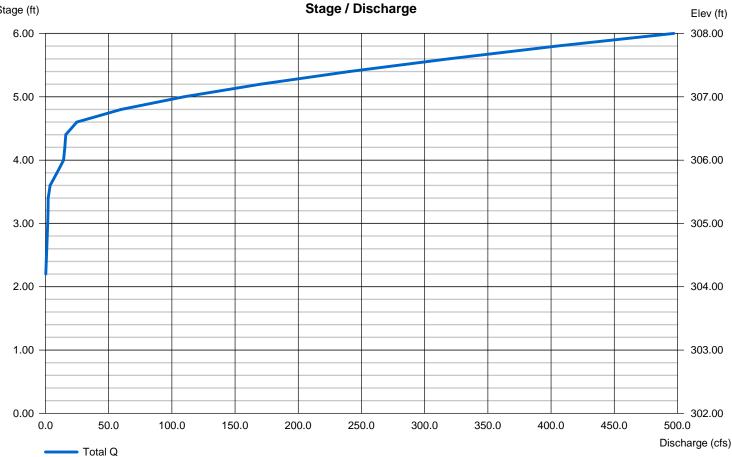
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 1 - Basin 1 Lower

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 302.00 ft

Stage / Storage Table

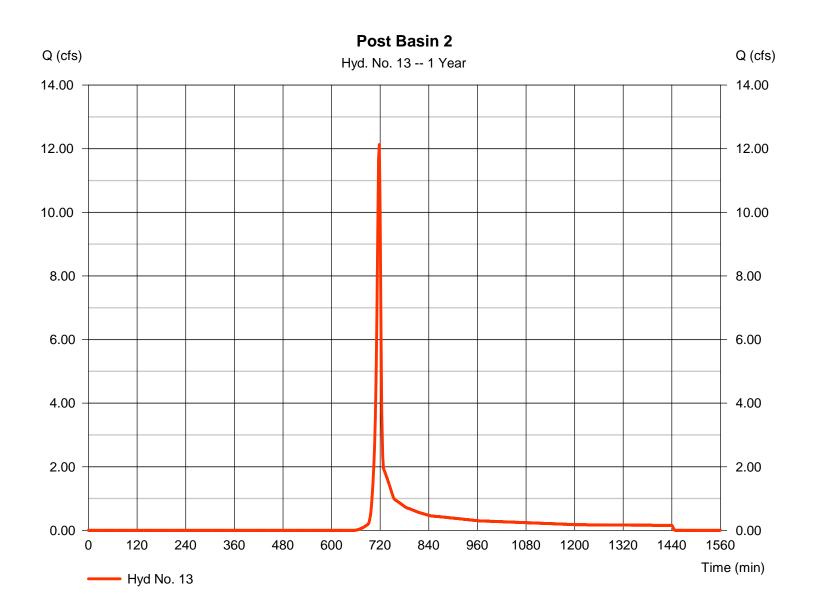

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	302.00	2,215	0	0
2.00	304.00	3,972	6,187	6,187
4.00	306.00	10,535	14,507	20,694
6.00	308.00	14,870	25,405	46,099

Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	9.00	0.00	0.00	Crest Len (ft)	= 12.00	100.00	0.00	0.00
Span (in)	= 18.00	9.00	0.00	0.00	Crest El. (ft)	= 305.50	306.50	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 302.00	304.00	0.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Stage (ft)

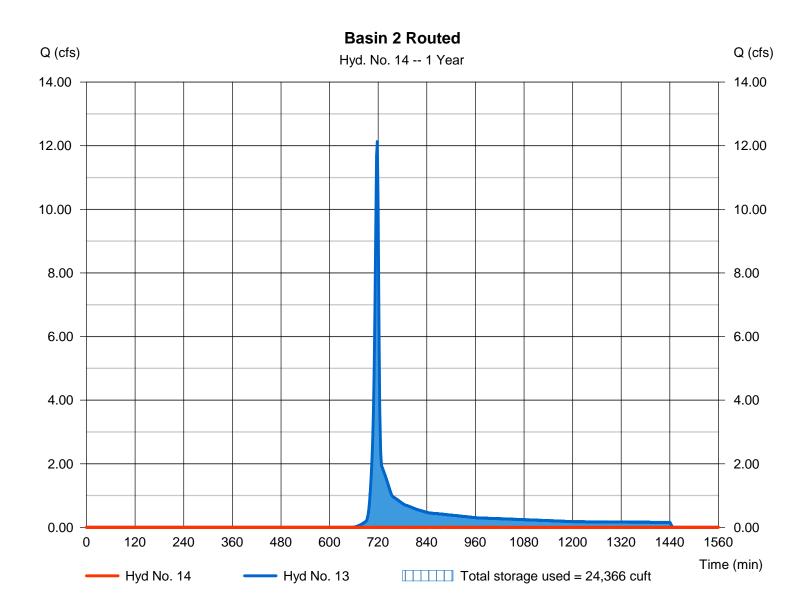
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 12.13 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 24,366 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

20


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 13 - Post Basin 2	Max. Elevation	= 308.25 ft
Reservoir name	= Basin 2	Max. Storage	= 24,366 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

0.60

No

= 0.60

= n/a

Pond No. 3 - Basin 2

Pond Data

Orifice Coeff.

Multi-Stage

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 306.00 ft

0.60

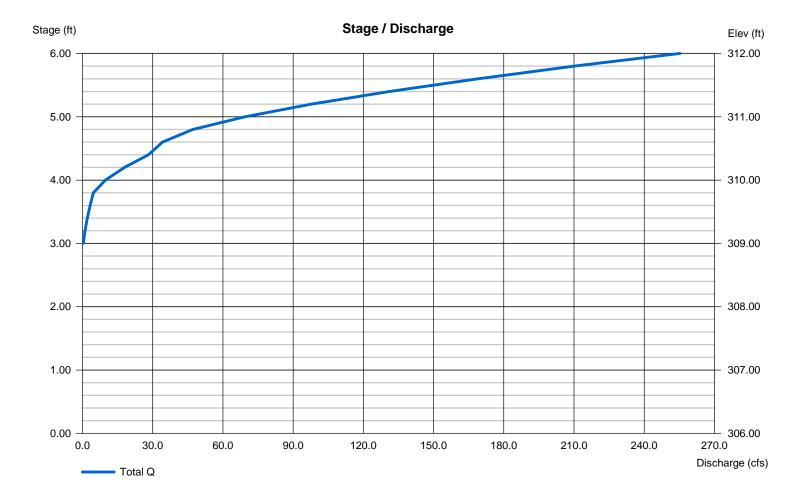
No

0.60

No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)		
0.00	306.00		8,255	5	0		0		
2.00	308.00		12,443	3	20,698	20,	698		
4.00	310.00		16,673	3	29,116	49,	814		
6.00	312.00		21,110)	37,783	87,	597		
Culvert / Ori	fice Structure	es			Weir Structu	res			
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 12.00	1.50	50.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 309.80	308.85	310.60	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 304.00	0.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					

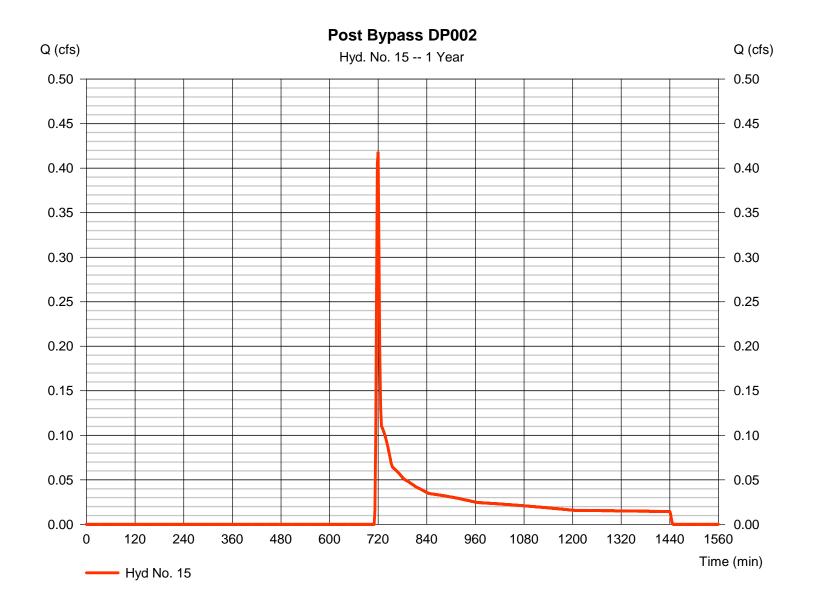

Exfil.(in/hr)

TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

= 0.00

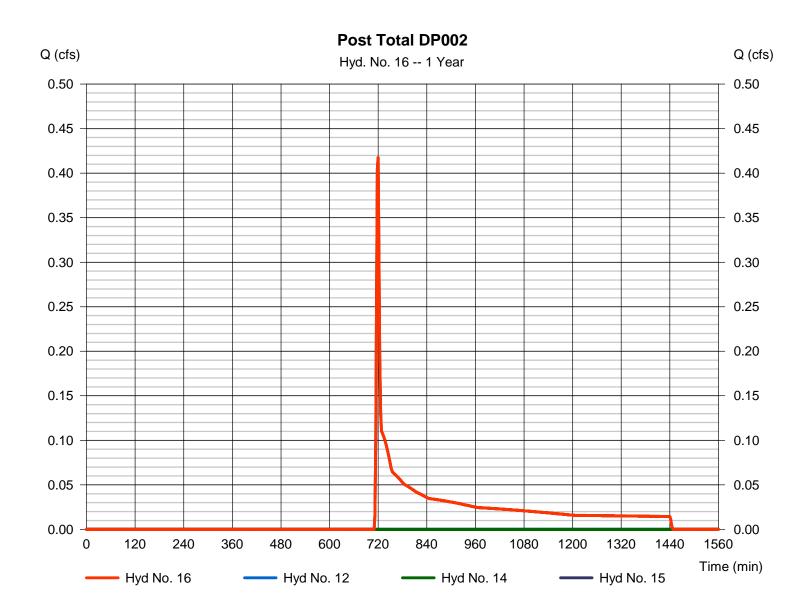
= 0.000 (by Contour)



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

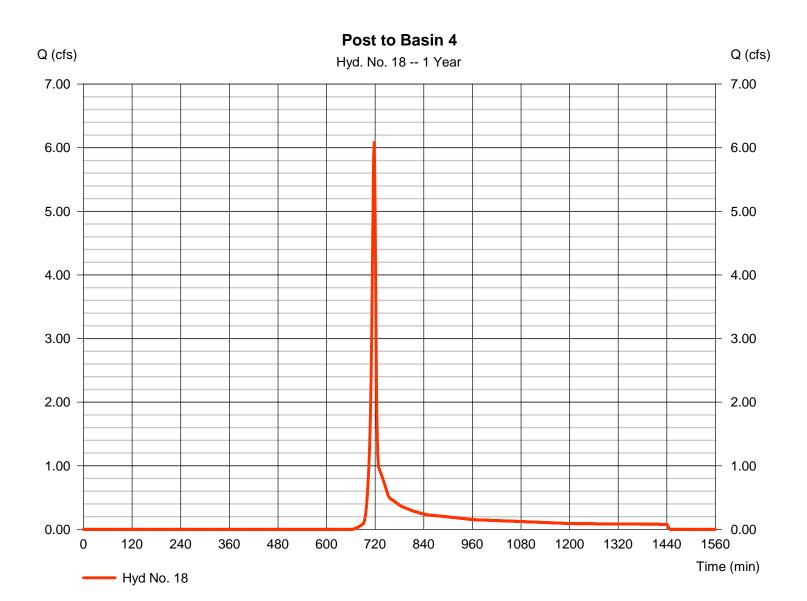
Post Bypass DP002


Hydrograph type	= SCS Runoff	Peak discharge	= 0.417 cfs
Storm frequency	= 1 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 1,355 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

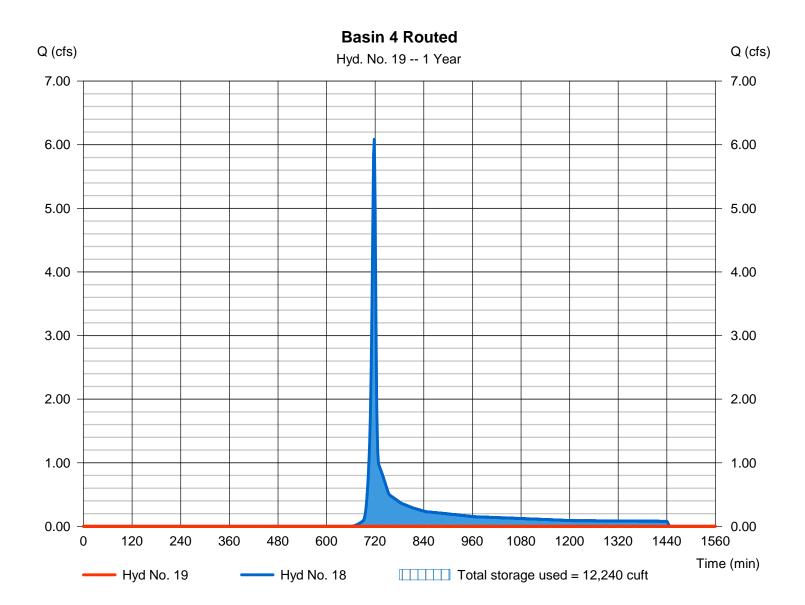

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 6.085 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 12,240 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 346.01 ft
Reservoir name	= Basin 4	Max. Storage	= 12,240 cuft

Storage Indication method used.

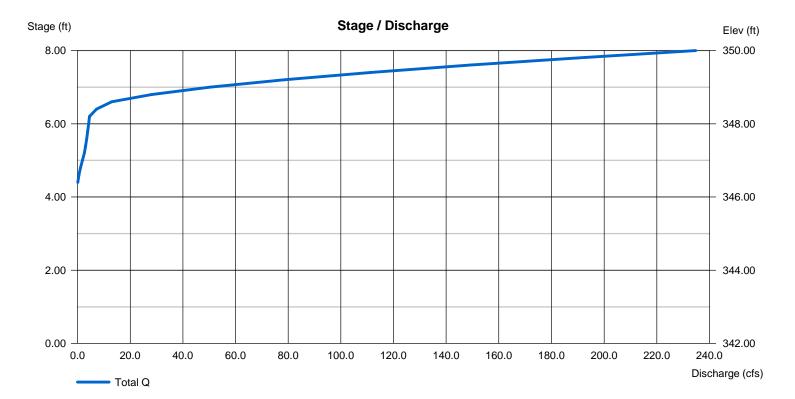
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Pond No. 7 - Basin 4

Pond Data

Capter oisl-Use to define Weat a construction of the state of the stat


Stage / Storage Table

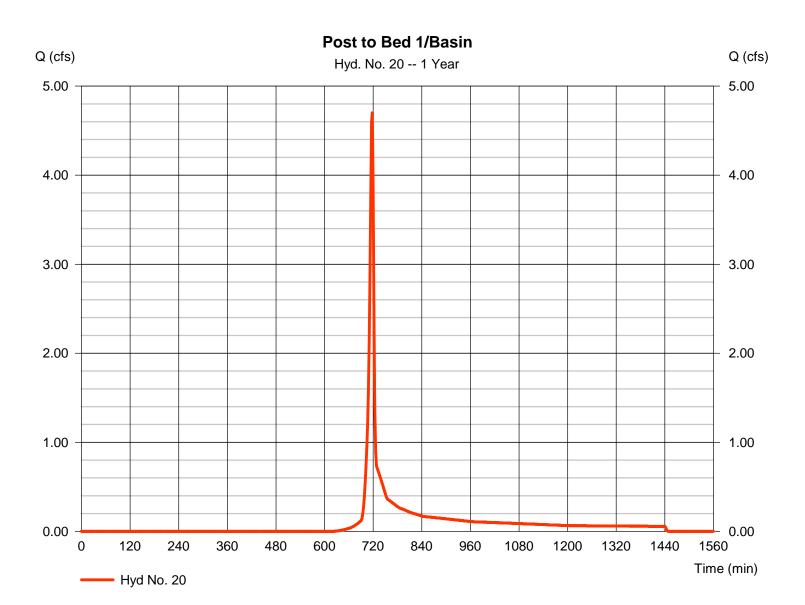
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	342.00	1,300	0	0
0.20	342.20	1,300	103	103
0.40	342.40	1,300	103	207
0.60	342.60	1,300	103	310
0.80	342.80	1,300	103	414
1.00	342.99	1,300	103	517
1.19	343.19	1,300	103	621
1.39	343.39	1,300	103	724
1.59	343.59	1,300	103	828
1.79	343.79	1,300	103	931
1.99	343.99	1,300	103	1,035
2.00	344.00	4,413	29	1,063
4.00	346.00	6,717	11,130	12,193
6.00	348.00	9,246	15,963	28,156
8.00	350.00	12,000	21,246	49,402

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] 0.00 50.00 Rise (in) = 18.00 12.00 0.00 0.00 Crest Len (ft) = 12.00 0.00 Span (in) = 18.00 12.00 0.00 0.00 Crest El. (ft) = 348.25 0.00 348.60 0.00 No. Barrels 0 Weir Coeff. = 3.33 3.33 2.60 3.33 = 1 0 1 Invert El. (ft) 346.25 0.00 0.00 Weir Type Broad = 344.00= 1 -------Length (ft) = 50.00 0.00 0.00 0.00 Multi-Stage = Yes No No No Slope (%) = 2.00 0.00 0.00 n/a = .013 .013 .013 n/a N-Value Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) = n/a Yes No No TW Elev. (ft) = 0.00 Multi-Stage

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

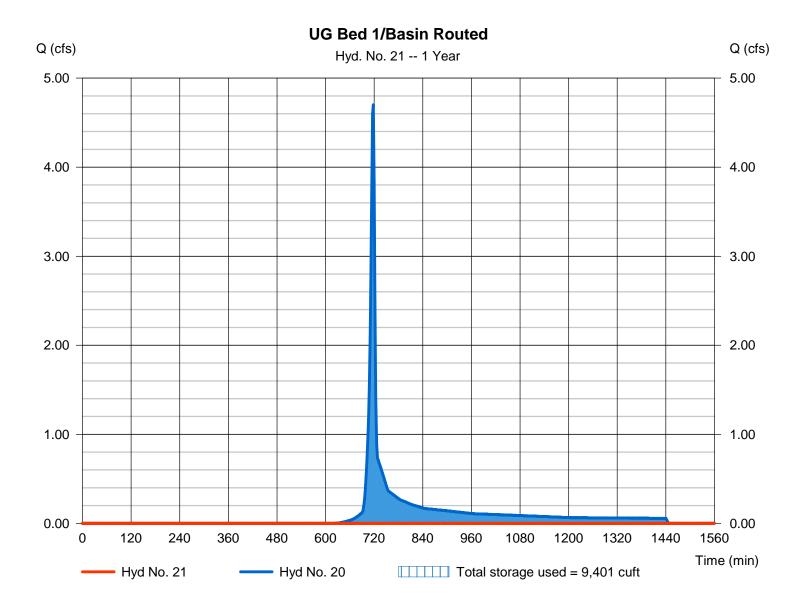

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 4.701 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 9,401 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 339.59 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 9,401 cuft

Storage Indication method used.

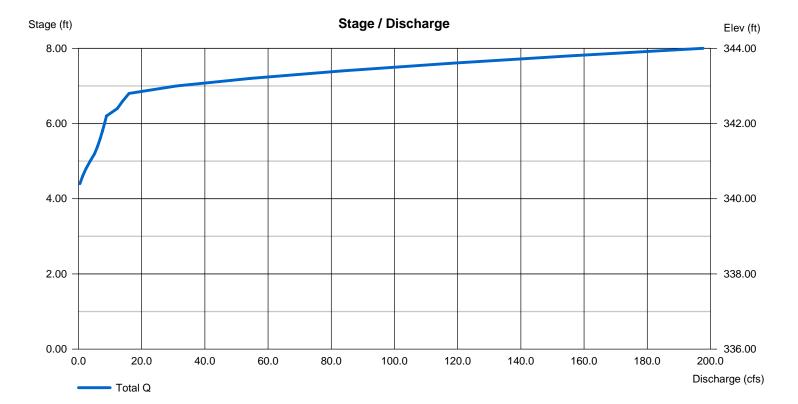
Pond Report

Pond No. 6 - UG Bed 1/Basin

Pond Data

Complex.orisl-UBsettedeflined/cent&6r(are45.04ftye Sigle shoperea)r00thpcBostedrfœlevalun366a00thatDepBegi&i00 EleVation=404000% ft

Stage / Storage Table

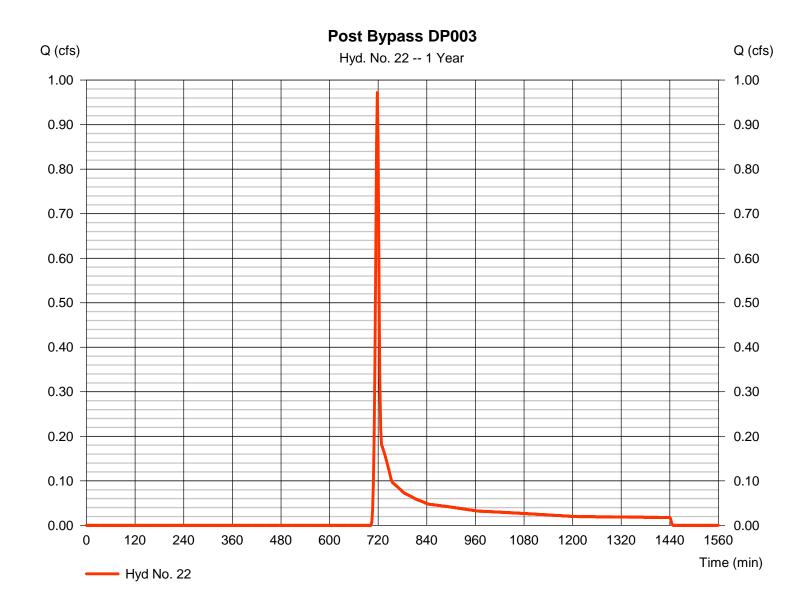

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	336.00	5,625	0	0	
0.30	336.30	5,625	675	675	
0.60	336.60	5,625	675	1,350	
0.90	336.90	5,625	675	2,025	
1.20	337.20	5,625	675	2,700	
1.50	337.50	5,625	675	3,375	
1.80	337.80	5,625	675	4,050	
2.10	338.10	5,625	675	4,725	
2.40	338.40	5,625	675	5,400	
2.70	338.70	5,625	675	6,075	
3.00	339.00	5,625	675	6,750	
4.00	340.00	3,380	4,503	11,253	
6.00	342.00	5,050	8,430	19,683	
8.00	344.00	6,945	11,995	31,678	

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	12.00	0.00	0.00	Crest Len (ft)	= 12.00	0.00	50.00	0.00
Span (in)	= 15.00	18.00	0.00	0.00	Crest El. (ft)	= 342.20	0.00	342.75	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 336.00	340.20	0.00	0.00	Weir Type	= 1		Broad	
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a	-				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by Wet area)			
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

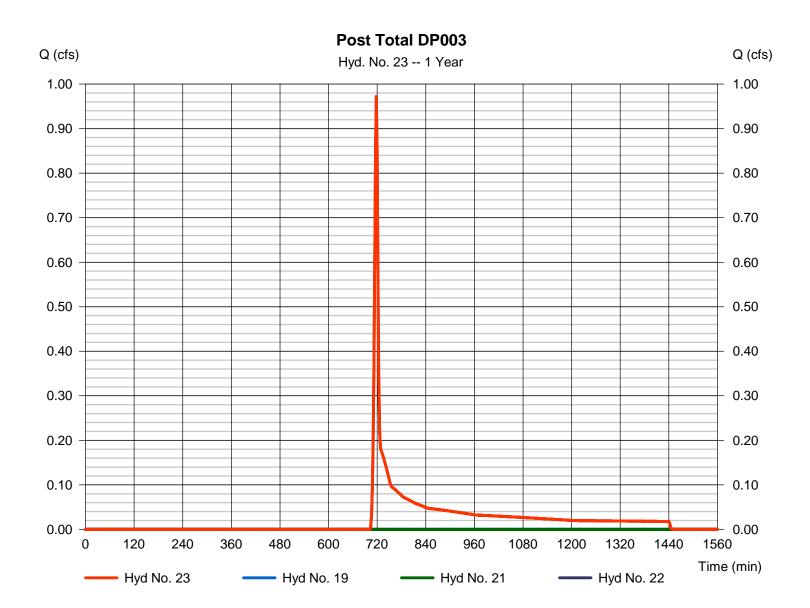


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 0.972 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 2,149 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 23

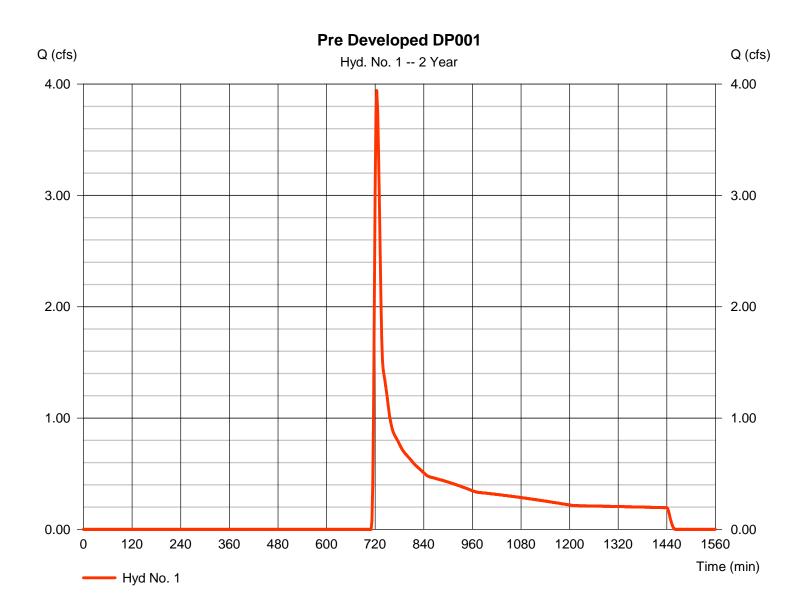
Post Total DP003

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 0.972 cfs = 718 min
Time interval	= 2 min	Hyd. volume	= 2,149 cuft
Inflow hyds.	= 19, 21, 22	Contrib. drain. area	= 1.340 ac

32

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

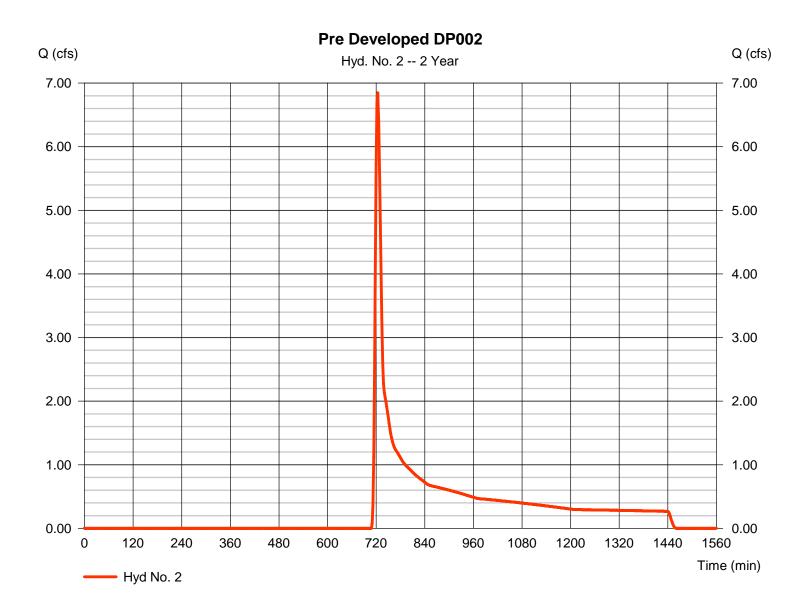

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.942	2	724	18,785				Pre Developed DP001
2	SCS Runoff	6.847	2	724	27,873				Pre Developed DP002
3	SCS Runoff	8.022	2	722	22,888				Pre Developed DP003
4	SCS Runoff	0.566	2	718	1,326				Pre Developed DP003 ORA
5	SCS Runoff	18.03	2	718	36,518				Post Basin 3
6	Reservoir	0.000	2	n/a	0	5	317.96	36,518	Basin 3 Routed
7	SCS Runoff	1.146	2	718	2,583				Post Bypass DP001
8	Combine	1.146	2	718	2,583	6, 7			Post Total DP001
10	SCS Runoff	16.97	2	718	34,254				Post Basin 1
11	Reservoir	0.000	2	n/a	0	10	322.23	34,254	Basin 1 Upper Routed
12	Reservoir	0.000	2	n/a	0	11	302.20	0.000	Basin 1 Lower Routed
13	SCS Runoff	17.09	2	718	34,170				Post Basin 2
14	Reservoir	0.120	2	1444	1,815	13	308.88	33,546	Basin 2 Routed
15	SCS Runoff	0.956	2	718	2,327				Post Bypass DP002
16	Combine	0.956	2	718	4,142	12, 14, 15			Post Total DP002
18	SCS Runoff	8.620	2	718	17,240				Post to Basin 4
19	Reservoir	0.097	2	1440	3,434	18	346.39	15,343	Basin 4 Routed
20	SCS Runoff	6.430	2	718	12,890				Post to Bed 1/Basin
21	Reservoir	0.073	2	1390	793	20	340.23	12,231	UG Bed 1/Basin Routed
22	SCS Runoff	1.588	2	718	3,299				Post Bypass DP003
23	Combine	1.588	2	718	7,525	19, 21, 22			Post Total DP003
SW	M.gpw				Return F	Period: 2 Ye	ear	Tuesday, 0	06 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 3.942 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 18,785 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

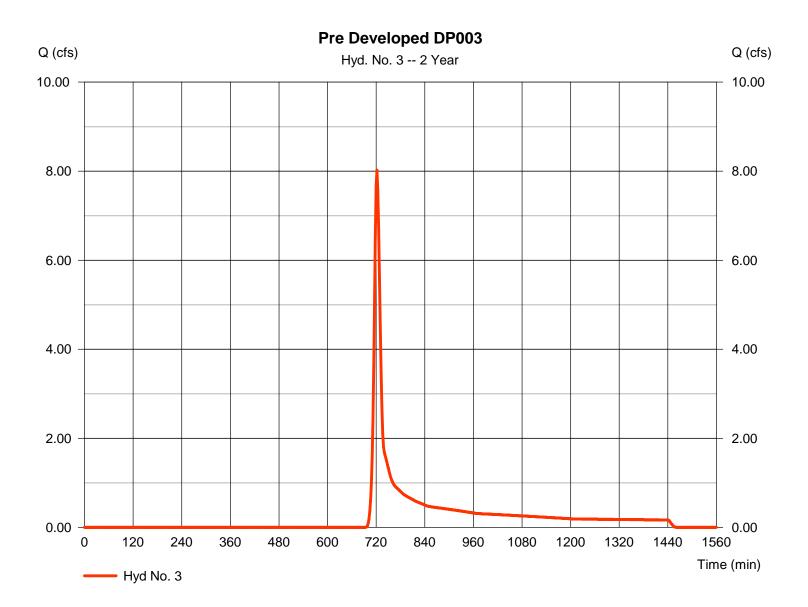


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 6.847 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 27,873 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

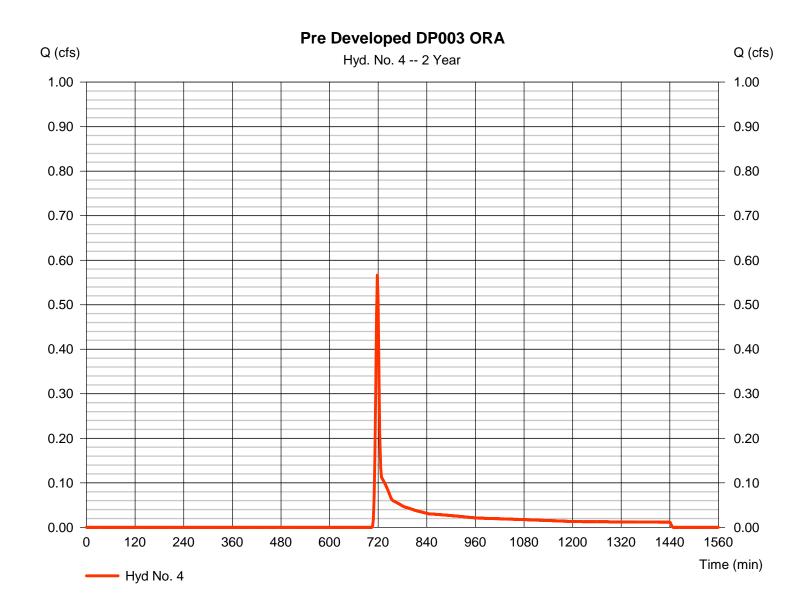

35

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Pre Developed DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 8.022 cfs
Storm frequency	= 2 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 22,888 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

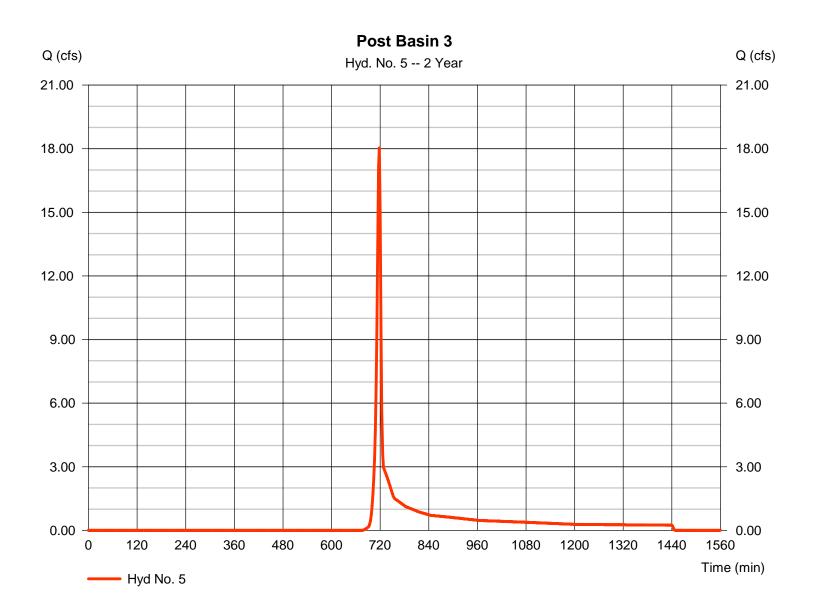

36

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 0.566 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 1,326 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

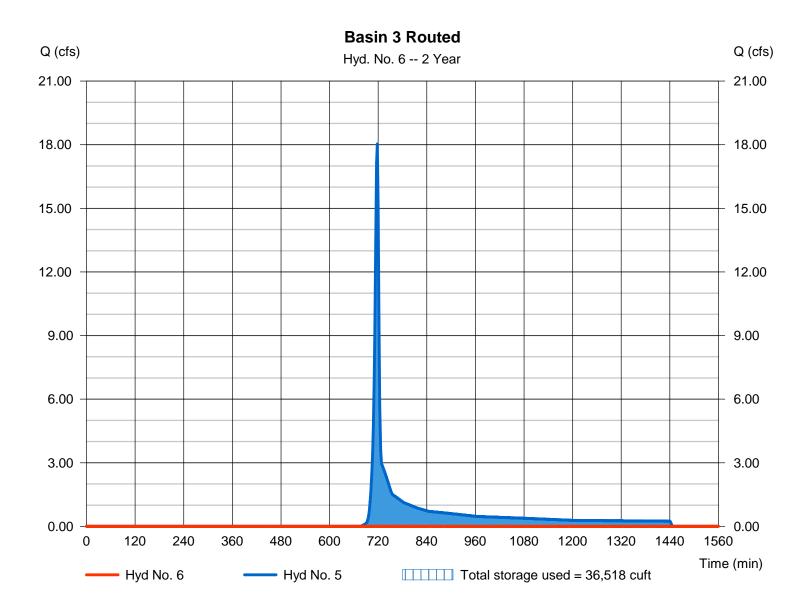

37

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 18.03 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 36,518 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

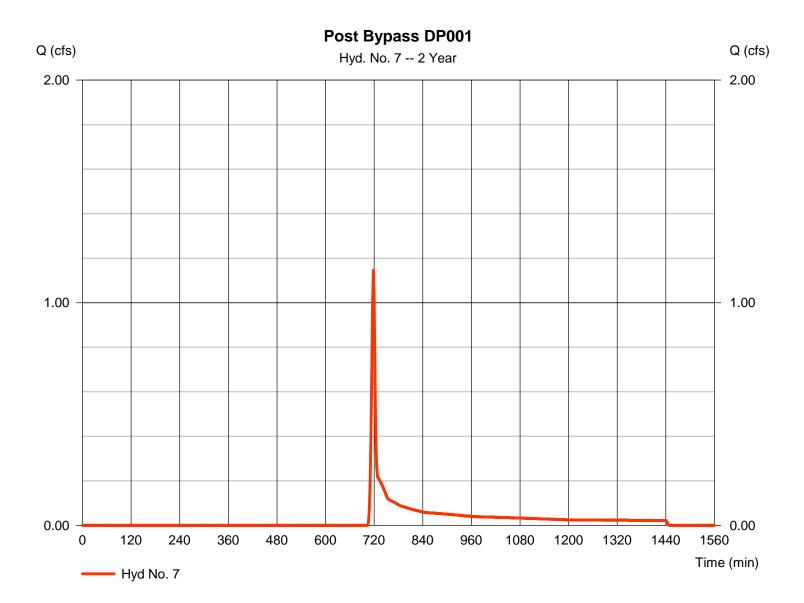

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 5 - Post Basin 3	Max. Elevation	= 317.96 ft
Reservoir name	= Basin 3	Max. Storage	= 36,518 cuft

Storage Indication method used.

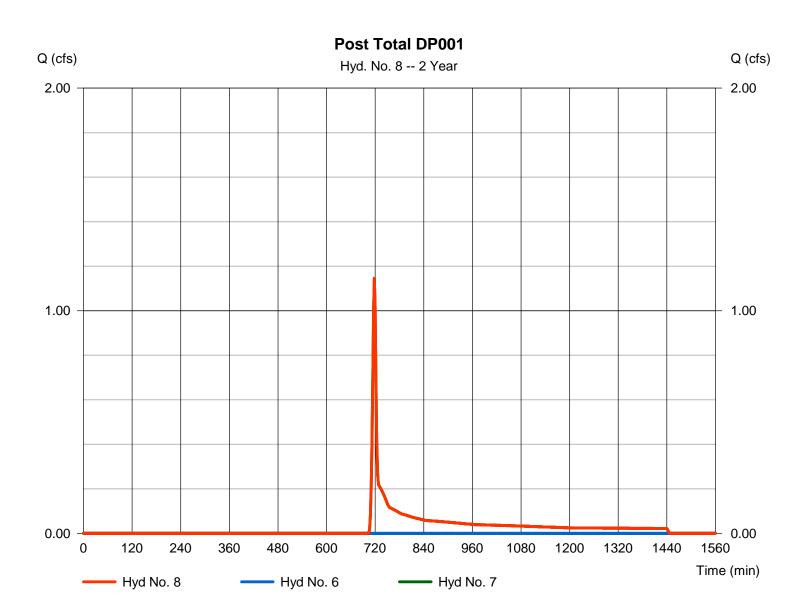

39

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Post Bypass DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 1.146 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 2,583 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

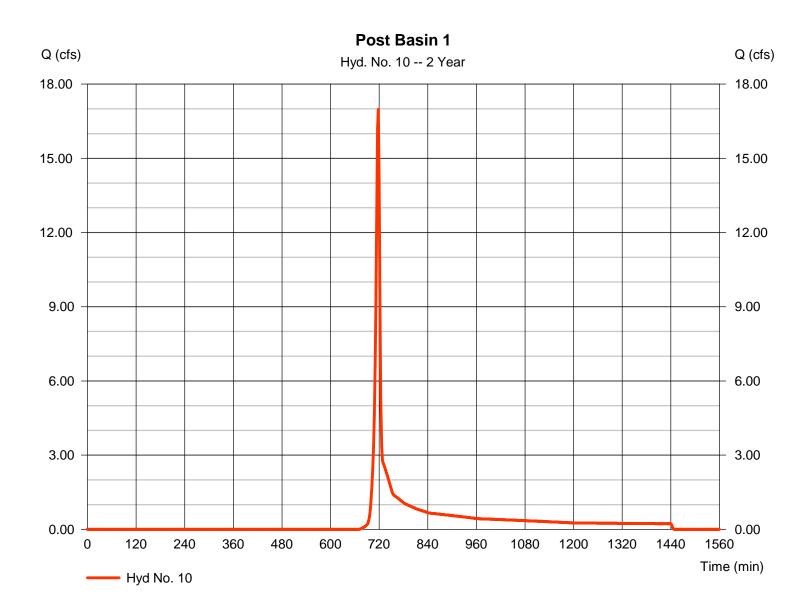


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

Hydrograph type	 = Combine = 2 yrs = 2 min = 6, 7 	Peak discharge	= 1.146 cfs
Storm frequency		Time to peak	= 718 min
Time interval		Hyd. volume	= 2,583 cuft
Inflow hyds.		Contrib. drain. area	= 1.440 ac
-)	-,		

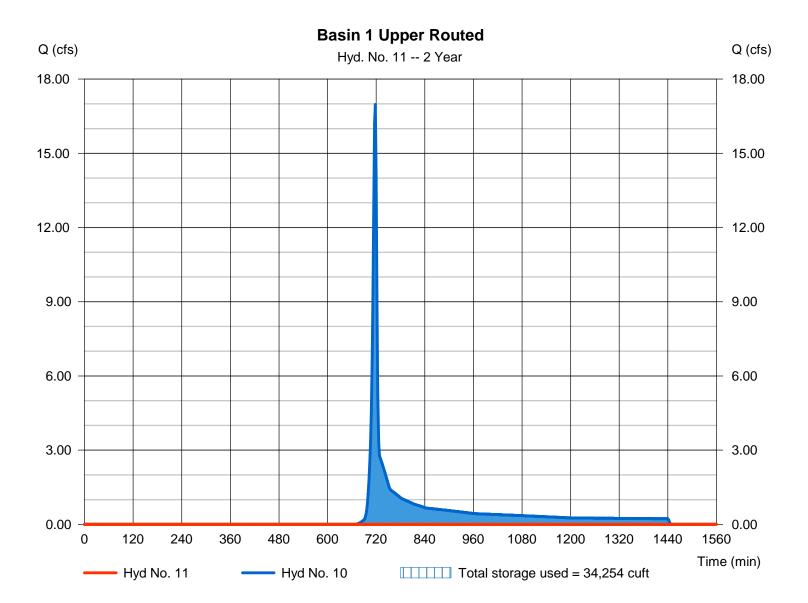

41

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 16.97 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 34,254 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

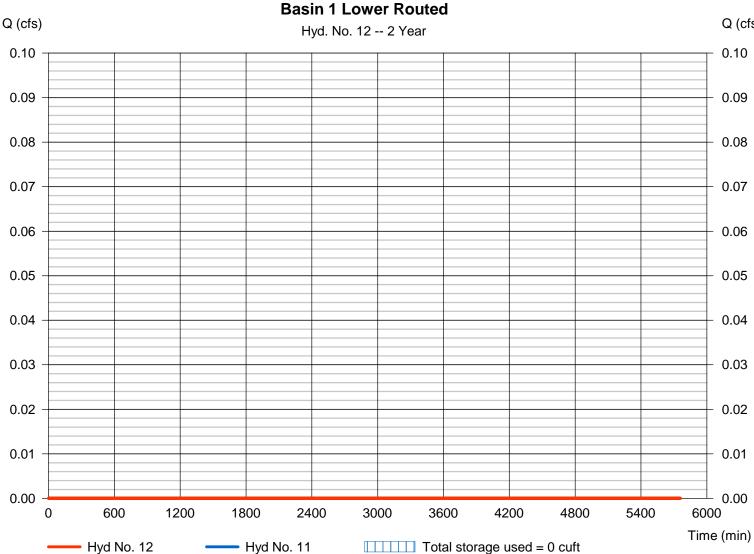

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Basin 1 Upper Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 10 - Post Basin 1	Max. Elevation	= 322.23 ft
Reservoir name	= Basin 1 Upper	Max. Storage	= 34,254 cuft
			- ,

Storage Indication method used.

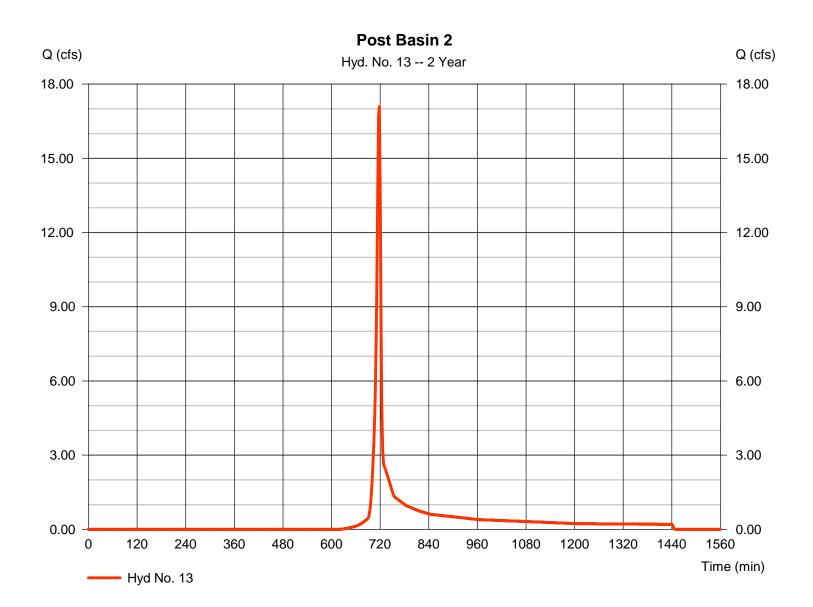

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 11 - Basin 1 Upper Routed	Max. Elevation	= 302.20 ft
Reservoir name	= Basin 1 Lower	Max. Storage	= 0 cuft

Storage Indication method used.


Q (cfs)

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 17.09 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 34,170 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

45

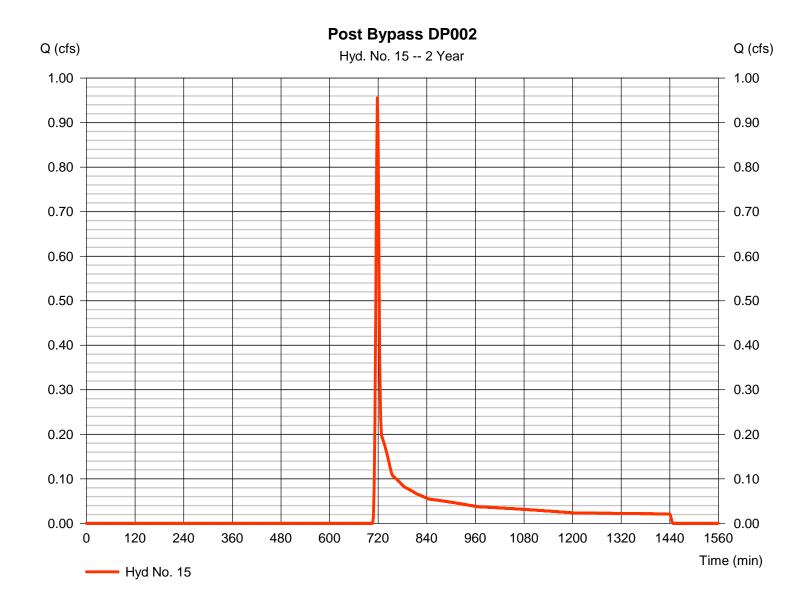

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.120 cfs
Storm frequency	= 2 yrs	Time to peak	= 1444 min
Time interval	= 2 min	Hyd. volume	= 1,815 cuft
Inflow hyd. No.	= 13 - Post Basin 2	Max. Elevation	= 308.88 ft
Reservoir name	= Basin 2	Max. Storage	= 33,546 cuft

Storage Indication method used.

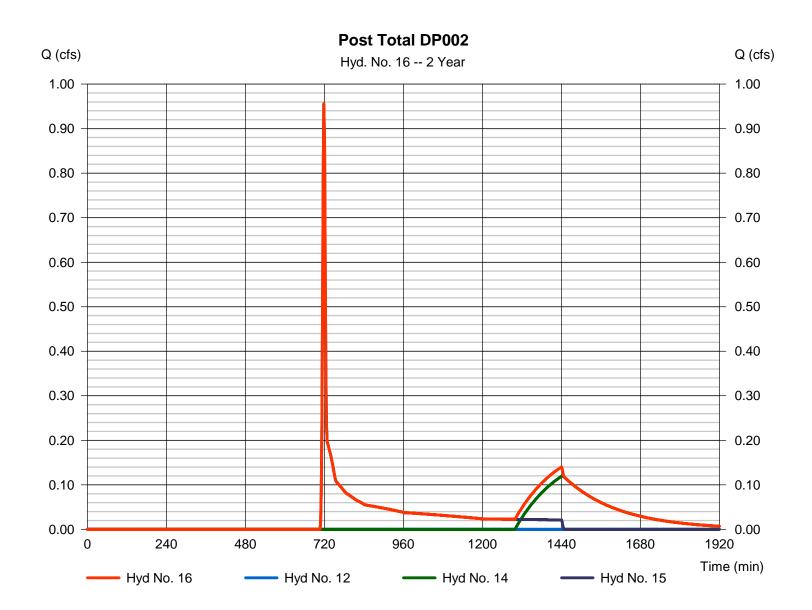


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Post Bypass DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 0.956 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 2,327 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



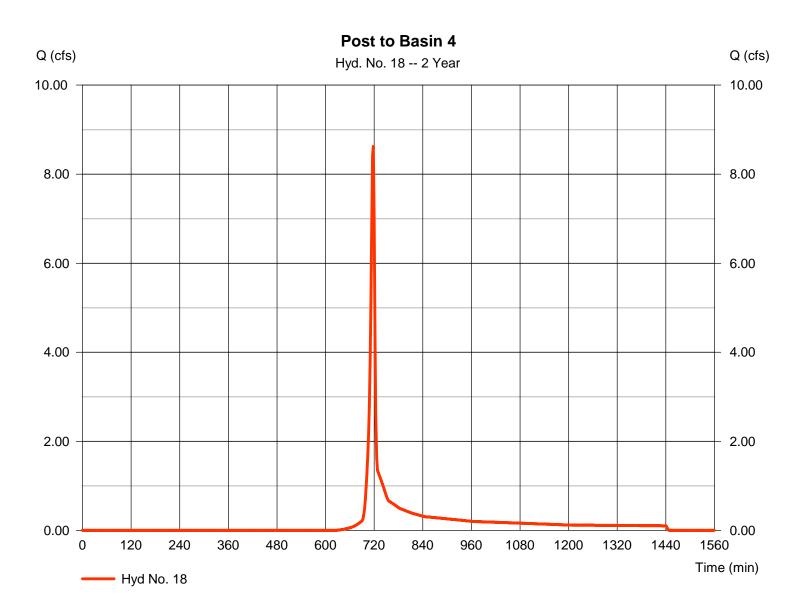
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

Hydrograph type Storm frequency	Combine2 yrs	Peak discharge Time to peak	= 0.956 cfs = 718 min
Time interval	= 2 min	Hyd. volume	= 4,142 cuft
Inflow hyds.	= 12, 14, 15	Contrib. drain. area	= 1.540 ac

48


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

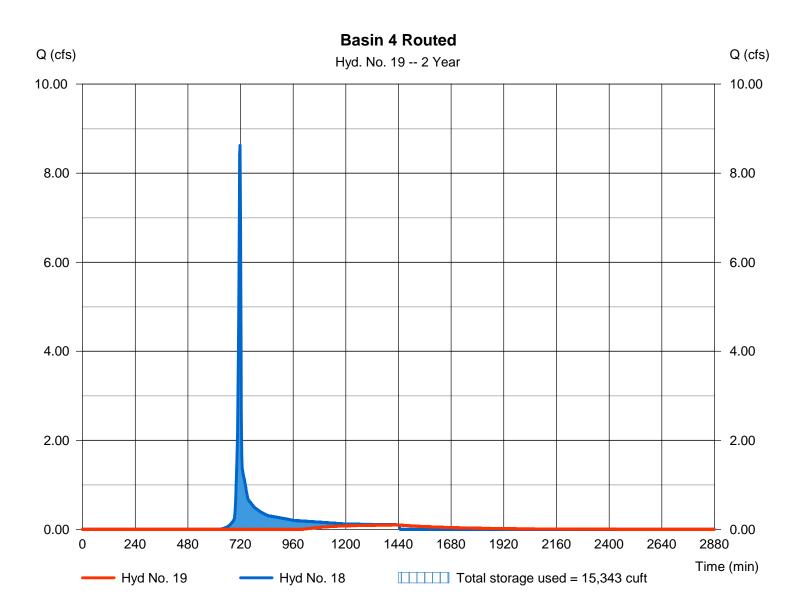
Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 8.620 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 17,240 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420

49

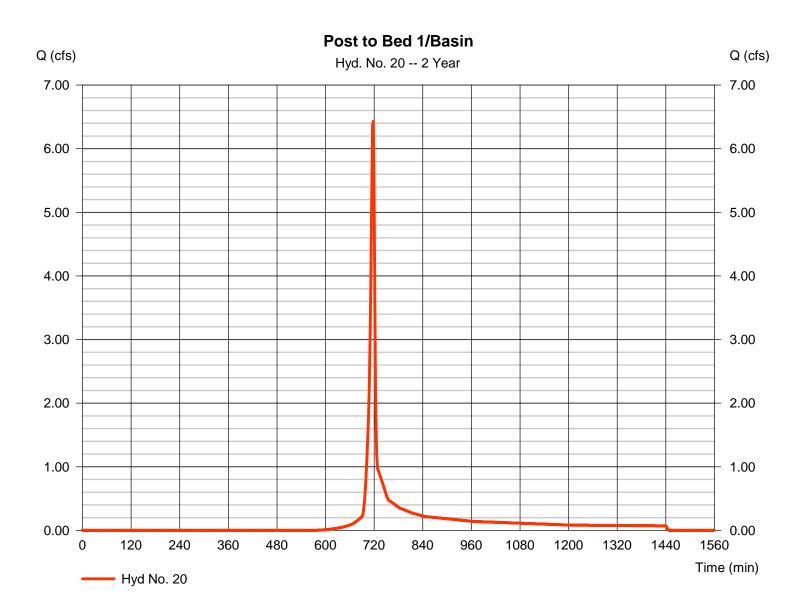

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.097 cfs
Storm frequency	= 2 yrs	Time to peak	= 1440 min
Time interval	= 2 min	Hyd. volume	= 3,434 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 346.39 ft
Reservoir name	= Basin 4	Max. Storage	= 15,343 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

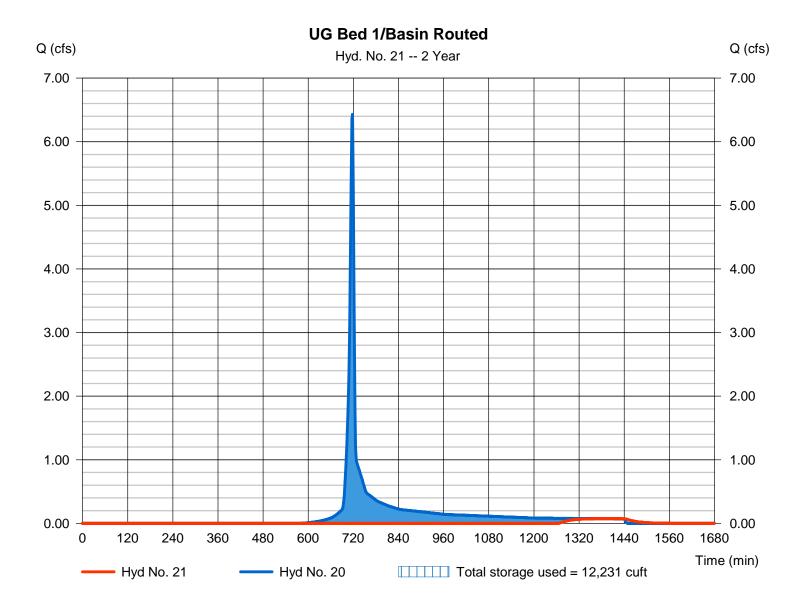
Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 6.430 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 12,890 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820

51


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.073 cfs
Storm frequency	= 2 yrs	Time to peak	= 1390 min
Time interval	= 2 min	Hyd. volume	= 793 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 340.23 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 12,231 cuft
		0	

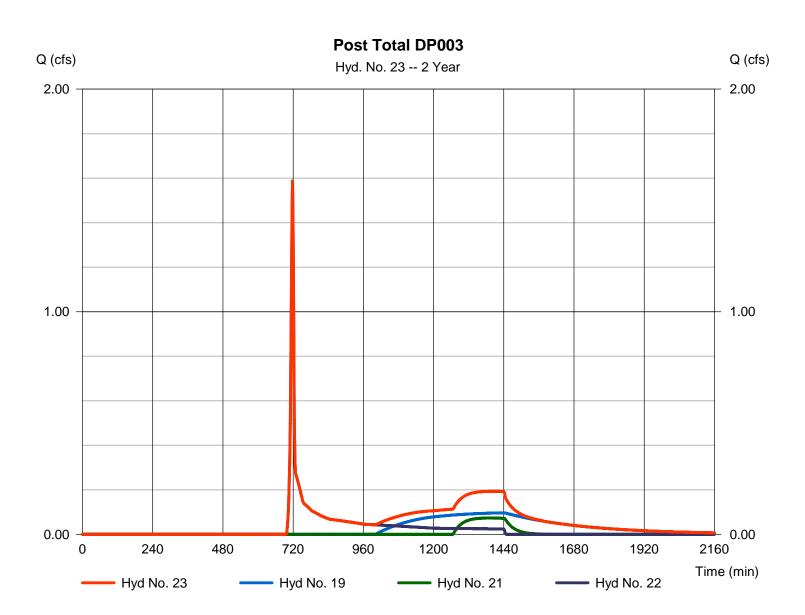
Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 1.588 cfs
Storm frequency	= 2 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 3,299 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

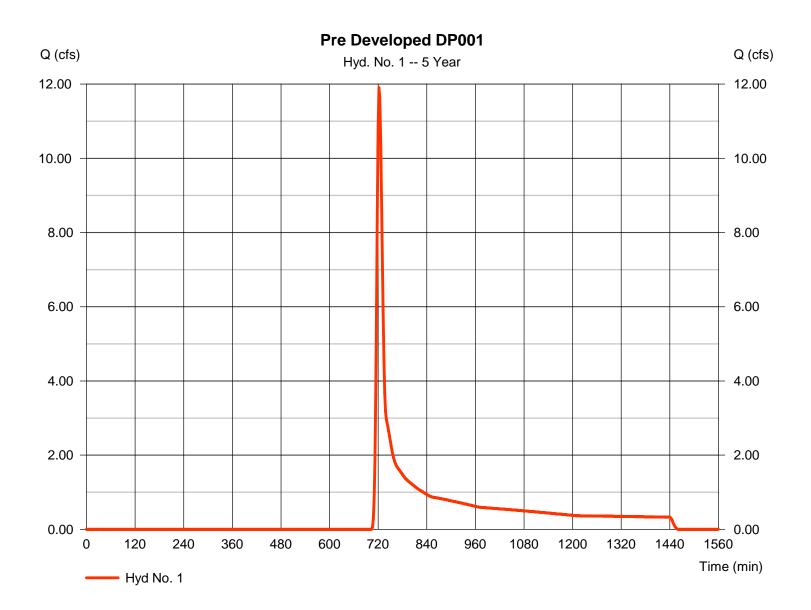
Hyd. No. 23

Post Total DP003

Hydrograph type	Combine2 yrs	Peak discharge	= 1.588 cfs
Storm frequency		Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 7,525 cuft
Inflow hyds.	= 19, 21, 22	Contrib. drain. area	= 1.340 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

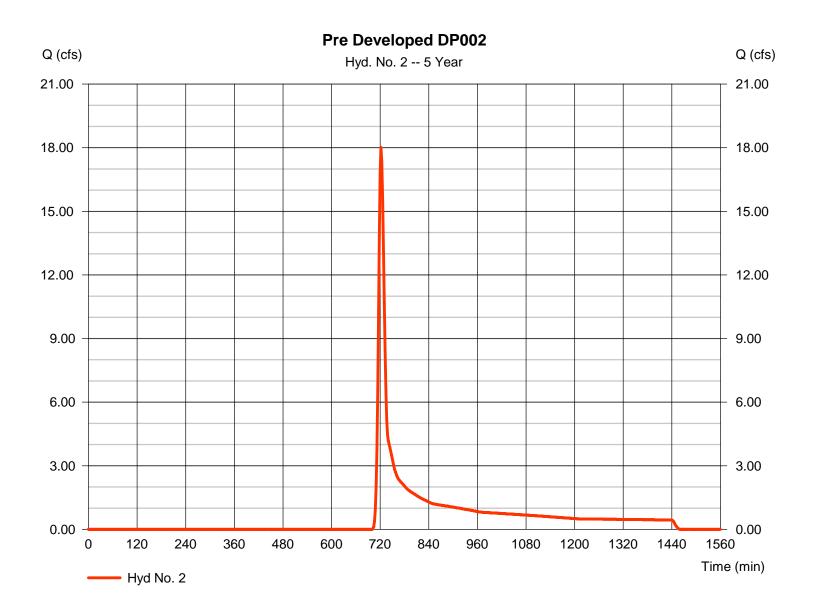

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	11.91	2	722	39,118				Pre Developed DP001
2	SCS Runoff	18.02	2	722	55,435				Pre Developed DP002
3	SCS Runoff	14.55	2	722	39,080				Pre Developed DP003
4	SCS Runoff	1.200	2	718	2,500				Pre Developed DP003 ORA
5	SCS Runoff	30.10	2	718	60,195				Post Basin 3
6	Reservoir	0.593	2	1056	23,011	5	318.31	43,931	Basin 3 Routed
7	SCS Runoff	2.314	2	718	4,767				Post Bypass DP001
8	Combine	2.314	2	718	27,778	6, 7			Post Total DP001
10	SCS Runoff	28.01	2	718	56,002				Post Basin 1
11	Reservoir	0.510	2	1086	18,513	10	322.71	43,189	Basin 1 Upper Routed
12	Reservoir	0.375	2	1362	12,317	11	304.32	8,514	Basin 1 Lower Routed
13	SCS Runoff	26.44	2	718	53,176				Post Basin 2
14	Reservoir	0.682	2	918	20,822	13	309.11	36,790	Basin 2 Routed
15	SCS Runoff	2.121	2	718	4,472				Post Bypass DP002
16	Combine	2.121	2	718	37,611	12, 14, 15			Post Total DP002
18	SCS Runoff	13.42	2	718	26,965				Post to Basin 4
19	Reservoir	0.462	2	840	13,159	18	346.58	16,833	Basin 4 Routed
20	SCS Runoff	9.677	2	716	19,544				Post to Bed 1/Basin
21	Reservoir	0.351	2	828	7,446	20	340.35	12,744	UG Bed 1/Basin Routed
22	SCS Runoff	2.821	2	718	5,670				Post Bypass DP003
23	Combine	2.821	2	718	26,276	19, 21, 22			Post Total DP003
SW	/M.gpw				Return	Period: 5 Ye	ear	Tuesday, 0	6 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 11.91 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 39,118 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

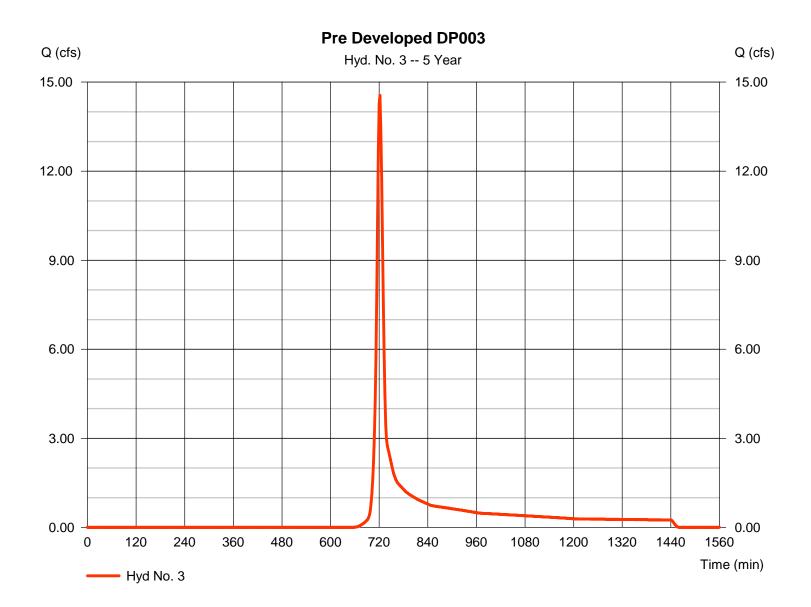

56

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 18.02 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 55,435 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

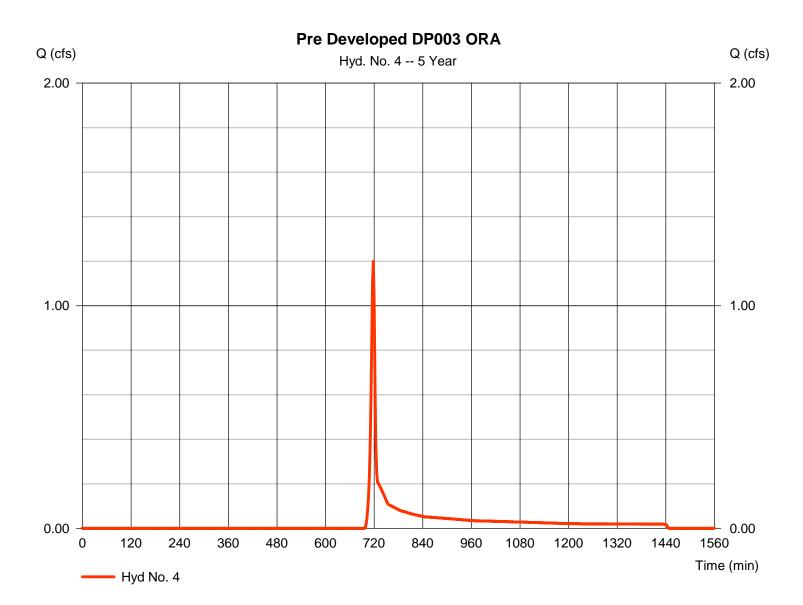

57

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Pre Developed DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 14.55 cfs
Storm frequency	= 5 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 39,080 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

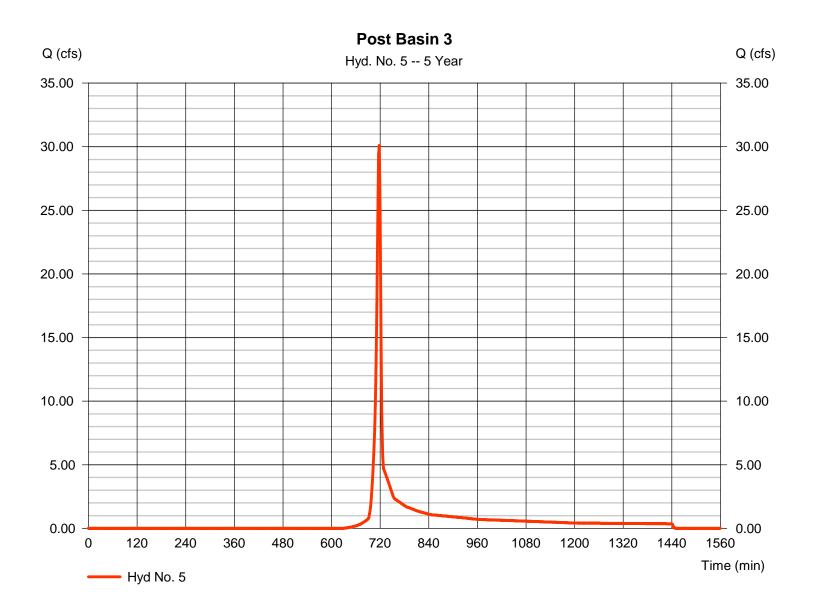

58

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 1.200 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 2,500 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

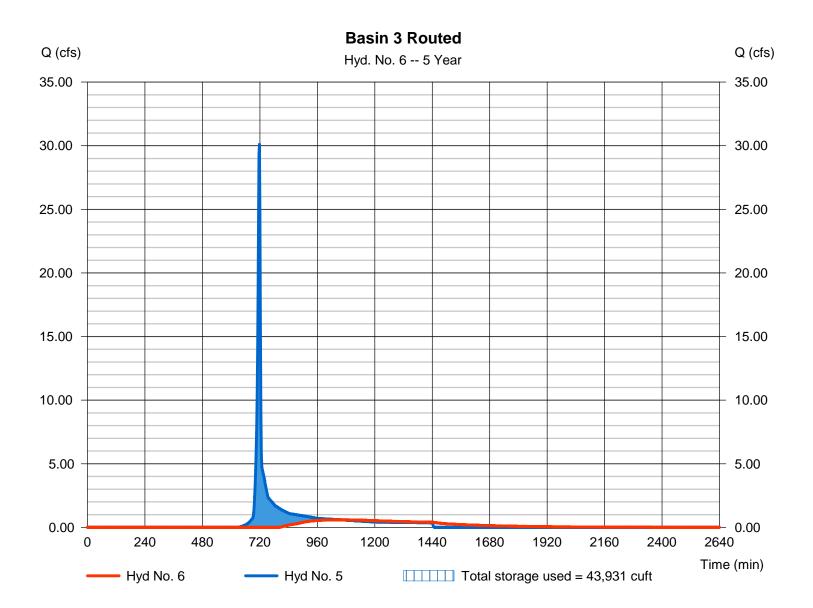

59

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 30.10 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 60,195 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

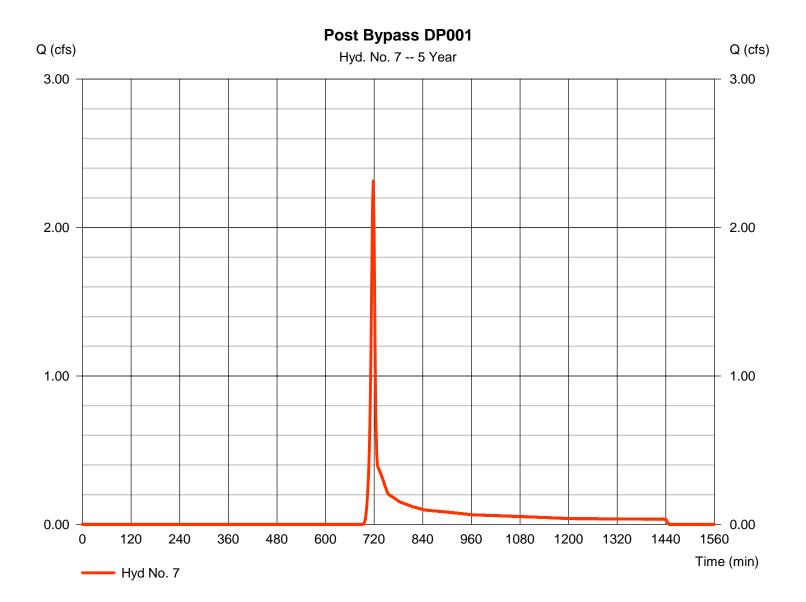

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.593 cfs
Storm frequency	= 5 yrs	Time to peak	= 1056 min
Time interval	= 2 min	Hyd. volume	= 23,011 cuft
Inflow hyd. No.	= 5 - Post Basin 3	Max. Elevation	= 318.31 ft
Reservoir name	= Basin 3	Max. Storage	= 43,931 cuft

Storage Indication method used.

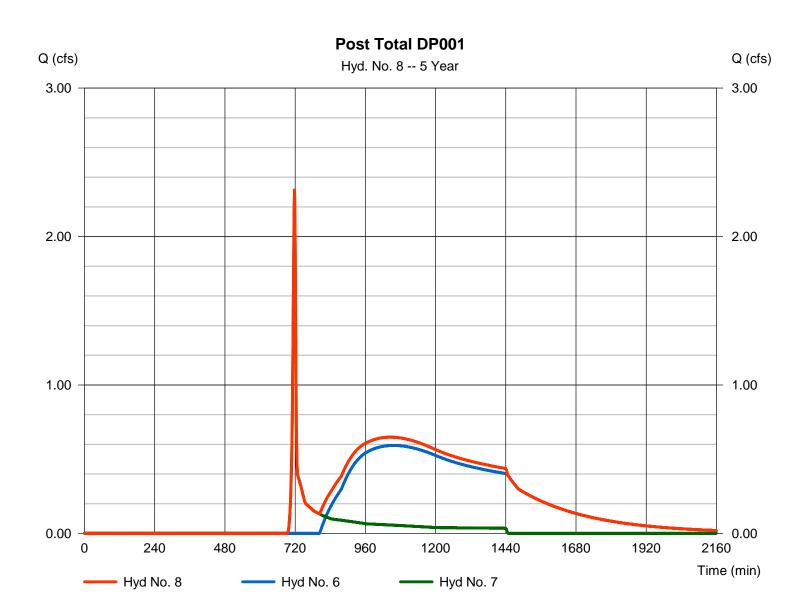

61

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Post Bypass DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 2.314 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 4,767 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

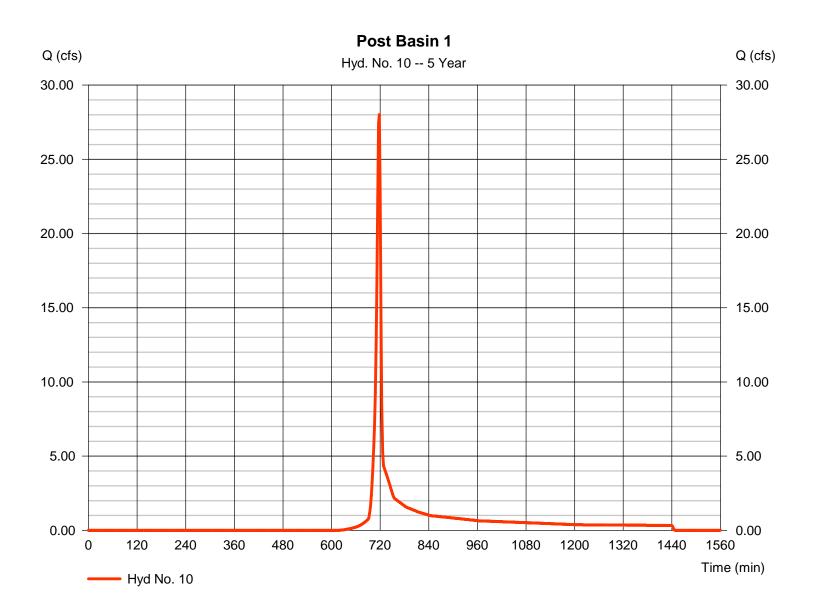


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

Hydrograph type	= Combine	Peak discharge	= 2.314 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 27,778 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 1.440 ac


63

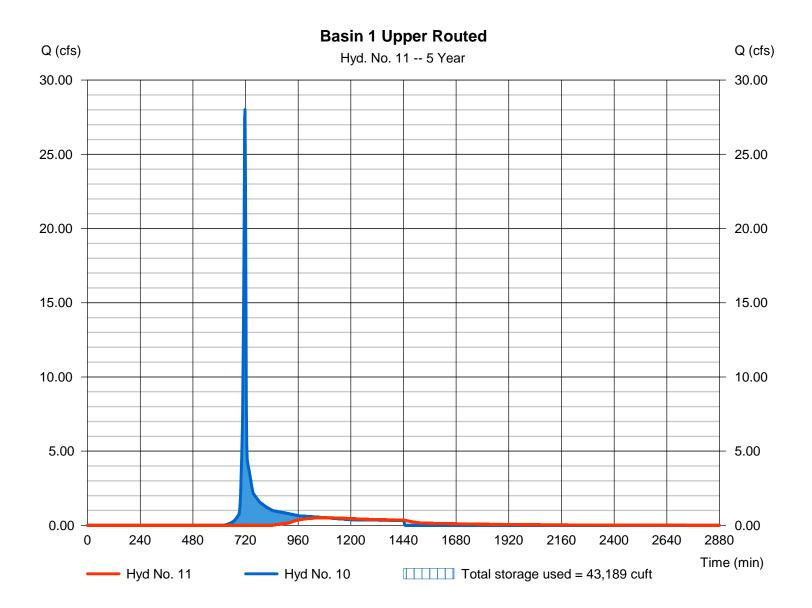
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 28.01 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 56,002 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

64

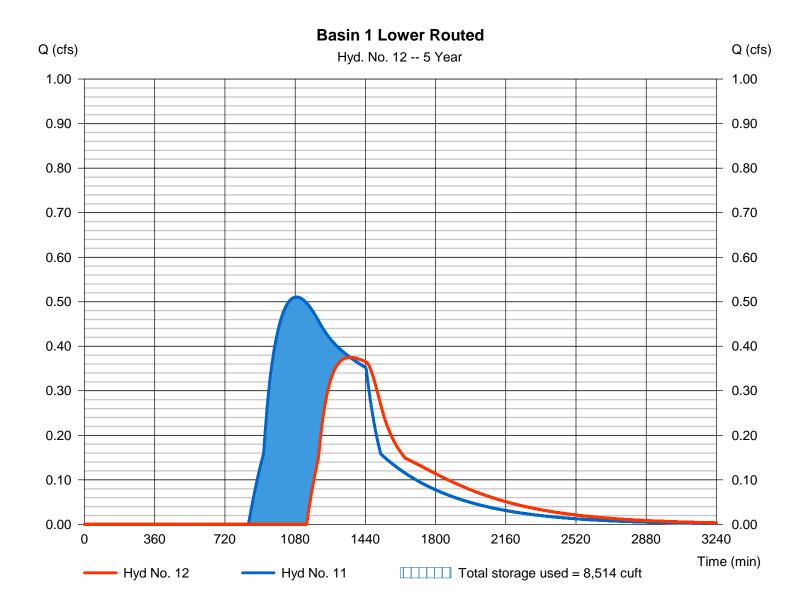

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Basin 1 Upper Routed

voir Peak discharge	= 0.510 cfs
Time to peak	= 1086 min
Hyd. volume	= 18,513 cuft
ost Basin 1 Max. Elevation	= 322.71 ft
1 Upper Max. Storage	= 43,189 cuft
	Time to peak Hyd. volume ost Basin 1 Max. Elevation

Storage Indication method used.

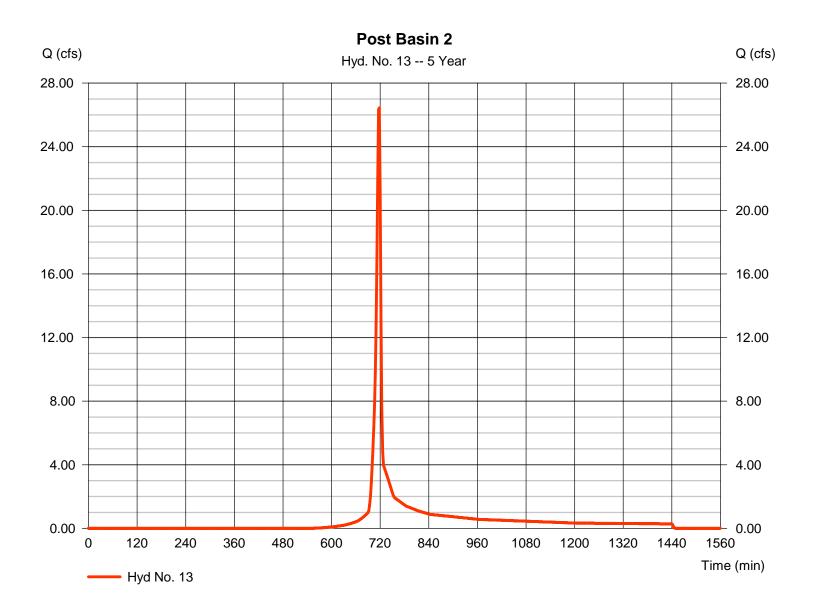

65

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

Storage Indication method used.

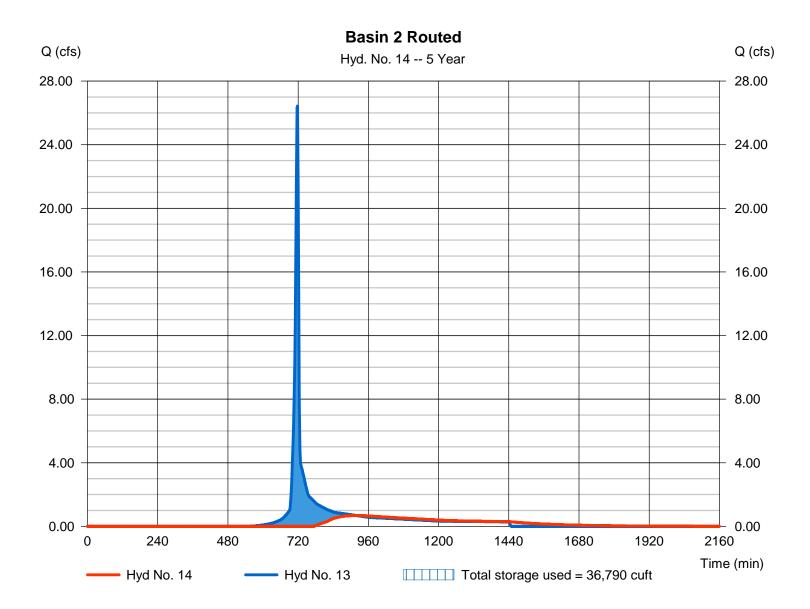

66

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 26.44 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 53,176 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

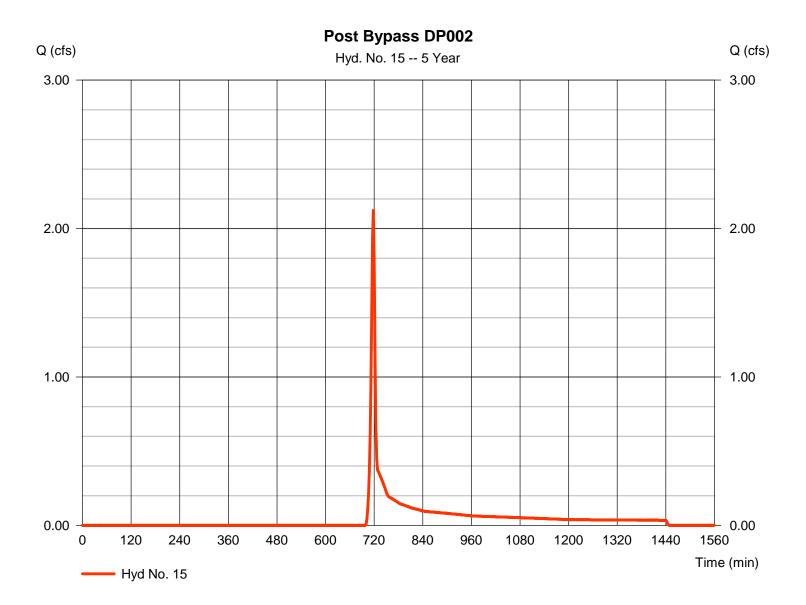

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.682 cfs
Storm frequency	= 5 yrs	Time to peak	= 918 min
Time interval	= 2 min	Hyd. volume	= 20,822 cuft
Inflow hyd. No.	= 13 - Post Basin 2	Max. Elevation	= 309.11 ft
Reservoir name	= Basin 2	Max. Storage	= 36,790 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Post Bypass DP002

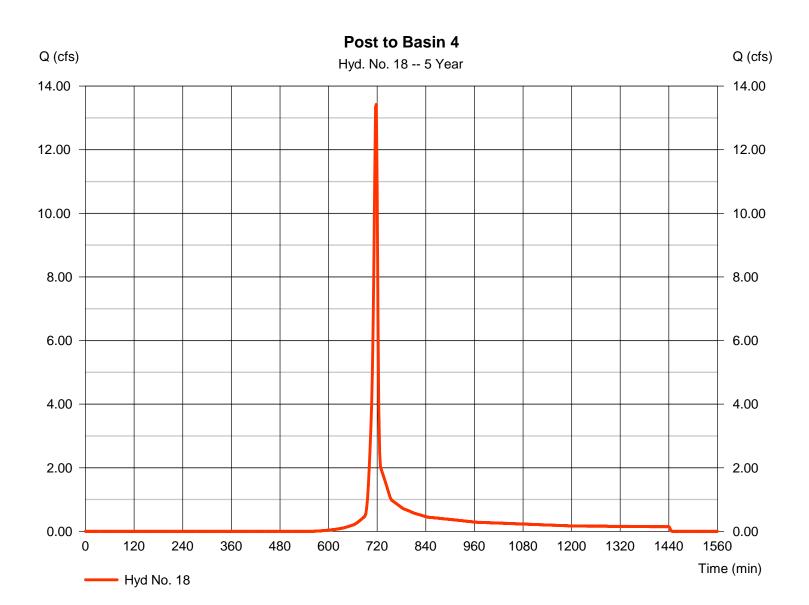
Hydrograph type	= SCS Runoff	Peak discharge	= 2.121 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 4,472 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

Hydrograph type	= Combine	Peak discharge	= 2.121 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 37,611 cuft
Inflow hyds.	= 12, 14, 15	Contrib. drain. area	= 1.540 ac

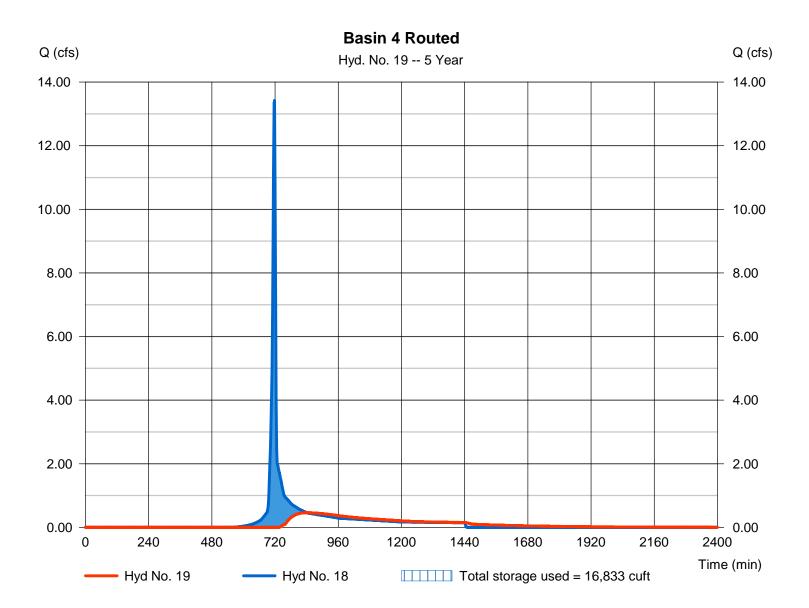

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 13.42 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 26,965 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420

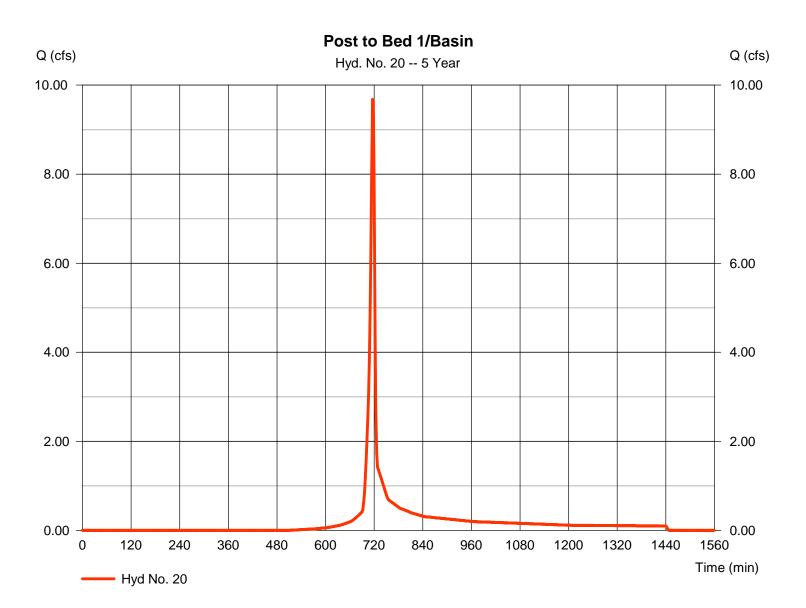

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.462 cfs
Storm frequency	= 5 yrs	Time to peak	= 840 min
Time interval	= 2 min	Hyd. volume	= 13,159 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 346.58 ft
Reservoir name	= Basin 4	Max. Storage	= 16,833 cuft
		-	

Storage Indication method used.

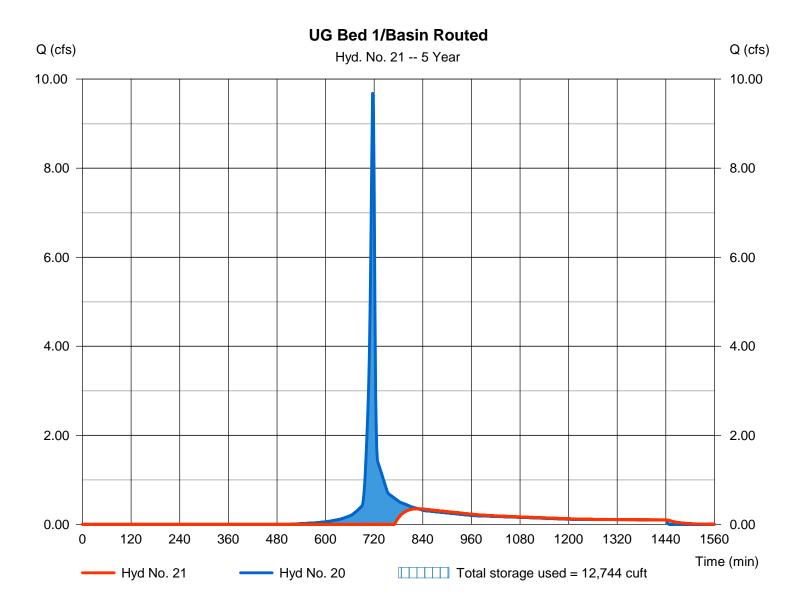

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 9.677 cfs
Storm frequency	= 5 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 19,544 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820

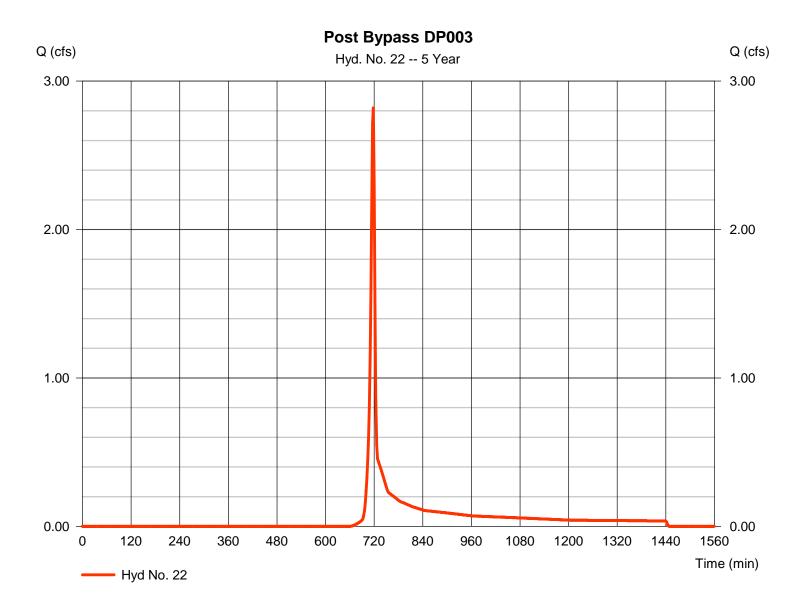

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.351 cfs
Storm frequency	= 5 yrs	Time to peak	= 828 min
Time interval	= 2 min	Hyd. volume	= 7,446 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 340.35 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 12,744 cuft

Storage Indication method used.

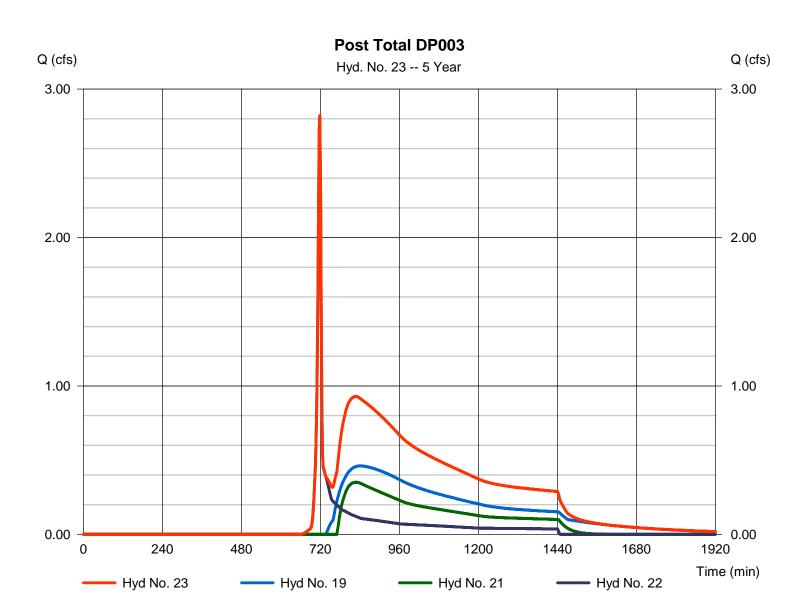

74

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 2.821 cfs
Storm frequency	= 5 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 5,670 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.08 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 23

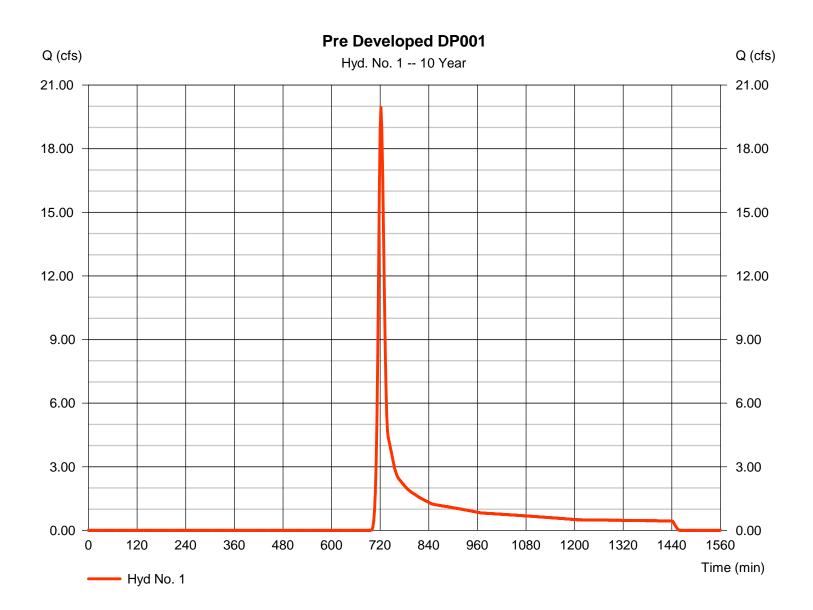
Post Total DP003

Hydrograph type Storm frequency Time interval Inflow hyds.	 Combine 5 yrs 2 min 19, 21, 22 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 2.821 cfs = 718 min = 26,276 cuft = 1.340 ac
Inflow hyds.	= 19, 21, 22	Contrib. drain. area	= 1.340 ac

76

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

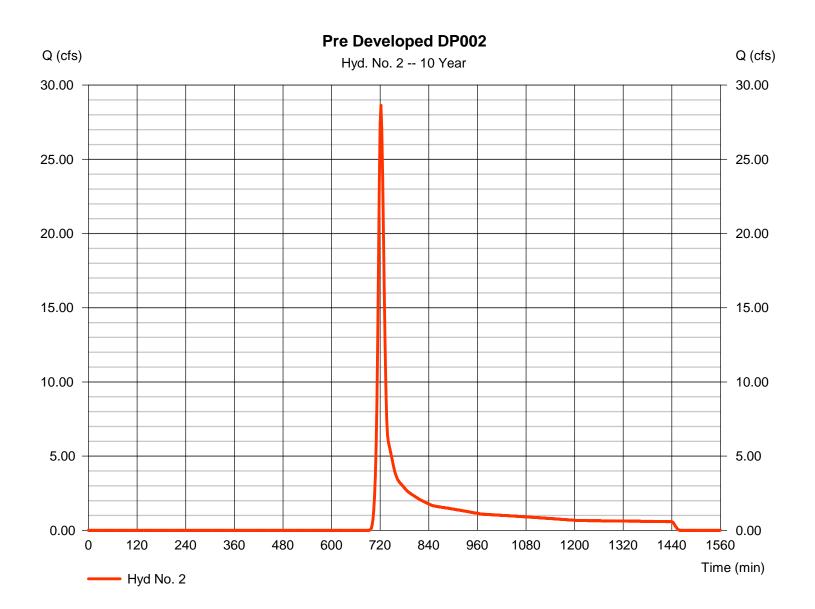

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	19.95	2	722	58,584				Pre Developed DP001
2	SCS Runoff	28.64	2	722	81,339				Pre Developed DP002
3	SCS Runoff	20.20	2	722	53,341				Pre Developed DP003
4	SCS Runoff	1.766	2	718	3,580				Pre Developed DP003 ORA
5	SCS Runoff	40.29	2	718	80,710				Post Basin 3
6	Reservoir	1.664	2	818	43,527	5	318.48	47,774	Basin 3 Routed
7	SCS Runoff	3.349	2	718	6,757				Post Bypass DP001
8	Combine	3.349	2	718	50,283	6, 7			Post Total DP001
10	SCS Runoff	37.29	2	718	74,773				Post Basin 1
11	Reservoir	1.244	2	848	37,284	10	322.89	46,611	Basin 1 Upper Routed
12	Reservoir	0.928	2	996	31,087	11	304.57	10,321	Basin 1 Lower Routed
13	SCS Runoff	34.26	2	716	69,196				Post Basin 2
14	Reservoir	1.706	2	788	36,842	13	309.33	40,115	Basin 2 Routed
15	SCS Runoff	3.170	2	718	6,463				Post Bypass DP002
16	Combine	3.170	2	718	74,392	12, 14, 15			Post Total DP002
18	SCS Runoff	17.42	2	716	35,181				Post to Basin 4
19	Reservoir	1.213	2	758	21,376	18	346.82	18,757	Basin 4 Routed
20	SCS Runoff	12.38	2	716	25,081				Post to Bed 1/Basin
21	Reservoir	1.100	2	748	12,984	20	340.55	13,588	UG Bed 1/Basin Routed
22	SCS Runoff	3.883	2	718	7,766				Post Bypass DP003
23	Combine	3.883	2	718	42,126	19, 21, 22			Post Total DP003
SW	/M.gpw				Return I	Period: 10 Y	/ear	Tuesday, 0	6 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 19.95 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 58,584 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

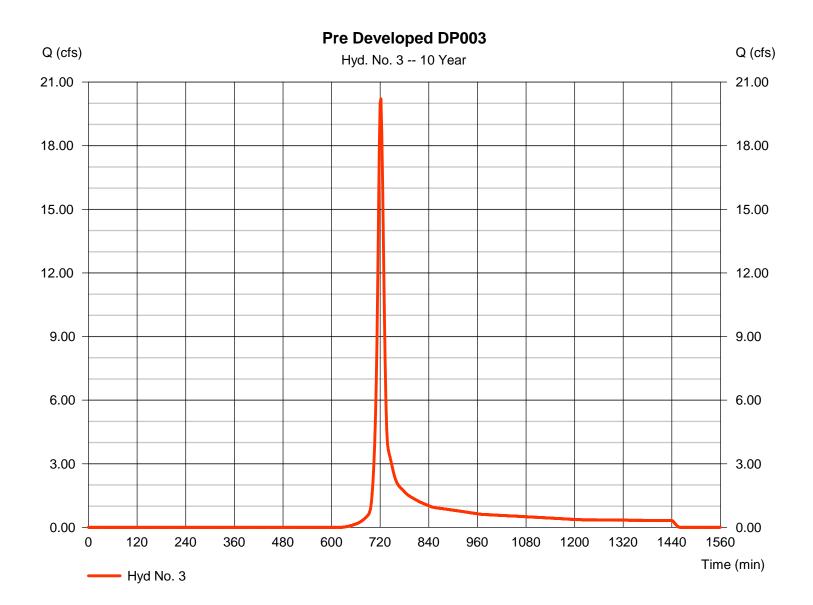

78

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 28.64 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 81,339 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

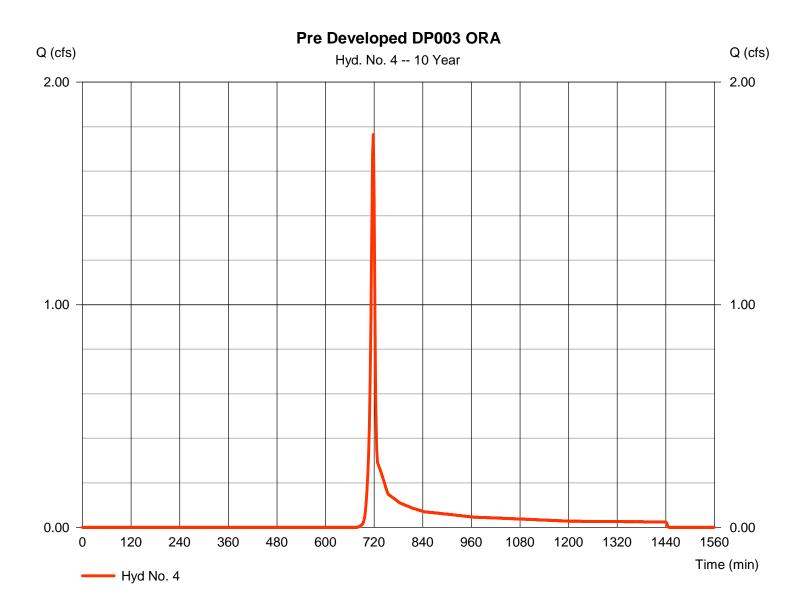


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Pre Developed DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 20.20 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 53,341 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

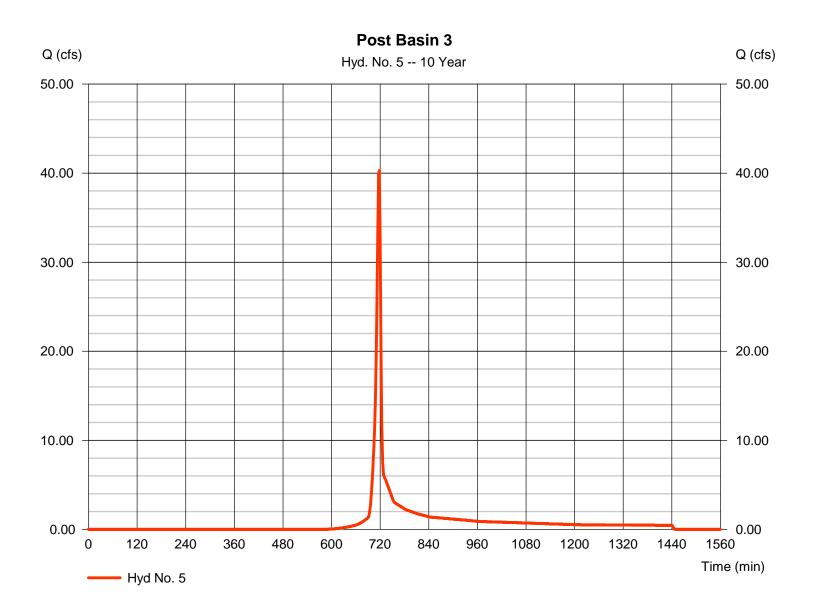


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 1.766 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 3,580 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

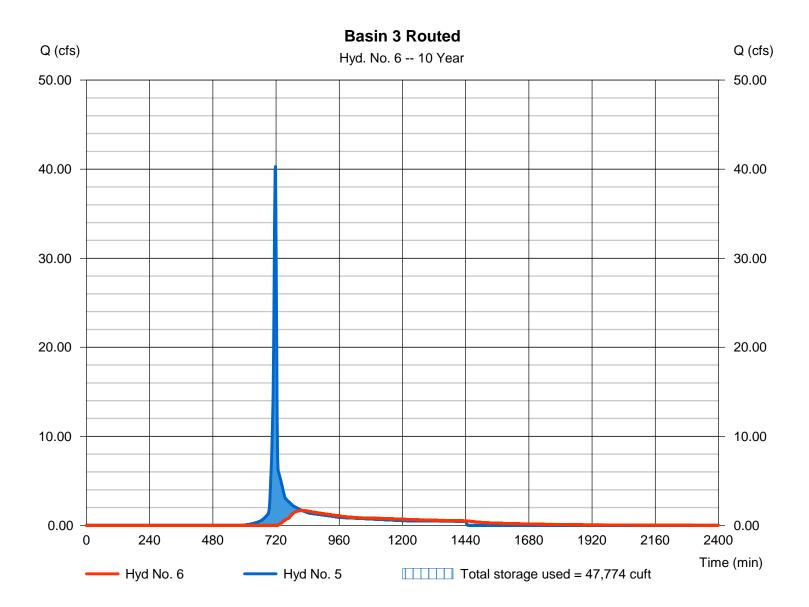


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 40.29 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 80,710 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

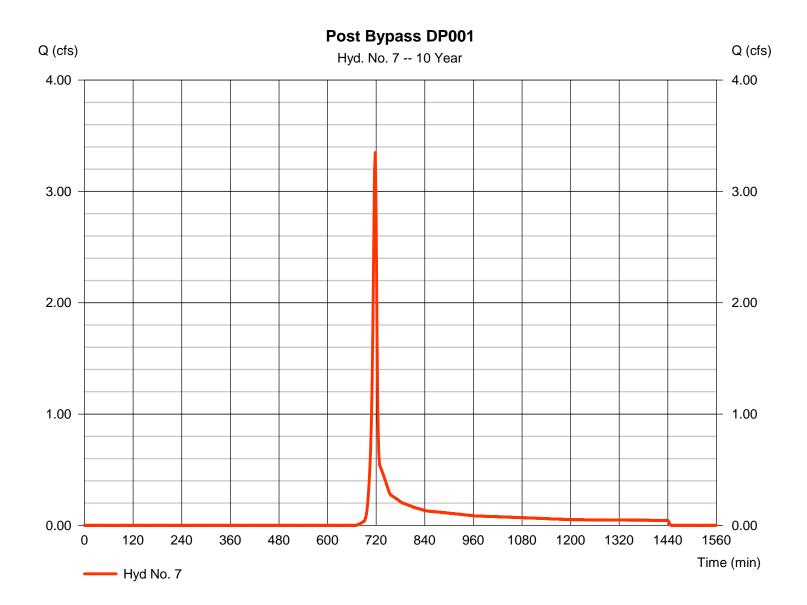

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.664 cfs
Storm frequency	= 10 yrs	Time to peak	= 818 min
Time interval	= 2 min	Hyd. volume	= 43,527 cuft
Inflow hyd. No.	= 5 - Post Basin 3	Max. Elevation	= 318.48 ft
Reservoir name	= Basin 3	Max. Storage	= 47,774 cuft

Storage Indication method used.

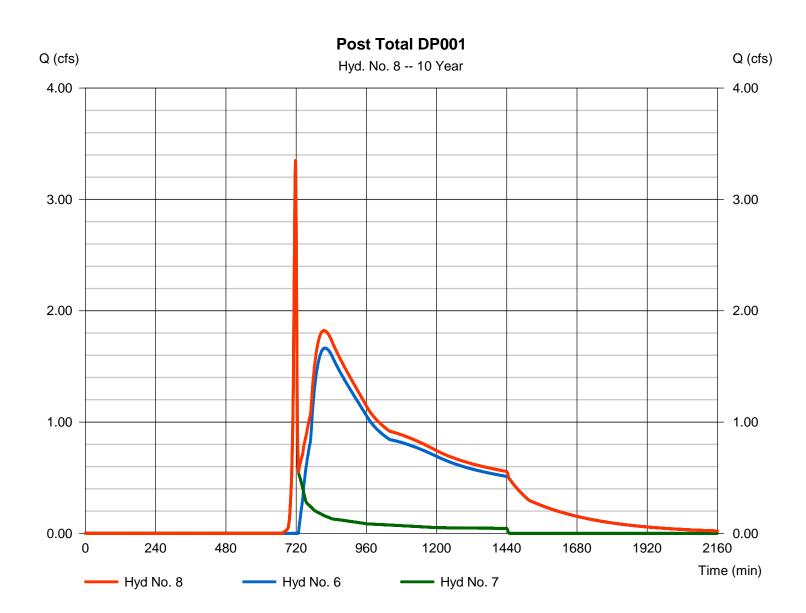


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Post Bypass DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 3.349 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 6,757 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

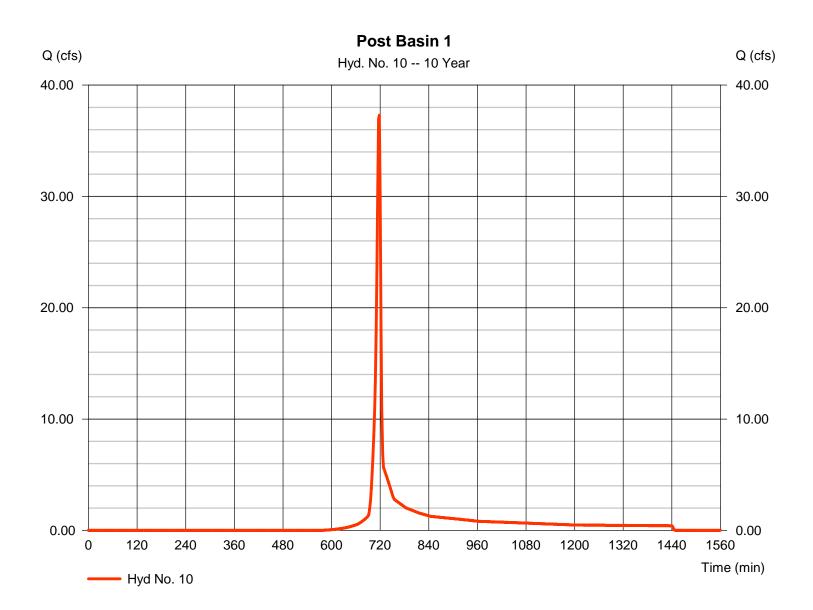


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

Storm frequency= 10 yrsTime to peak= 718 minTime interval= 2 minHyd. volume= 50,283 diamondologies	Time interval	= 2 min	Hyd. volume	= 3.349 cfs = 718 min = 50,283 cut = 1.440 ac
--	---------------	---------	-------------	--

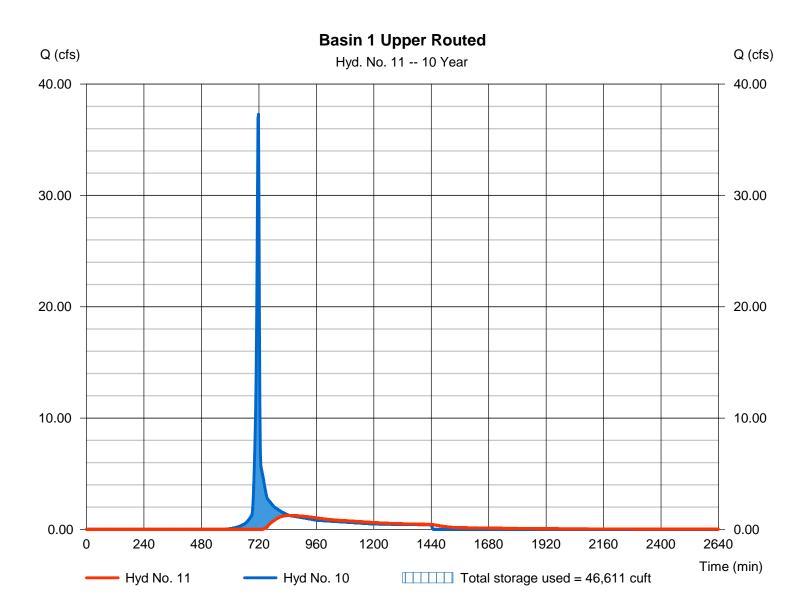


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 37.29 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 74,773 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

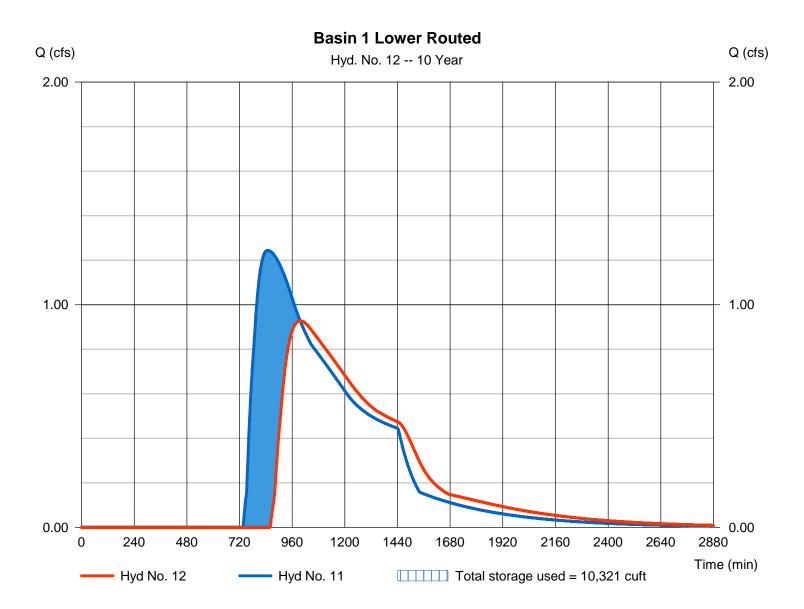

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Basin 1 Upper Routed

= Reservoir	Peak discharge	= 1.244 cfs
= 10 yrs	Time to peak	= 848 min
= 2 min	Hyd. volume	= 37,284 cuft
= 10 - Post Basin 1	Max. Elevation	= 322.89 ft
= Basin 1 Upper	Max. Storage	= 46,611 cuft
	= 10 yrs = 2 min = 10 - Post Basin 1	= 10 yrsTime to peak= 2 minHyd. volume= 10 - Post Basin 1Max. Elevation

Storage Indication method used.

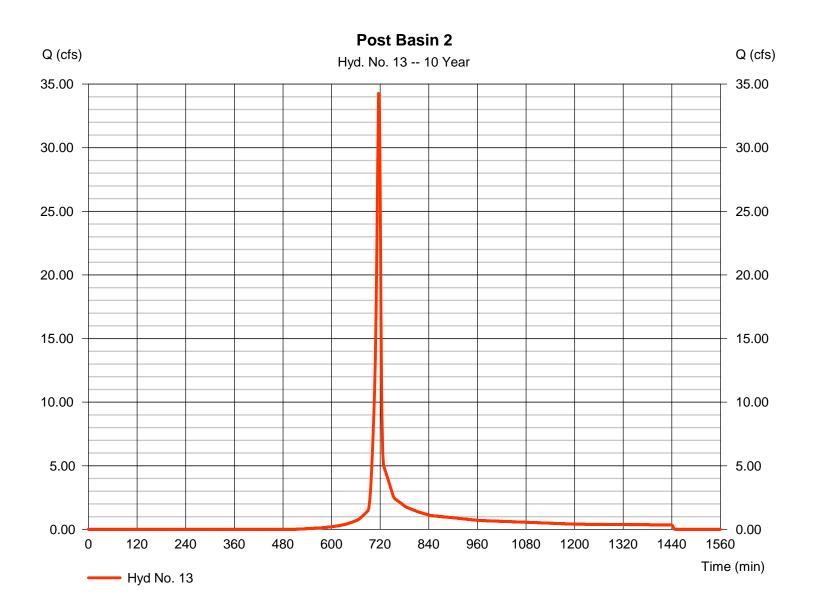

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.928 cfs
Storm frequency	= 10 yrs	Time to peak	= 996 min
Time interval	= 2 min	Hyd. volume	= 31,087 cuft
Inflow hyd. No.	= 11 - Basin 1 Upper Routed	Max. Elevation	= 304.57 ft
Reservoir name	= Basin 1 Lower	Max. Storage	= 10,321 cuft

Storage Indication method used.

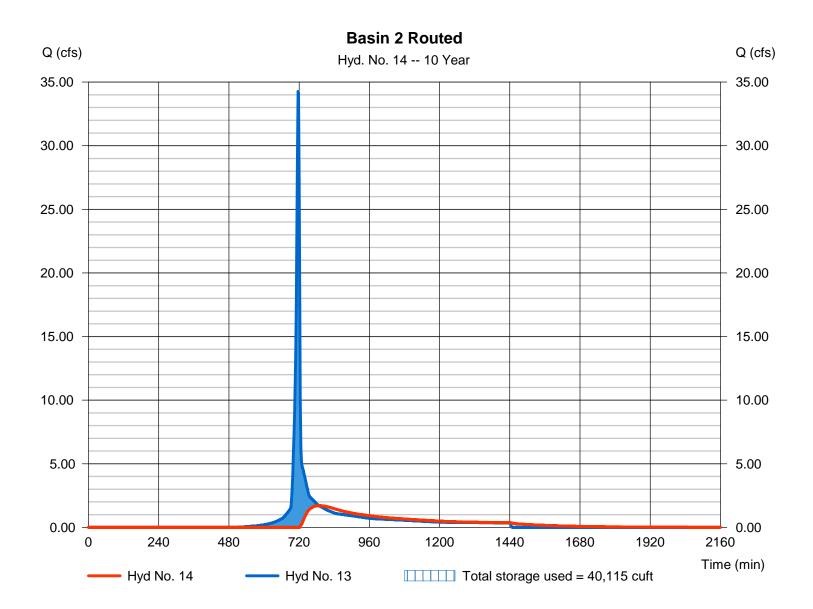


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 34.26 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 69,196 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

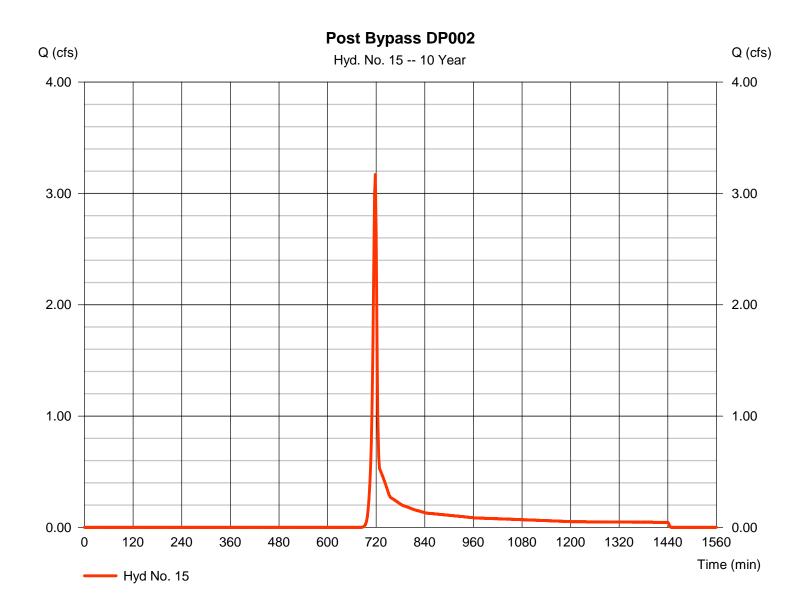

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.706 cfs
Storm frequency	= 10 yrs	Time to peak	= 788 min
Time interval	= 2 min	Hyd. volume	= 36,842 cuft
Inflow hyd. No.	= 13 - Post Basin 2	Max. Elevation	= 309.33 ft
Reservoir name	= Basin 2	Max. Storage	= 40,115 cuft
Time interval Inflow hyd. No.	= 2 min = 13 - Post Basin 2	Hyd. volume Max. Elevation	= 36,842 cuft = 309.33 ft

Storage Indication method used.

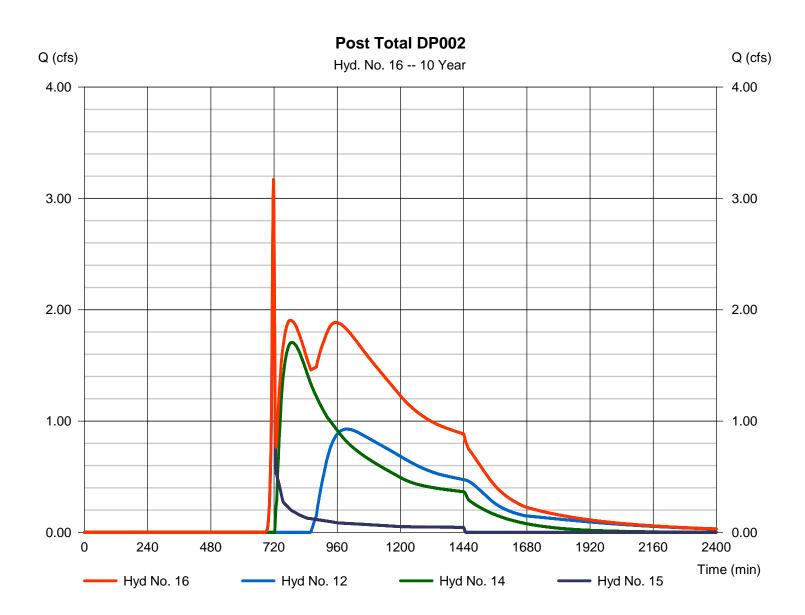


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Post Bypass DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 3.170 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 6,463 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

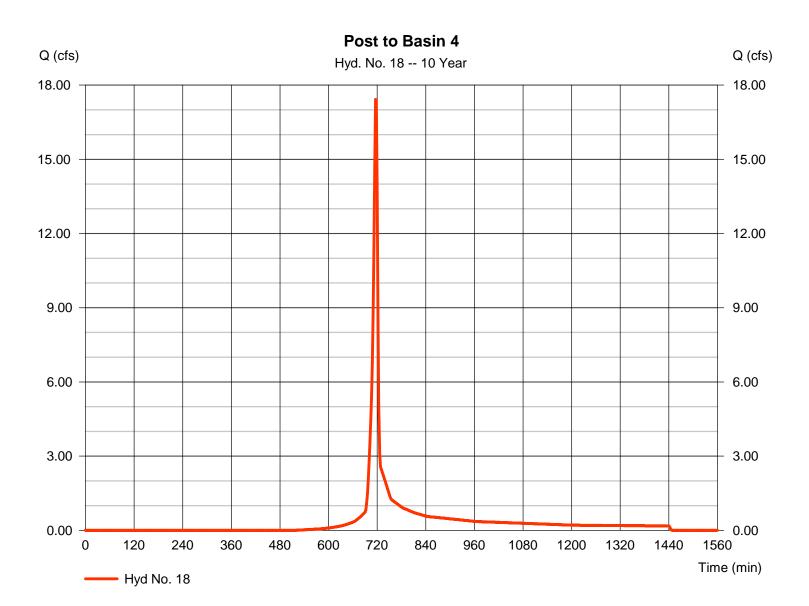

91

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

Hydrograph type	= Combine	Peak discharge	= 3.170 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 74,392 cuft
Inflow hyds.	= 12, 14, 15	Contrib. drain. area	= 1.540 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

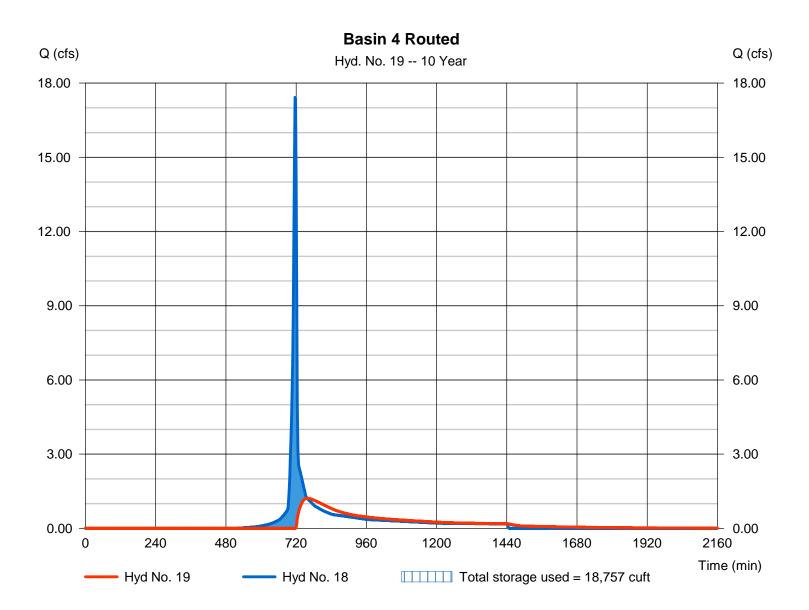
Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 17.42 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 35,181 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420

93

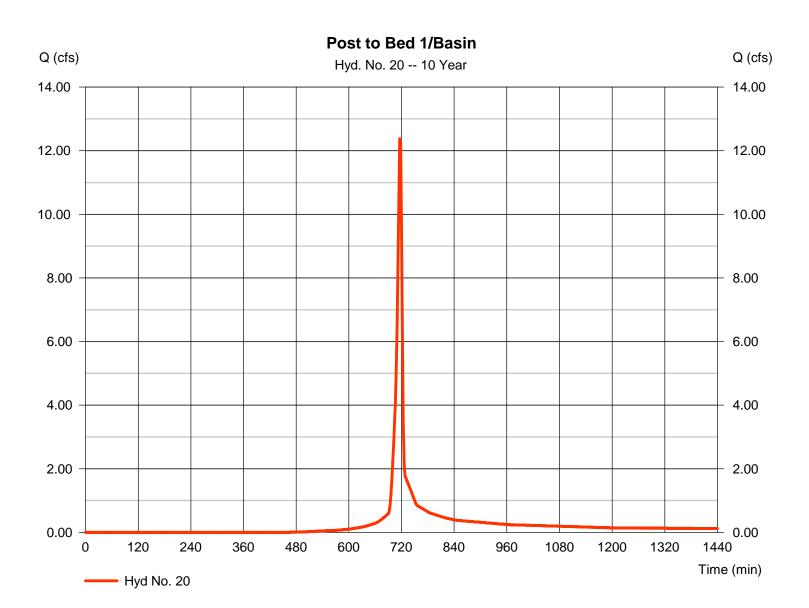

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.213 cfs
Storm frequency	= 10 yrs	Time to peak	= 758 min
Time interval	= 2 min	Hyd. volume	= 21,376 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 346.82 ft
Reservoir name	= Basin 4	Max. Storage	= 18,757 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

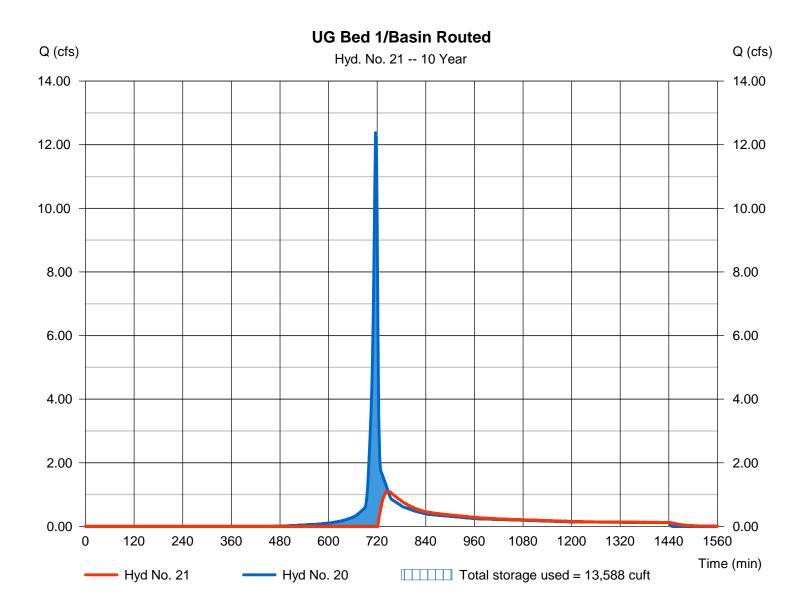
Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 12.38 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 25,081 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820

95


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.100 cfs
Storm frequency	= 10 yrs	Time to peak	= 748 min
Time interval	= 2 min	Hyd. volume	= 12,984 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 340.55 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 13,588 cuft

Storage Indication method used.

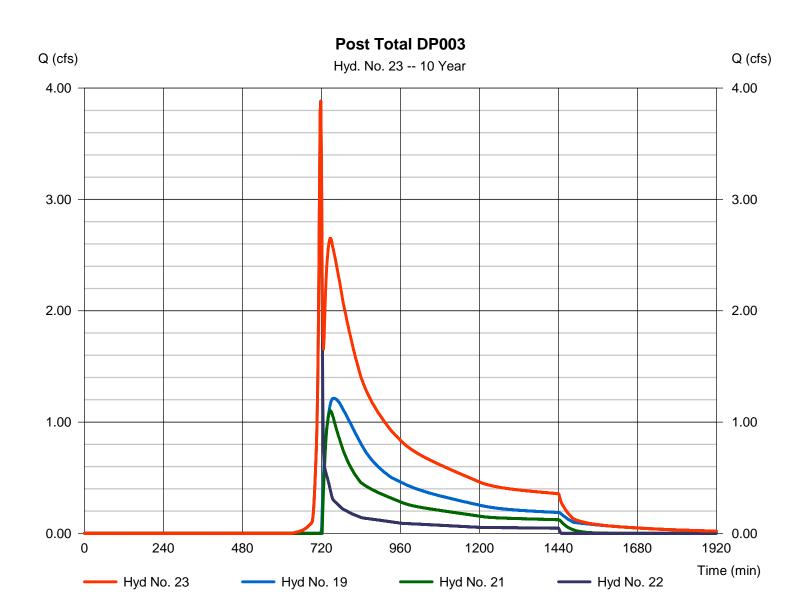
96

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 3.883 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 7,766 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.77 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 23

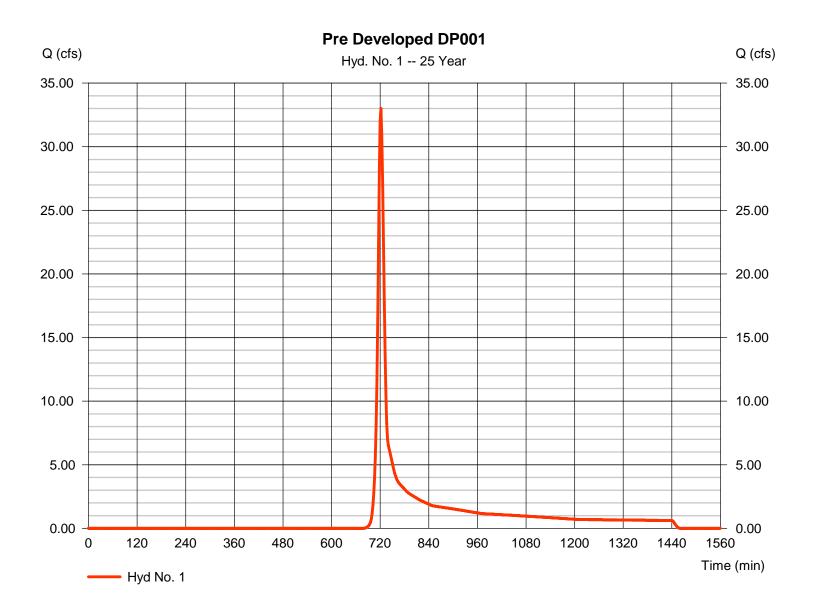
Post Total DP003

Hydrograph type Storm frequency Time interval Inflow hyds.	 = Combine = 10 yrs = 2 min = 19, 21, 22 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 3.883 cfs = 718 min = 42,126 cuft = 1.340 ac
	,,		

98

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

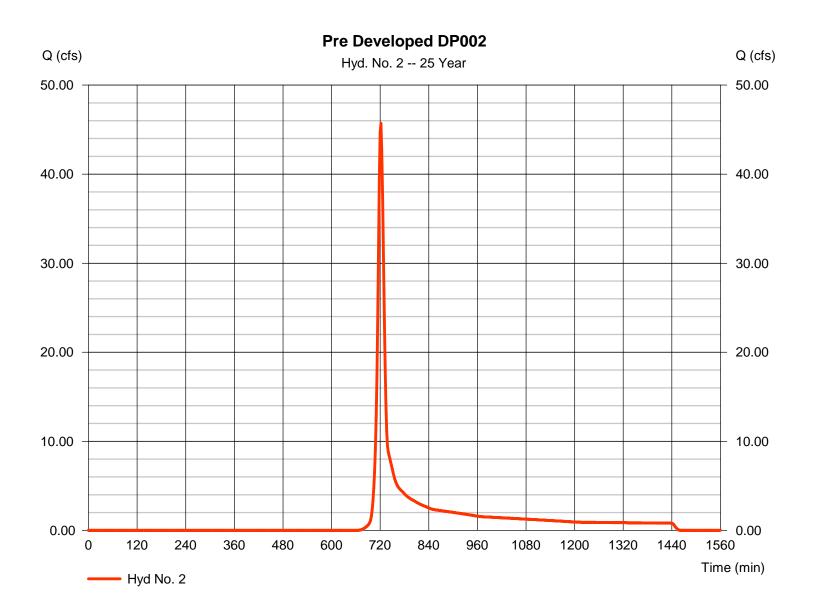

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	33.01	2	722	90,718				Pre Developed DP001
2	SCS Runoff	45.70	2	722	123,600				Pre Developed DP002
3	SCS Runoff	28.88	2	722	75,557				Pre Developed DP003
4	SCS Runoff	2.654	2	718	5,315				Pre Developed DP003 ORA
5	SCS Runoff	55.64	2	718	112,290				Post Basin 3
6	Reservoir	7.032	2	736	75,106	5	318.74	53,348	Basin 3 Routed
7	SCS Runoff	4.966	2	718	9,933				Post Bypass DP001
8	Combine	7.699	2	734	85,039	6, 7			Post Total DP001
10	SCS Runoff	51.31	2	716	103,585				Post Basin 1
11	Reservoir	3.633	2	756	66,096	10	323.31	54,387	Basin 1 Upper Routed
12	Reservoir	2.071	2	874	59,899	11	305.33	15,802	Basin 1 Lower Routed
13	SCS Runoff	46.02	2	716	93,362				Post Basin 2
14	Reservoir	5.509	2	736	61,008	13	309.83	47,406	Basin 2 Routed
15	SCS Runoff	4.826	2	718	9,678				Post Bypass DP002
16	Combine	6.169	2	736	130,585	12, 14, 15			Post Total DP002
18	SCS Runoff	23.48	2	716	47,598				Post to Basin 4
19	Reservoir	3.037	2	734	33,793	18	347.40	23,329	Basin 4 Routed
20	SCS Runoff	16.34	2	716	33,358				Post to Bed 1/Basin
21	Reservoir	4.714	2	724	21,261	20	341.15	16,082	UG Bed 1/Basin Routed
22	SCS Runoff	5.505	2	718	11,037				Post Bypass DP003
23	Combine	9.903	2	722	66,091	19, 21, 22			Post Total DP003
SW	/M.gpw				Return F	Period: 25 Y	/ear	Tuesday, 0	06 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 33.01 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 90,718 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

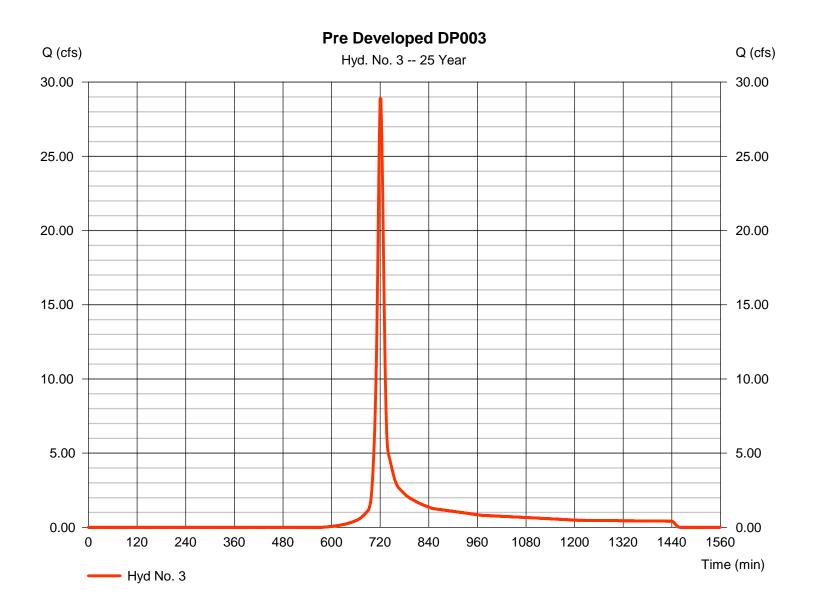


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 45.70 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 123,600 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

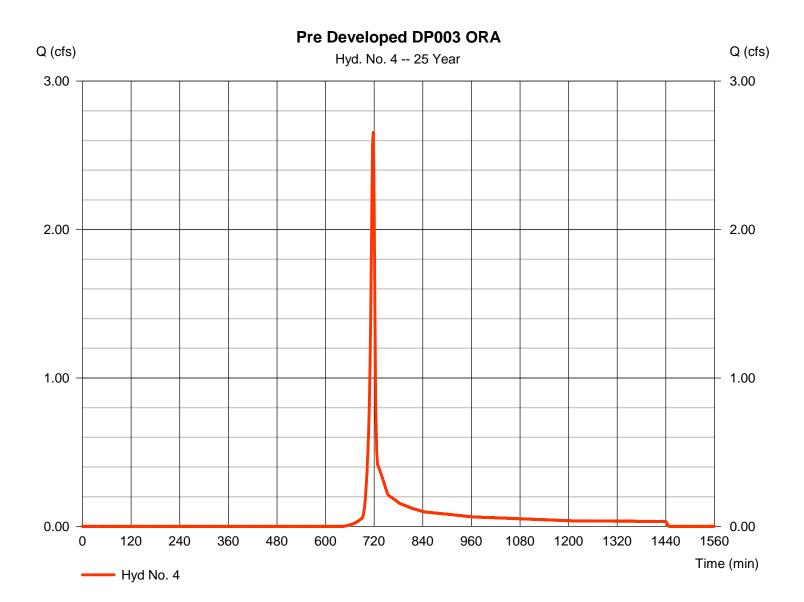


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Pre Developed DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 28.88 cfs
Storm frequency	= 25 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 75,557 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

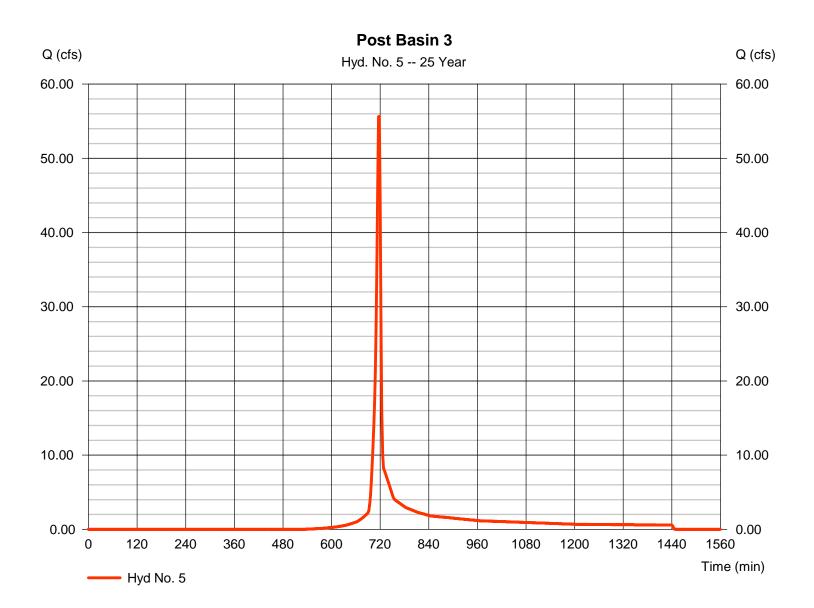


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 2.654 cfs
Storm frequency	= 25 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 5,315 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	



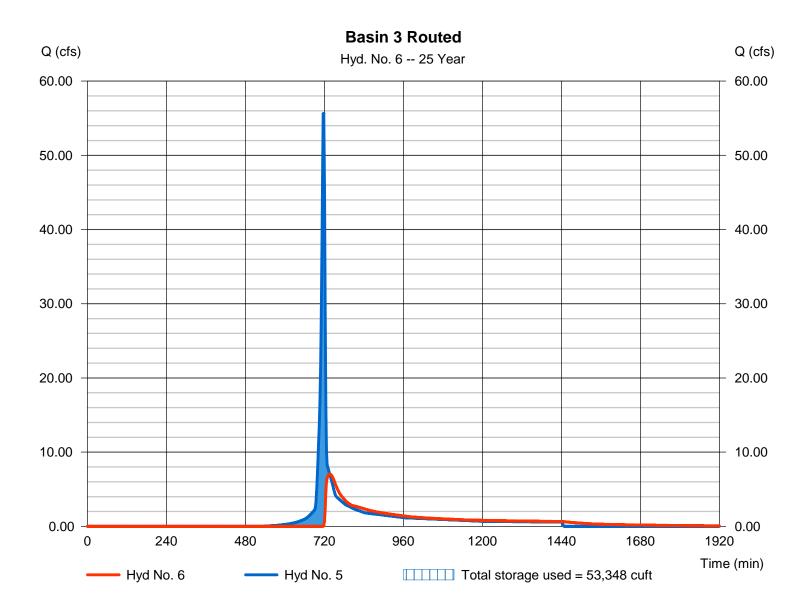
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 55.64 cfs
Storm frequency	= 25 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 112,290 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
eterm duration	- 211110	Chape lactor	- 101

104

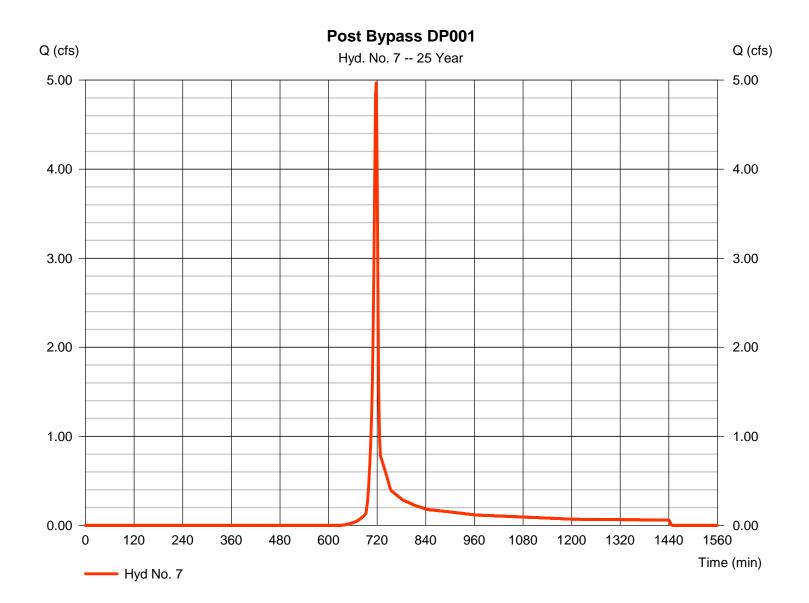

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

Hydrograph type	= Reservoir	Peak discharge	= 7.032 cfs
Storm frequency	= 25 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 75,106 cuft
Inflow hyd. No.	= 5 - Post Basin 3	Max. Elevation	= 318.74 ft
Reservoir name	= Basin 3	Max. Storage	= 53,348 cuft
		Max. Storage	= 55,540 cuit

Storage Indication method used.

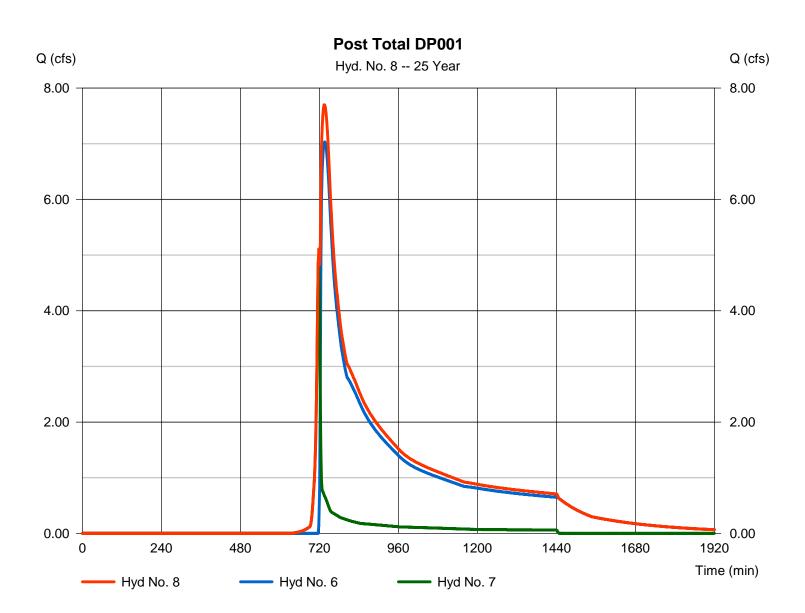


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Post Bypass DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 4.966 cfs
Storm frequency	= 25 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 9,933 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

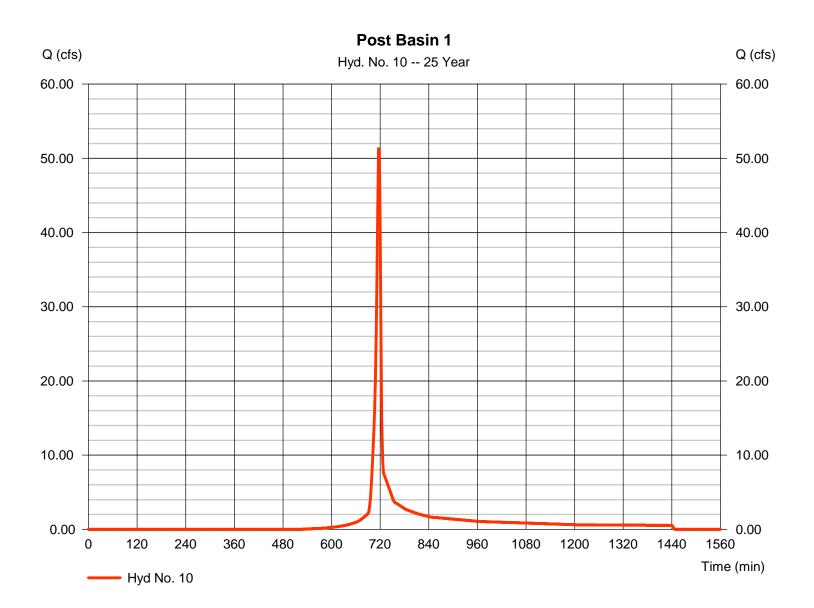


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

Hydrograph type	= Combine	Peak discharge	 7.699 cfs 734 min 85,039 cuft 1.440 ac
Storm frequency	= 25 yrs	Time to peak	
Time interval	= 2 min	Hyd. volume	
Inflow hyds.	= 6, 7	Contrib. drain. area	

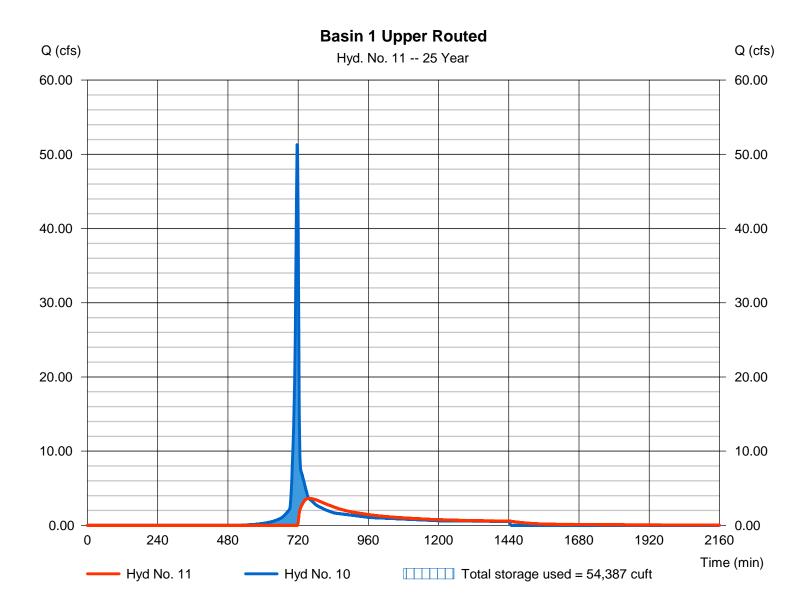

107

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 51.31 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 103,585 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

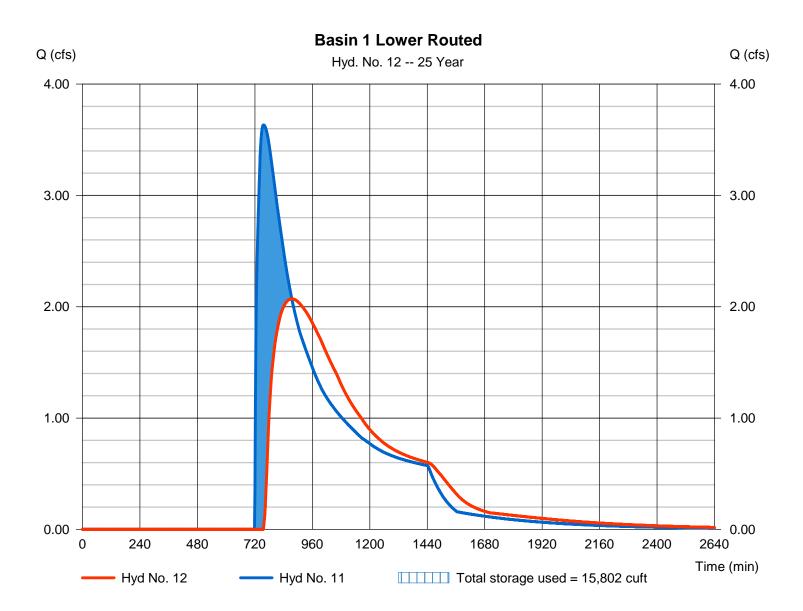

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Basin 1 Upper Routed

= Reservoir	Peak discharge	= 3.633 cfs
= 25 yrs	Time to peak	= 756 min
= 2 min	Hyd. volume	= 66,096 cuft
= 10 - Post Basin 1	Max. Elevation	= 323.31 ft
= Basin 1 Upper	Max. Storage	= 54,387 cuft
	= 25 yrs = 2 min = 10 - Post Basin 1	= 25 yrsTime to peak= 2 minHyd. volume= 10 - Post Basin 1Max. Elevation

Storage Indication method used.

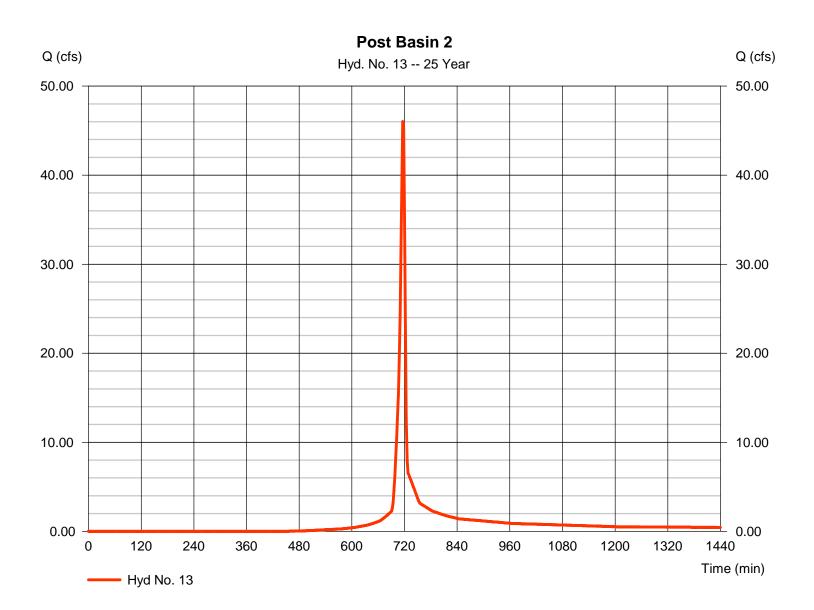

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

= Reservoir	Peak discharge	= 2.071 cfs
= 25 yrs	Time to peak	= 874 min
= 2 min	Hyd. volume	= 59,899 cuft
= 11 - Basin 1 Upper Routed	Max. Elevation	= 305.33 ft
= Basin 1 Lower	Max. Storage	= 15,802 cuft
	= 25 yrs = 2 min = 11 - Basin 1 Upper Routed	= 25 yrsTime to peak= 2 minHyd. volume= 11 - Basin 1 Upper RoutedMax. Elevation

Storage Indication method used.

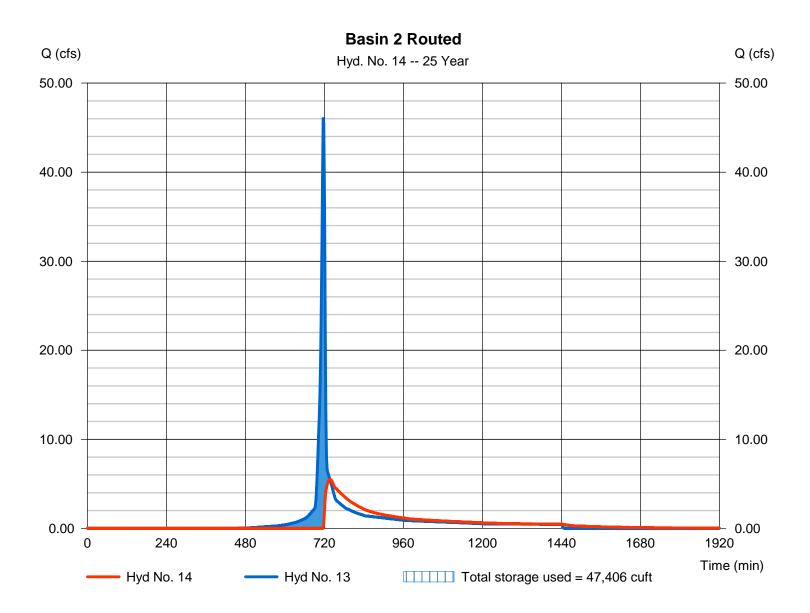


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 46.02 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 93,362 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

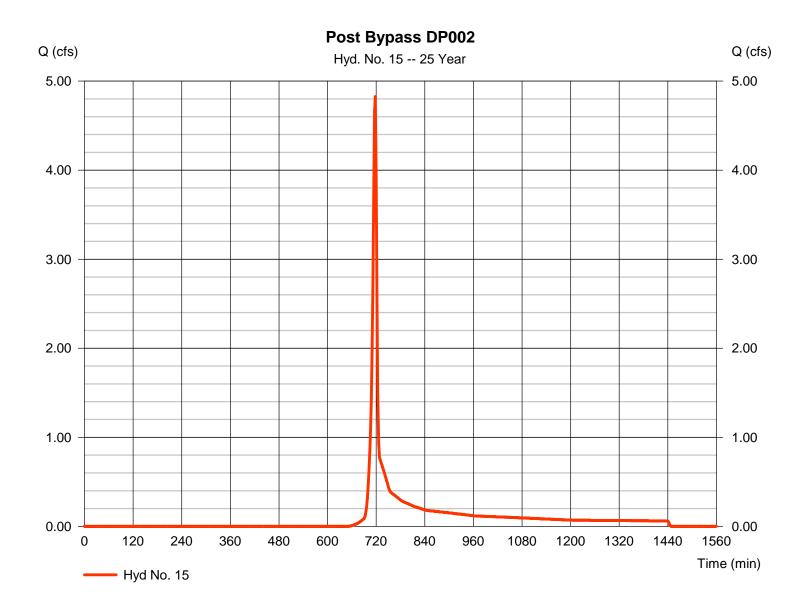

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

e = Reservoir Peak discha	rge = 5.509 cfs
y = 25 yrs Time to pea	k = 736 min
= 2 min Hyd. volume	e = 61,008 cuft
= 13 - Post Basin 2 Max. Elevat	ion = 309.83 ft
e = Basin 2 Max. Storag	e = 47,406 cuft
= 2 min Hyd. volume = 13 - Post Basin 2 Max. Elevat	e = 61,008 cm ion = 309.83 ft

Storage Indication method used.

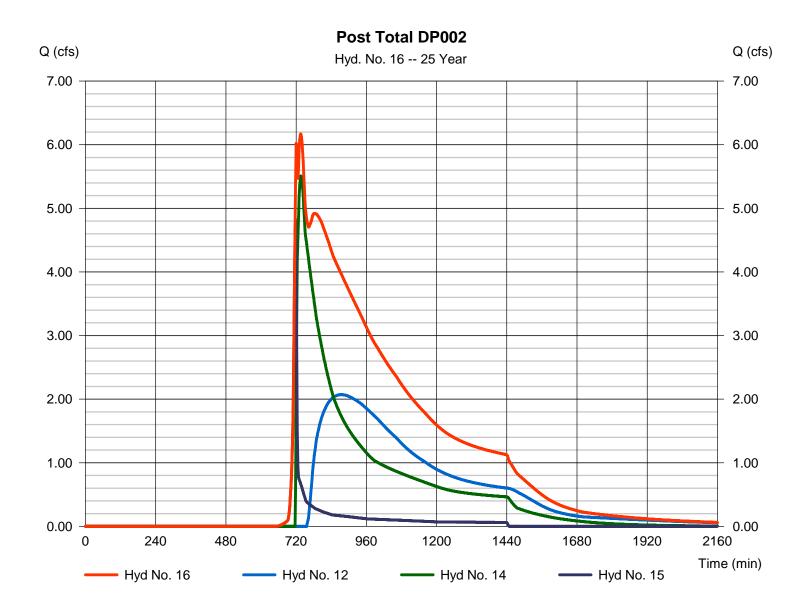


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Post Bypass DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 4.826 cfs
Storm frequency	= 25 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 9,678 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



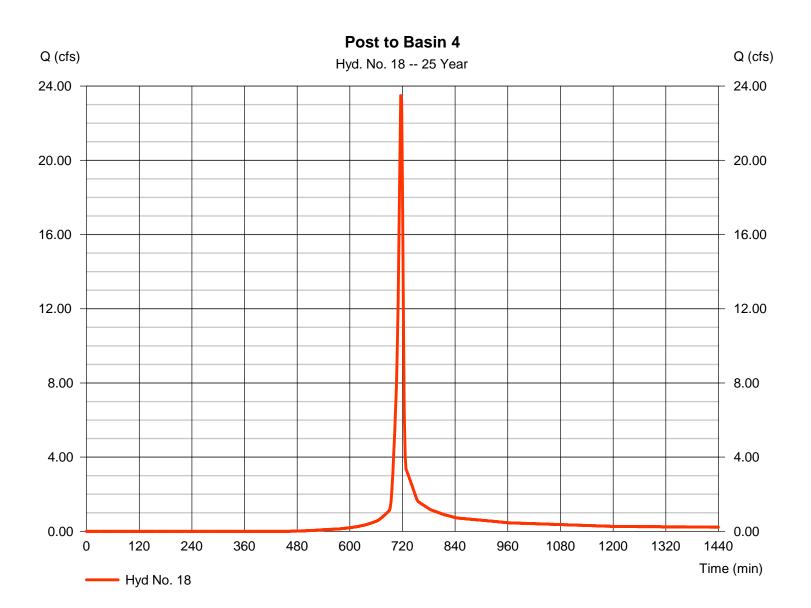
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

Hydrograph type	= Combine	Peak discharge	= 6.169 cfs
Storm frequency	= 25 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 130,585 cuft
Inflow hyds.	= 12, 14, 15	Contrib. drain. area	= 1.540 ac

114


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

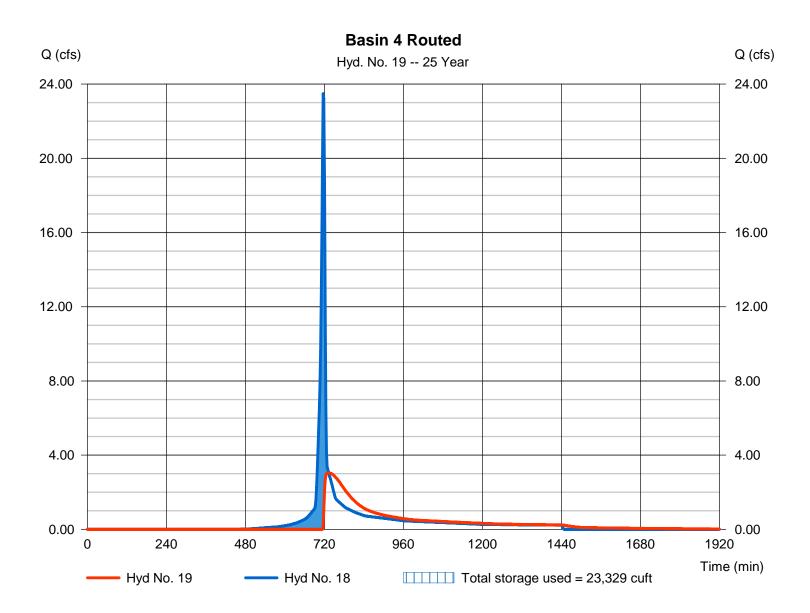
Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 23.48 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 47,598 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420

115

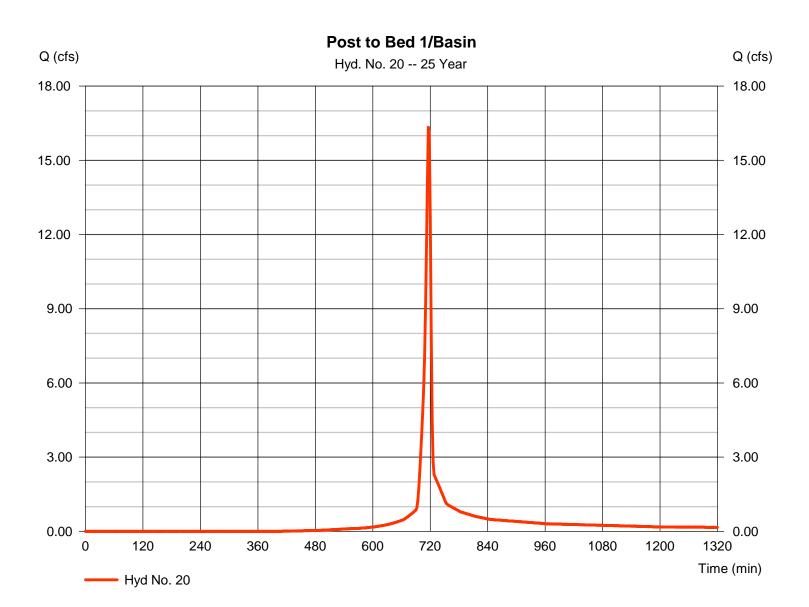

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 3.037 cfs
Storm frequency	= 25 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 33,793 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 347.40 ft
Reservoir name	= Basin 4	Max. Storage	= 23,329 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

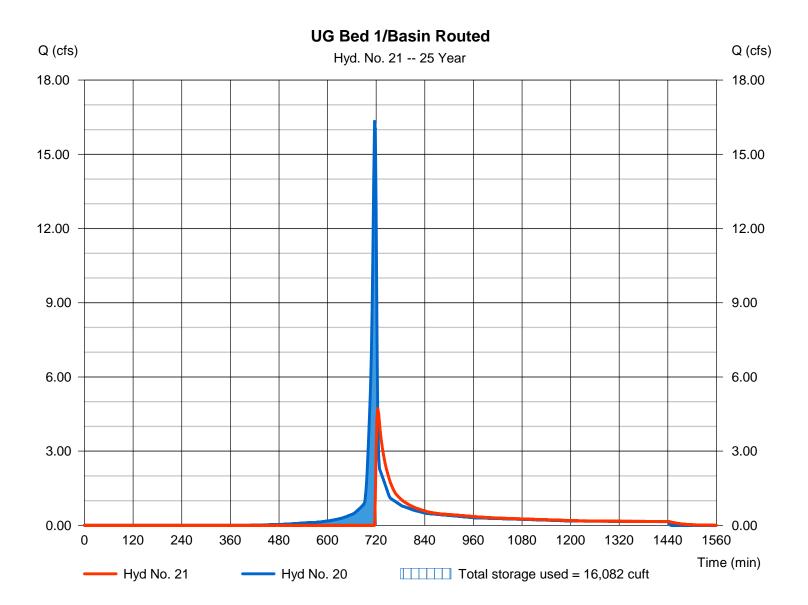
Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 16.34 cfs
Storm frequency	= 25 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 33,358 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820

117

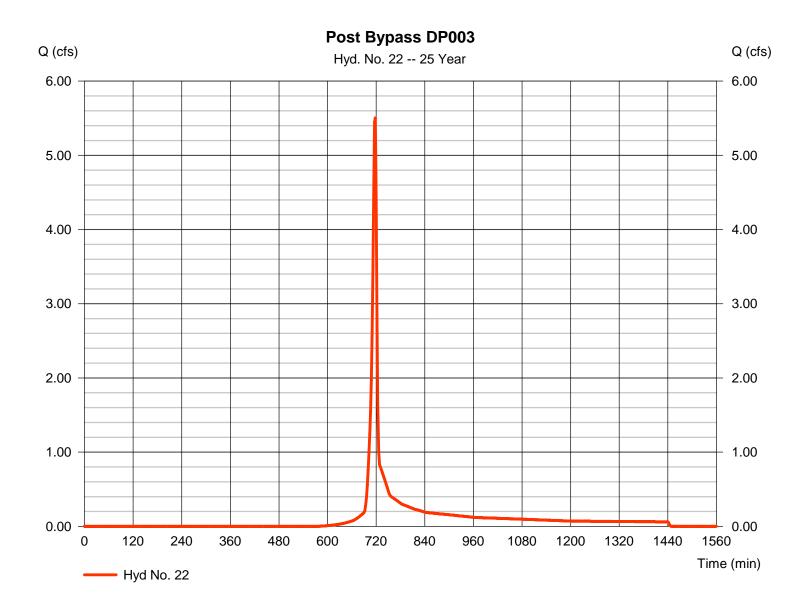

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 4.714 cfs
Storm frequency	= 25 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 21,261 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 341.15 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 16,082 cuft

Storage Indication method used.

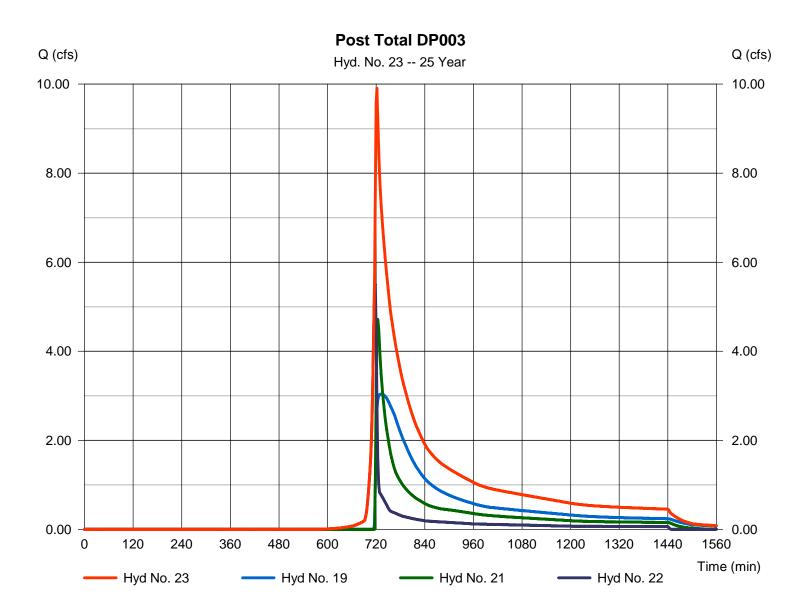

118

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 5.505 cfs
Storm frequency	= 25 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 11,037 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

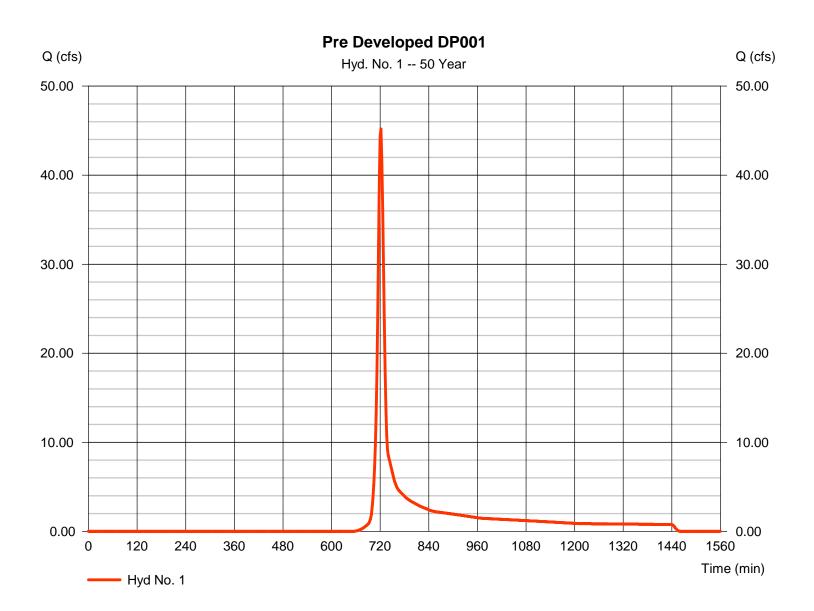
Hyd. No. 23

Post Total DP003

 = Combine = 25 yrs = 2 min = 19, 21, 22 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 9.903 cfs 722 min 66,091 cuft 1.340 ac
- 19, 21, 22	Contrib. Grain. area	= 1.340 ac
	= 25 yrs = 2 min	= 25 yrsTime to peak= 2 minHyd. volume

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

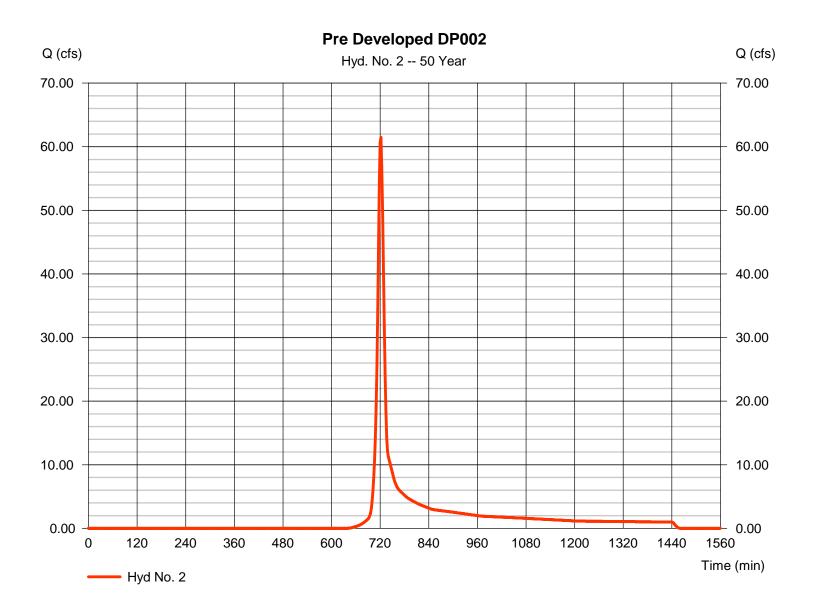

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	45.18	2	722	121,090				Pre Developed DP001
2	SCS Runoff	61.46	2	722	163,179				Pre Developed DP002
3	SCS Runoff	36.78	2	720	95,632				Pre Developed DP003
4	SCS Runoff	3.460	2	718	6,921				Pre Developed DP003 ORA
5	SCS Runoff	69.54	2	716	140,558				Post Basin 3
6	Reservoir	20.11	2	724	103,374	5	319.14	62,264	Basin 3 Routed
7	SCS Runoff	6.425	2	718	12,860				Post Bypass DP001
8	Combine	22.70	2	722	116,234	6, 7			Post Total DP001
10	SCS Runoff	63.94	2	716	129,319				Post Basin 1
11	Reservoir	10.69	2	726	91,830	10	323.71	61,860	Basin 1 Upper Routed
12	Reservoir	5.226	2	772	85,633	11	305.66	18,217	Basin 1 Lower Routed
13	SCS Runoff	56.20	2	716	114,655				Post Basin 2
14	Reservoir	18.98	2	724	82,300	13	310.22	53,973	Basin 2 Routed
15	SCS Runoff	6.335	2	718	12,668				Post Bypass DP002
16	Combine	21.32	2	722	180,602	12, 14, 15			Post Total DP002
18	SCS Runoff	28.74	2	716	58,554				Post to Basin 4
19	Reservoir	4.304	2	728	44,749	18	348.05	28,657	Basin 4 Routed
20	SCS Runoff	19.73	2	716	40,599				Post to Bed 1/Basin
21	Reservoir	7.370	2	724	28,502	20	341.74	18,600	UG Bed 1/Basin Routed
22	SCS Runoff	6.944	2	718	13,999				Post Bypass DP003
23	Combine	16.09	2	720	87,250	19, 21, 22			Post Total DP003
SW	/M.gpw				Return F	Period: 50 Y	/ear	Tuesday, 0	06 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 45.18 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 121,090 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

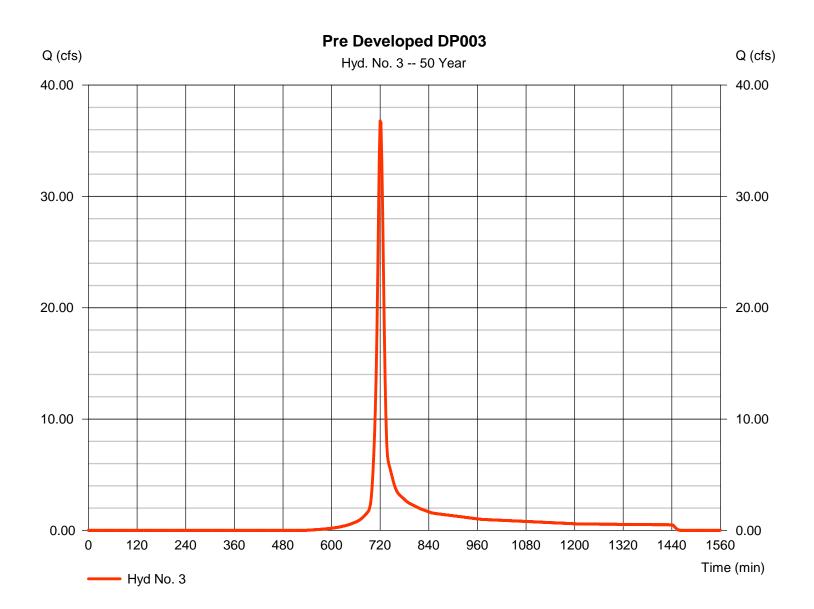


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 61.46 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 163,179 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

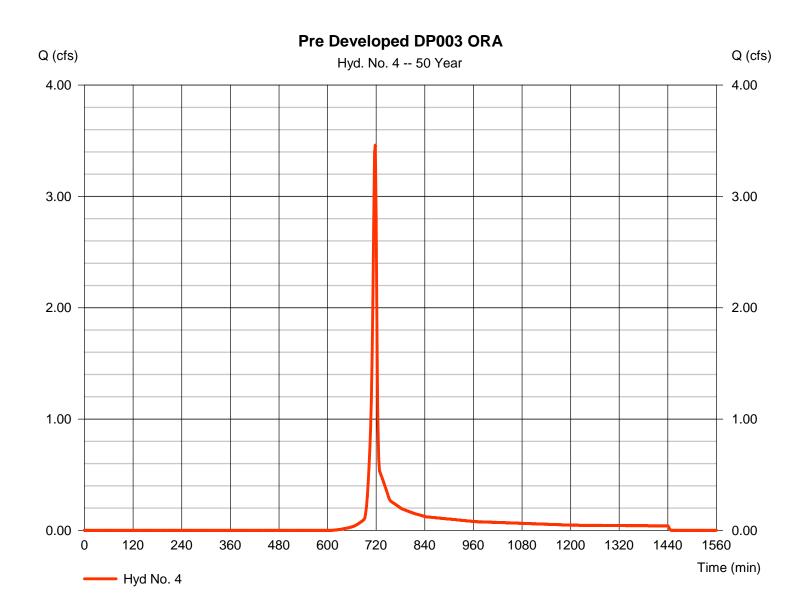

123

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Pre Developed DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 36.78 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 95,632 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

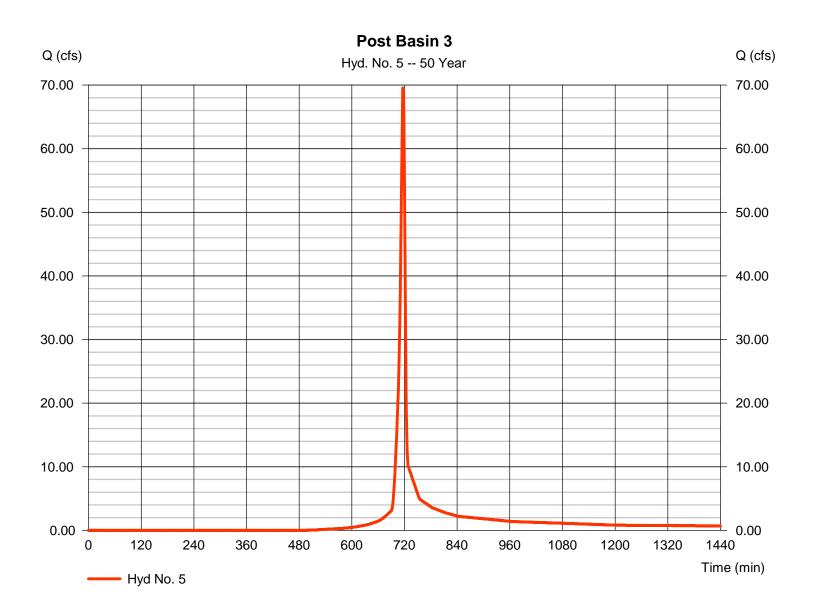


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 3.460 cfs
Storm frequency	= 50 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 6,921 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

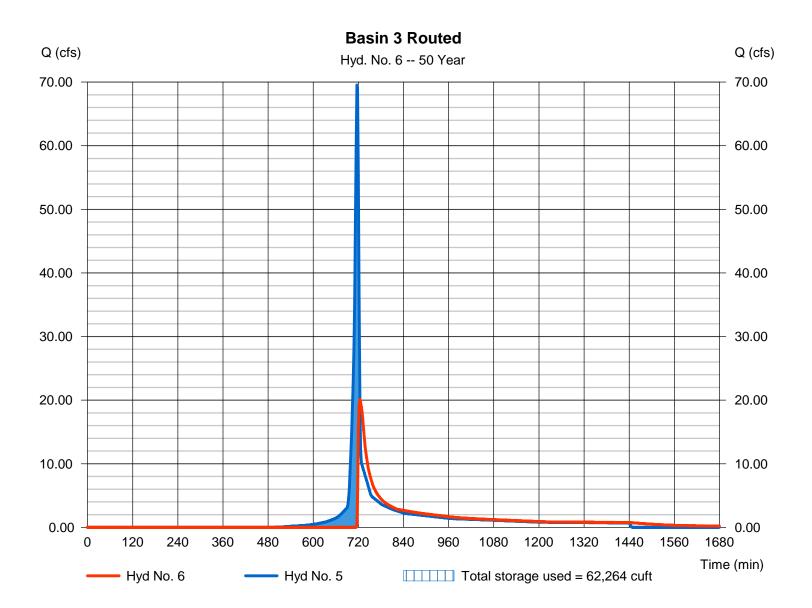

125

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 69.54 cfs
Storm frequency	= 50 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 140,558 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

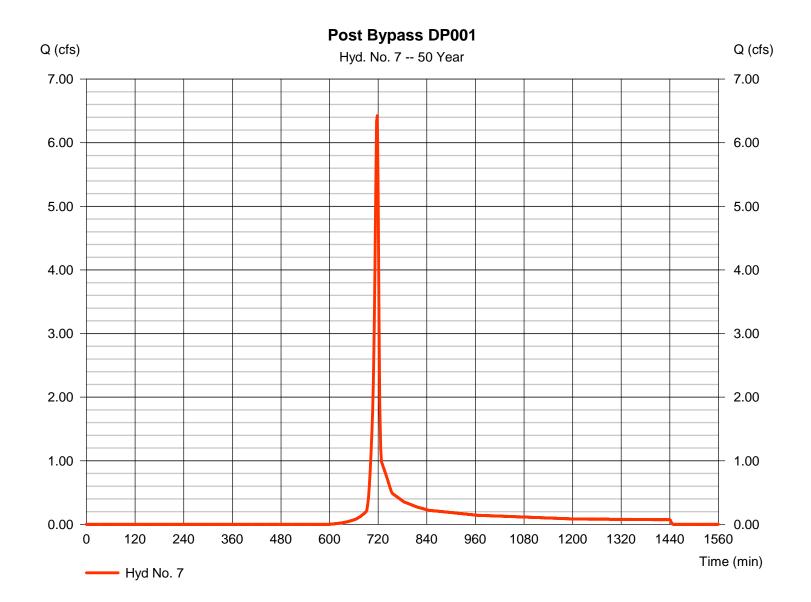

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

= Reservoir	Peak discharge	= 20.11 cfs
= 50 yrs	Time to peak	= 724 min
= 2 min	Hyd. volume	= 103,374 cuft
= 5 - Post Basin 3	Max. Elevation	= 319.14 ft
= Basin 3	Max. Storage	= 62,264 cuft
	= 50 yrs = 2 min = 5 - Post Basin 3	50 yrsTime to peak2 minHyd. volume5 - Post Basin 3Max. Elevation

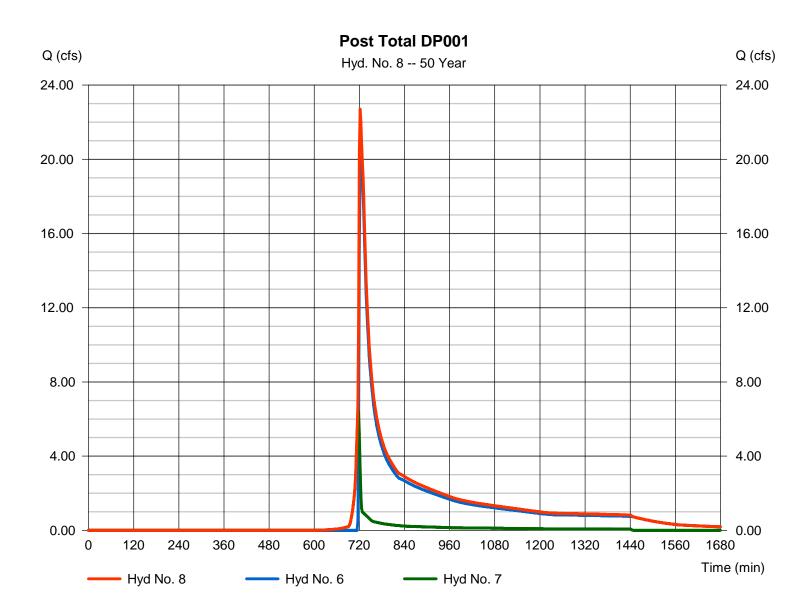
Storage Indication method used.


127

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

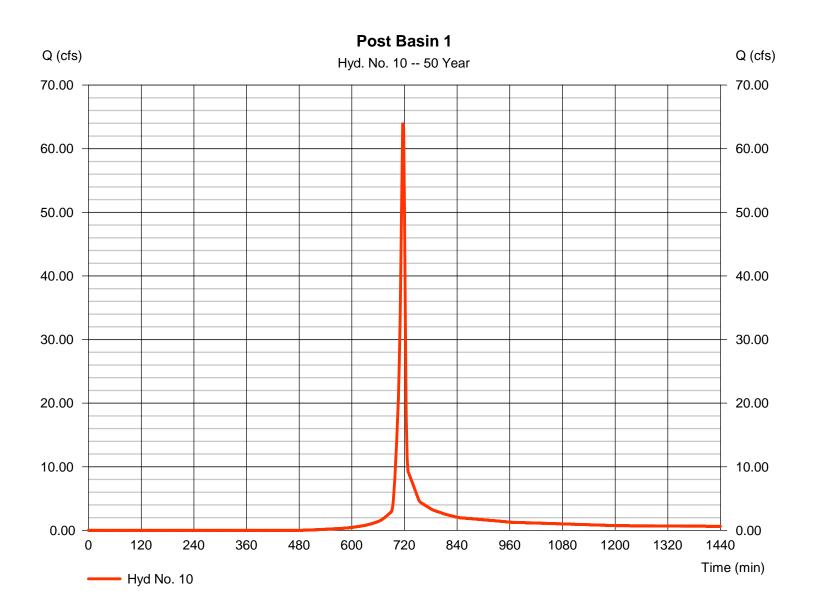
Post Bypass DP001


Hydrograph type	= SCS Runoff	Peak discharge	= 6.425 cfs
Storm frequency	= 50 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 12,860 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

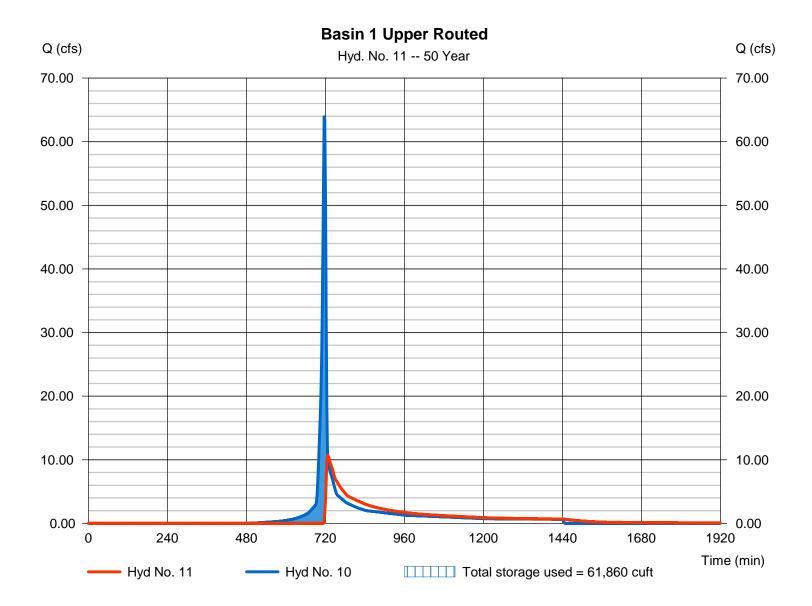


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 63.94 cfs
Storm frequency	= 50 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 129,319 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

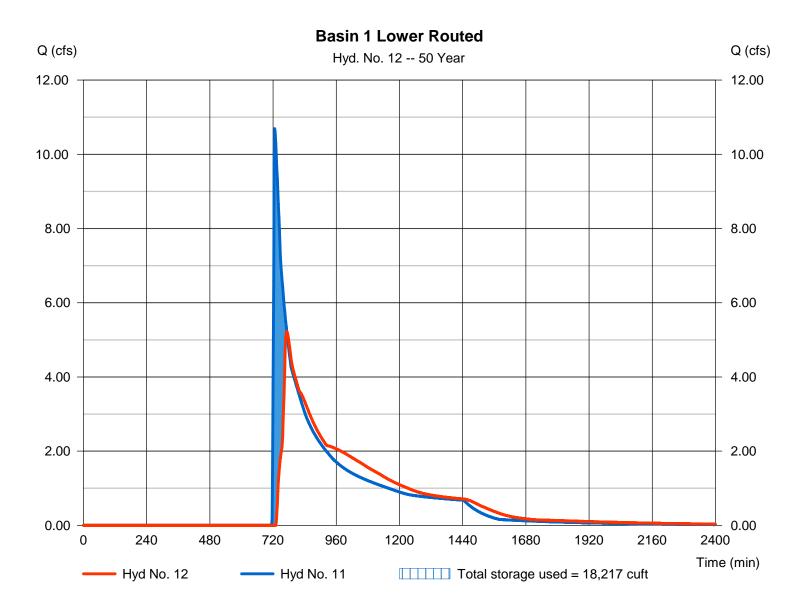
Hyd. No. 11

Basin 1 Upper Routed

= Reservoir	Peak discharge	= 10.69 cfs
= 50 yrs	Time to peak	= 726 min
= 2 min	Hyd. volume	= 91,830 cuft
= 10 - Post Basin 1	Max. Elevation	= 323.71 ft
= Basin 1 Upper	Max. Storage	= 61,860 cuft
	= 50 yrs = 2 min = 10 - Post Basin 1	= 50 yrsTime to peak= 2 minHyd. volume= 10 - Post Basin 1Max. Elevation

Storage Indication method used.

131

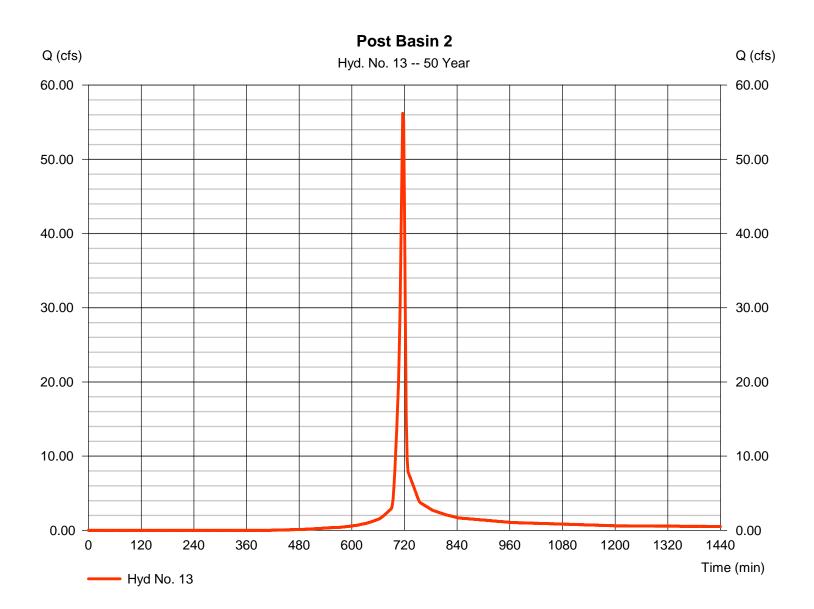

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

Hydrograph type	= Reservoir	Peak discharge	= 5.226 cfs
Storm frequency	= 50 yrs	Time to peak	= 772 min
Time interval	= 2 min	Hyd. volume	= 85,633 cuft
Inflow hyd. No.	= 11 - Basin 1 Upper Routed	Max. Elevation	= 305.66 ft
Reservoir name	= Basin 1 Lower	Max. Storage	= 18,217 cuft
Time interval Inflow hyd. No.	= 2 min = 11 - Basin 1 Upper Routed	Hyd. volume Max. Elevation	= 85,633 cuft = 305.66 ft

Storage Indication method used.

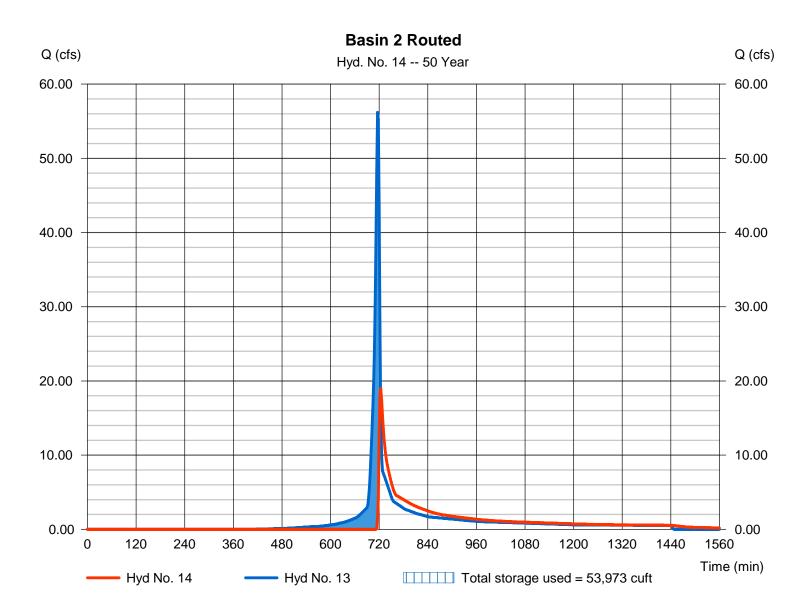


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 56.20 cfs
Storm frequency	= 50 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 114,655 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

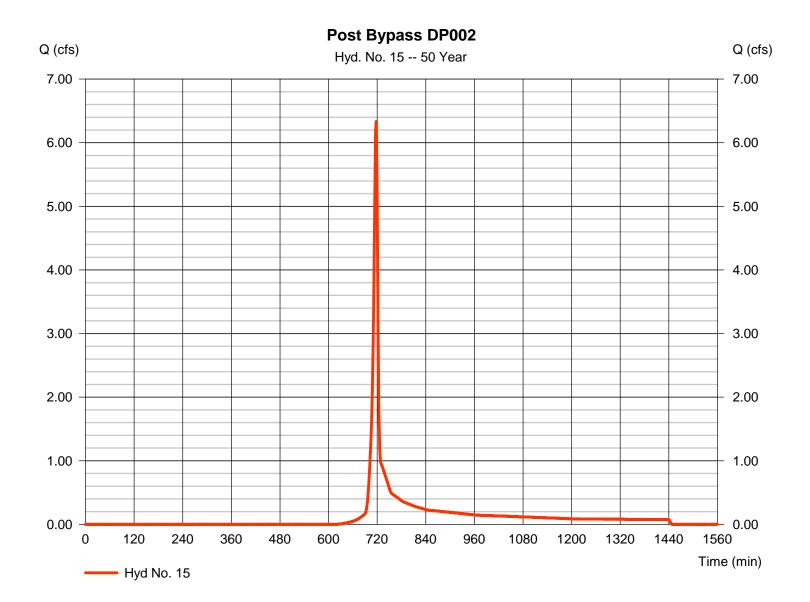

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 18.98 cfs
Storm frequency	= 50 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 82,300 cuft
Inflow hyd. No.	= 13 - Post Basin 2	Max. Elevation	= 310.22 ft
Reservoir name	= Basin 2	Max. Storage	= 53,973 cuft
		-	

Storage Indication method used.

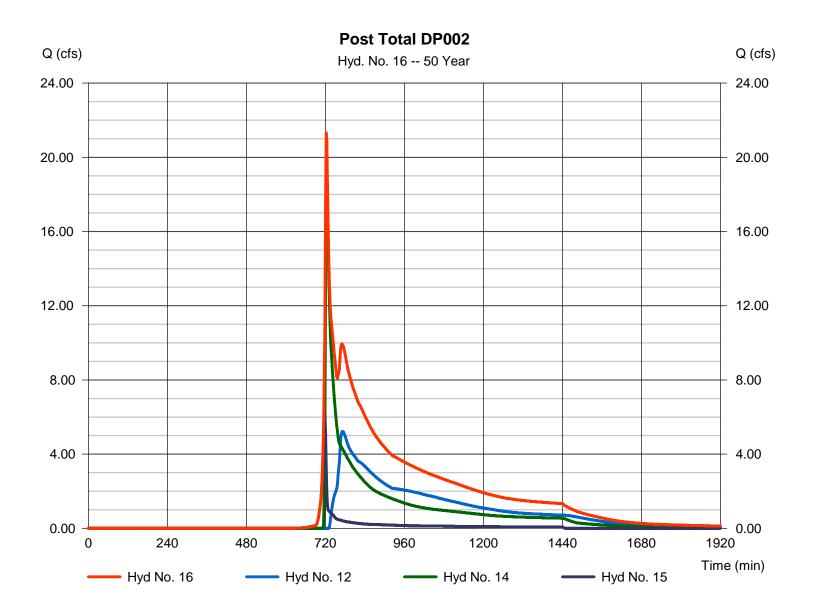

134

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Post Bypass DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 6.335 cfs
Storm frequency	= 50 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 12,668 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

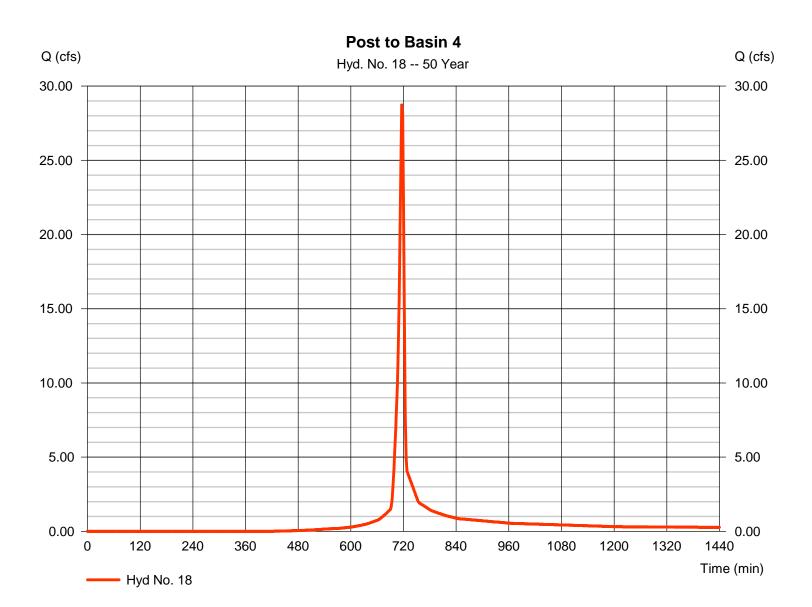


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

Hydrograph type	= Combine	Peak discharge	= 21.32 cfs
Storm frequency	= 50 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 180,602 cuft
Inflow hyds.	= 12, 14, 15	Contrib. drain. area	= 1.540 ac

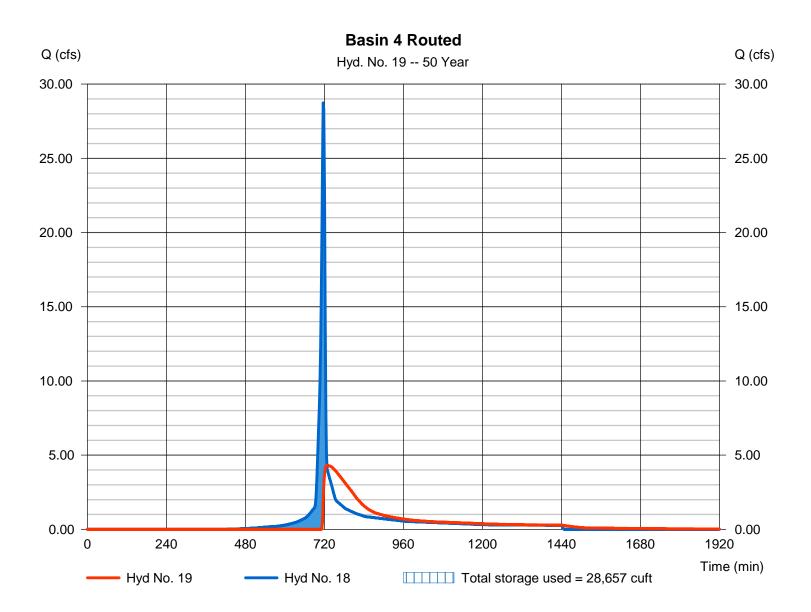

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 28.74 cfs
Storm frequency	= 50 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 58,554 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

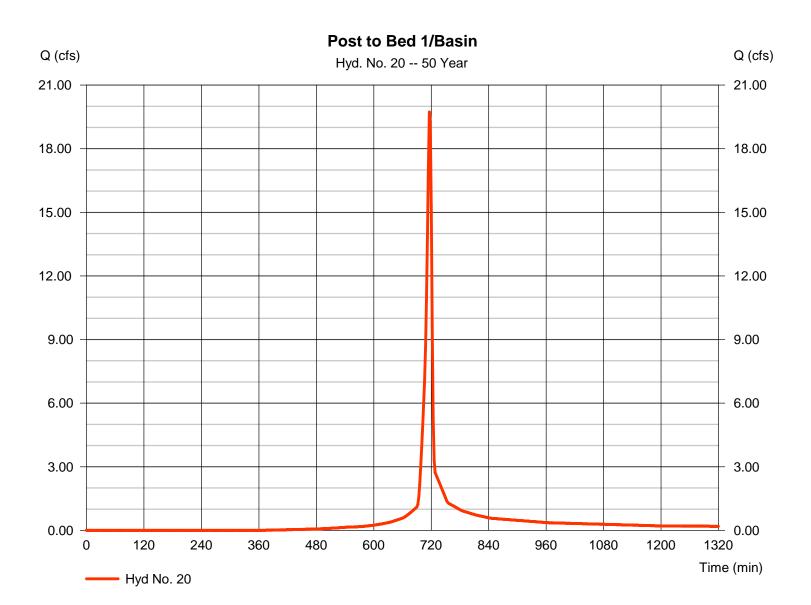
Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 4.304 cfs
Storm frequency	= 50 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 44,749 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 348.05 ft
Reservoir name	= Basin 4	Max. Storage	= 28,657 cuft

Storage Indication method used.

138


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

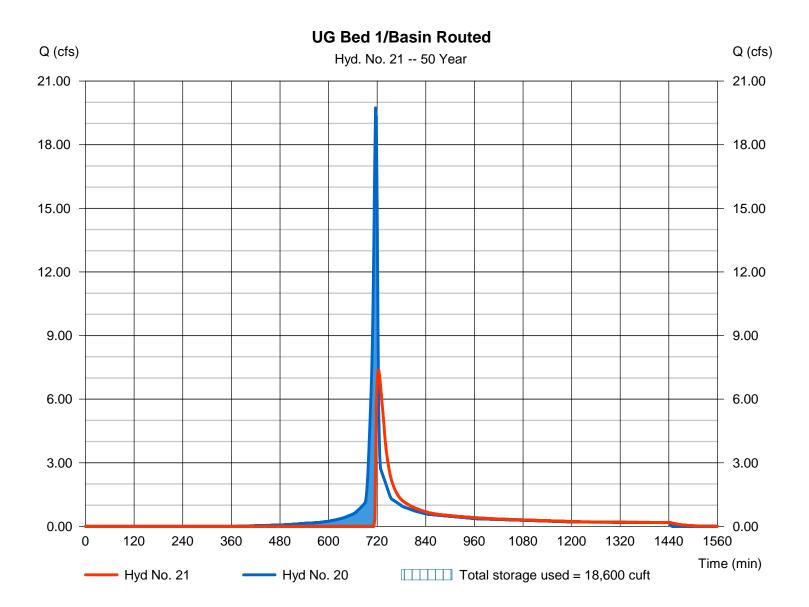
Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 19.73 cfs
Storm frequency	= 50 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 40,599 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820

139


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

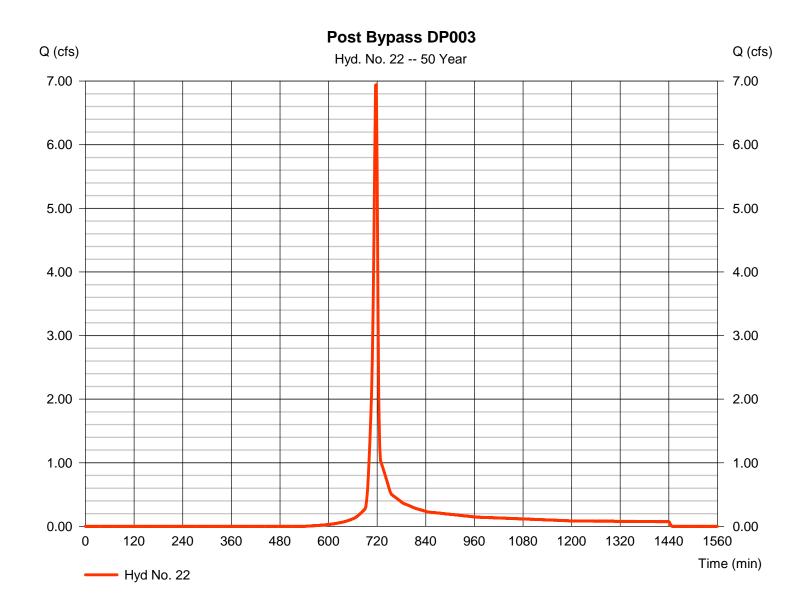
Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 7.370 cfs
Storm frequency	= 50 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 28,502 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 341.74 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 18,600 cuft

Storage Indication method used.

Tuesday, 06 / 13 / 2023

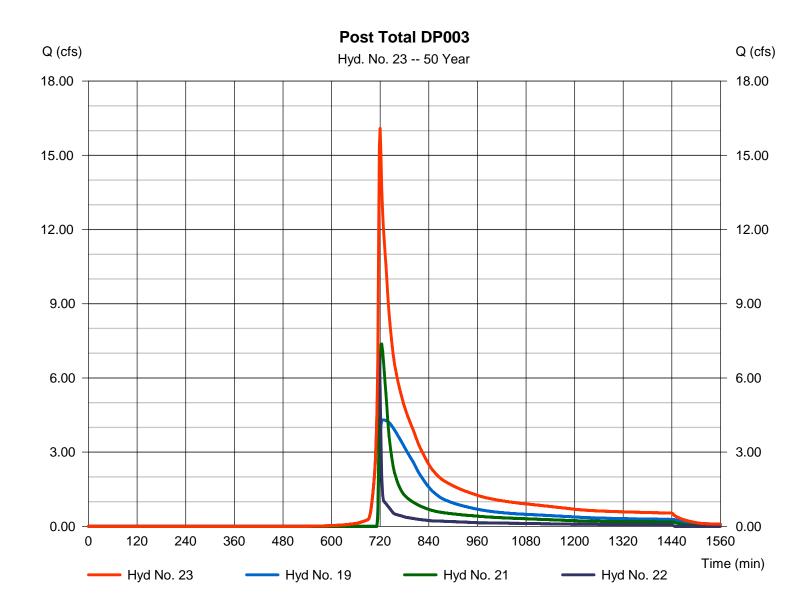

140

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 6.944 cfs
Storm frequency	= 50 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 13,999 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 23

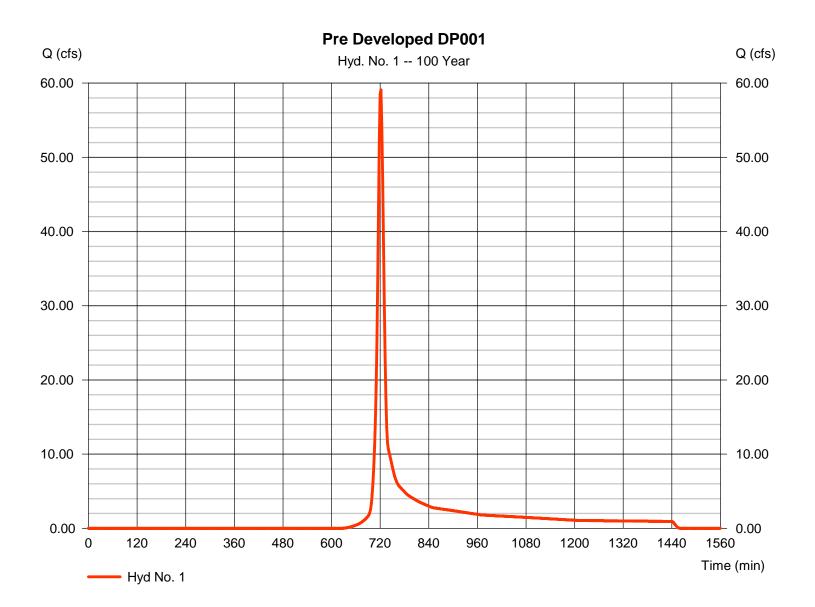
Post Total DP003

Hydrograph type	= Combine	Peak discharge	= 16.09 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 87,250 cuft
Inflow hyds.	= 19, 21, 22	Contrib. drain. area	= 1.340 ac

142

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

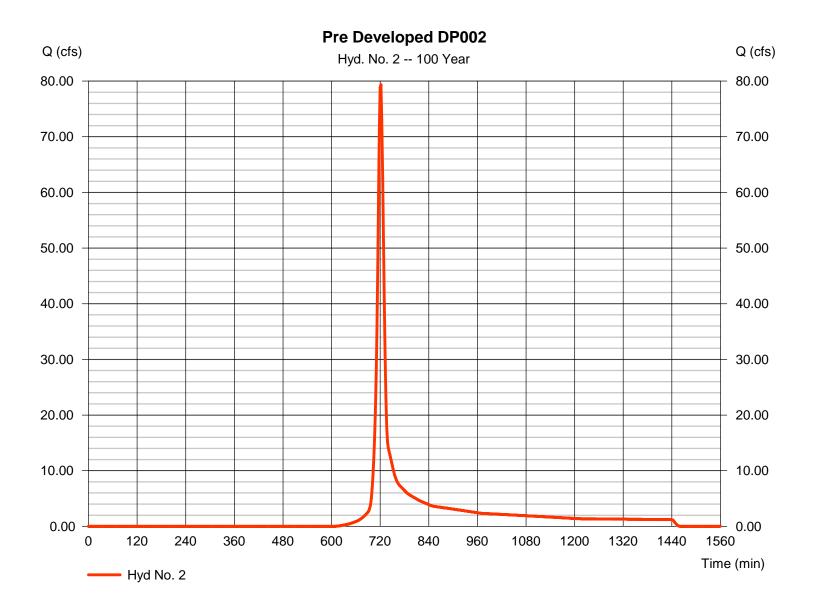

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	59.08	2	722	156,154				Pre Developed DP001
2	SCS Runoff	79.34	2	722	208,579				Pre Developed DP002
3	SCS Runoff	45.54	2	720	118,084				Pre Developed DP003
4	SCS Runoff	4.363	2	718	8,749				Pre Developed DP003 ORA
5	SCS Runoff	84.80	2	716	171,967				Post Basin 3
6	Reservoir	24.42	2	724	134,783	5	319.74	75,335	Basin 3 Routed
7	SCS Runoff	8.052	2	718	16,178				Post Bypass DP001
8	Combine	29.25	2	718	150,961	6, 7			Post Total DP001
10	SCS Runoff	77.75	2	716	157,867				Post Basin 1
11	Reservoir	30.18	2	722	120,378	10	324.12	70,140	Basin 1 Upper Routed
12	Reservoir	13.13	2	738	114,181	11	305.96	20,385	Basin 1 Lower Routed
13	SCS Runoff	67.22	2	716	138,052				Post Basin 2
14	Reservoir	33.12	2	722	105,698	13	310.57	60,504	Basin 2 Routed
15	SCS Runoff	8.028	2	718	16,080				Post Bypass DP002
16	Combine	37.69	2	720	235,959	12, 14, 15			Post Total DP002
18	SCS Runoff	34.43	2	716	70,605				Post to Basin 4
19	Reservoir	10.36	2	724	56,799	18	348.51	33,578	Basin 4 Routed
20	SCS Runoff	23.40	2	716	48,517				Post to Bed 1/Basin
21	Reservoir	10.57	2	722	36,419	20	342.30	21,484	UG Bed 1/Basin Routed
22	SCS Runoff	8.571	2	716	17,315				Post Bypass DP003
23	Combine	24.22	2	722	110,534	19, 21, 22			Post Total DP003
SW	/M.gpw				Return F	Period: 100	Year	Tuesday, 0	6 / 13 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 1

Pre Developed DP001

Hydrograph type	= SCS Runoff	Peak discharge	= 59.08 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 156,154 cuft
Drainage area	= 15.430 ac	Curve number	= 57.5
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

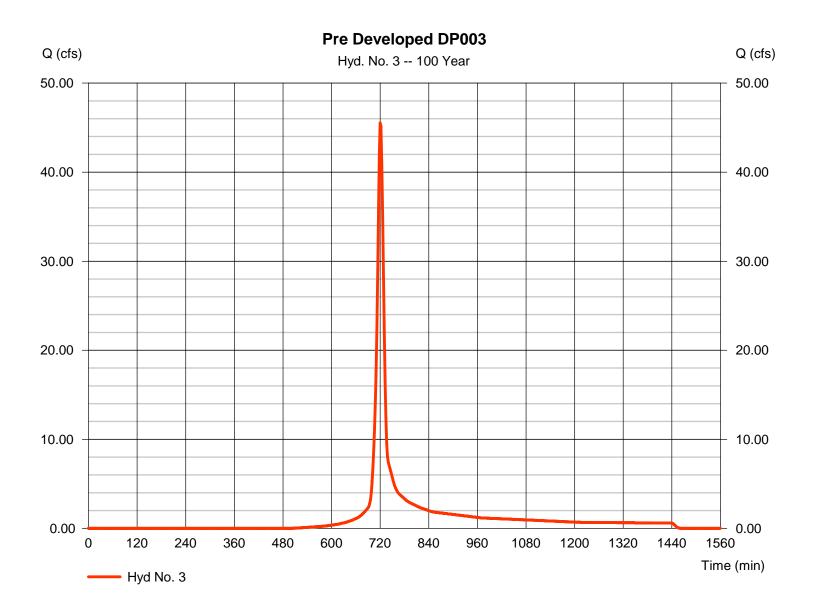


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 2

Pre Developed DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 79.34 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 208,579 cuft
Drainage area	= 19.210 ac	Curve number	= 59.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 12.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

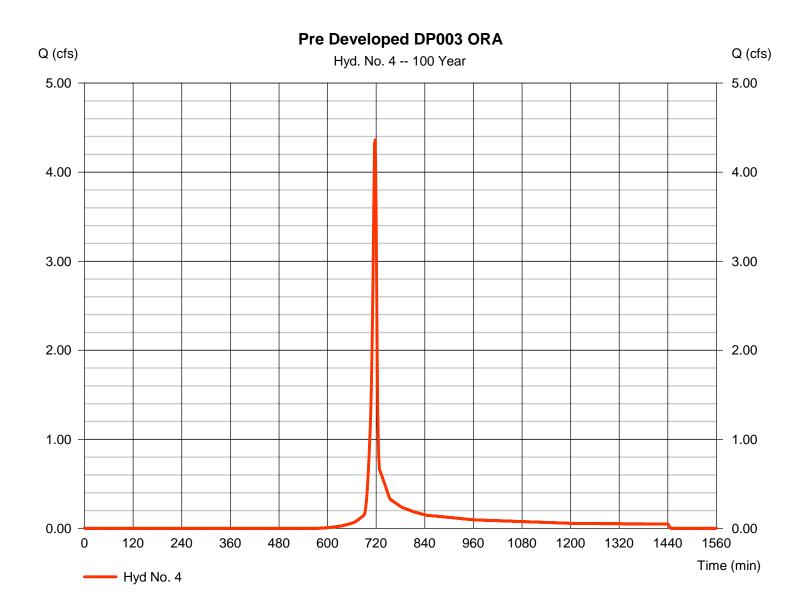


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 3

Pre Developed DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 45.54 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 118,084 cuft
Drainage area	= 8.190 ac	Curve number	= 68.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 11.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

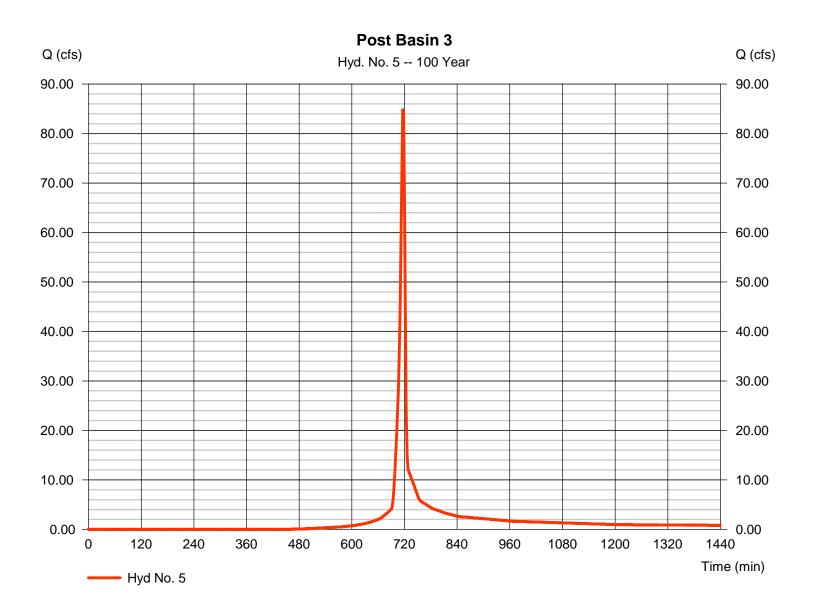

146

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 4

Pre Developed DP003 ORA

Hydrograph type	= SCS Runoff	Peak discharge	= 4.363 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 8,749 cuft
Drainage area	= 0.810 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		·	

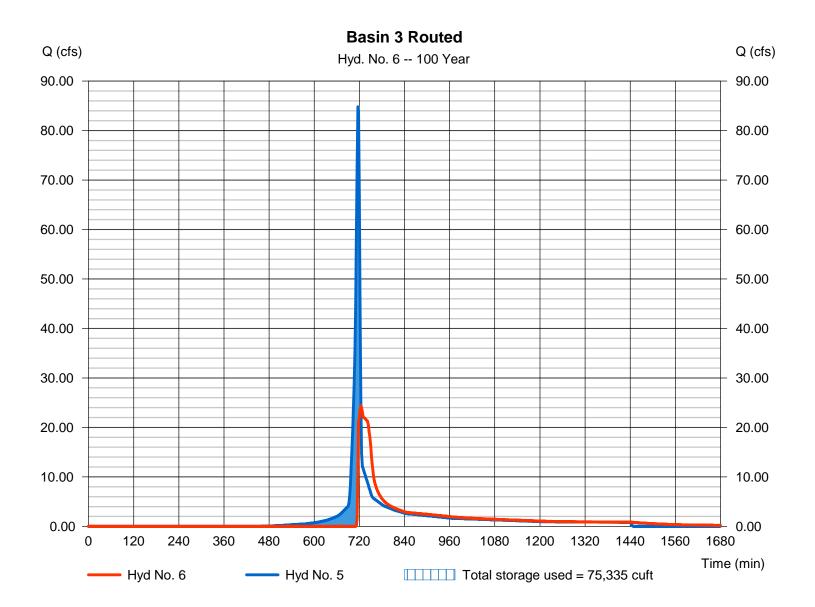


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 5

Post Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 84.80 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 171,967 cuft
Drainage area	= 12.150 ac	Curve number	= 71.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

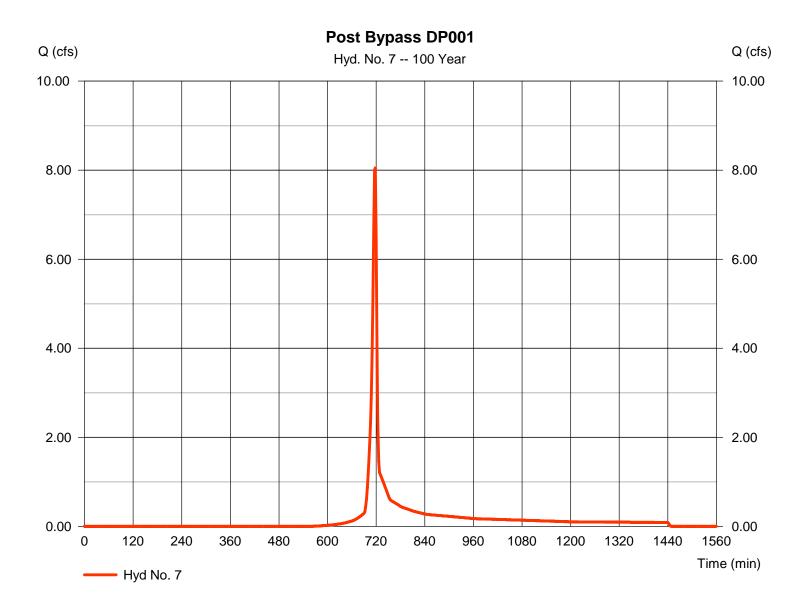

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 6

Basin 3 Routed

arge = 24.42 cfs
ak = 724 min
ne = 134,783 cuft
tion = 319.74 ft
ge = 75,335 cuft

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 7

Post Bypass DP001

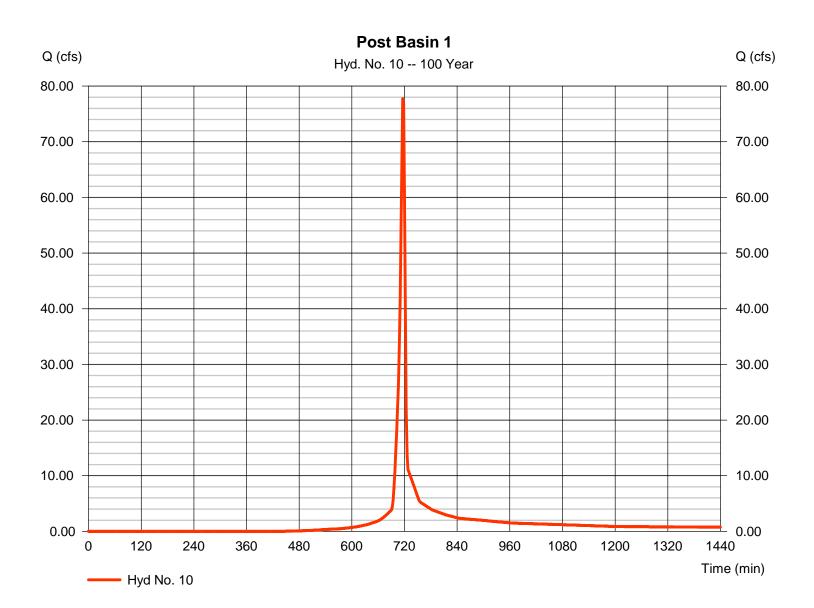
Hydrograph type	= SCS Runoff	Peak discharge	= 8.052 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 16,178 cuft
Drainage area	= 1.440 ac	Curve number	= 63.2
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 8

Post Total DP001

Hydrograph type	= Combine	Peak discharge	= 29.25 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 150,961 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 1.440 ac
Inflow hyds.	= 6, 7	Contrib. drain. area	= 1.440 ac

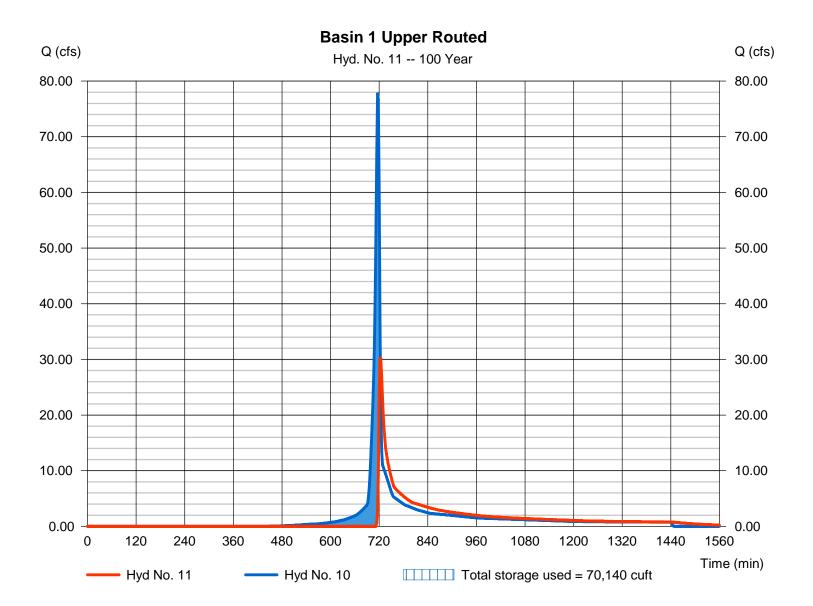


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 10

Post Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 77.75 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 157,867 cuft
Drainage area	= 10.950 ac	Curve number	= 71.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

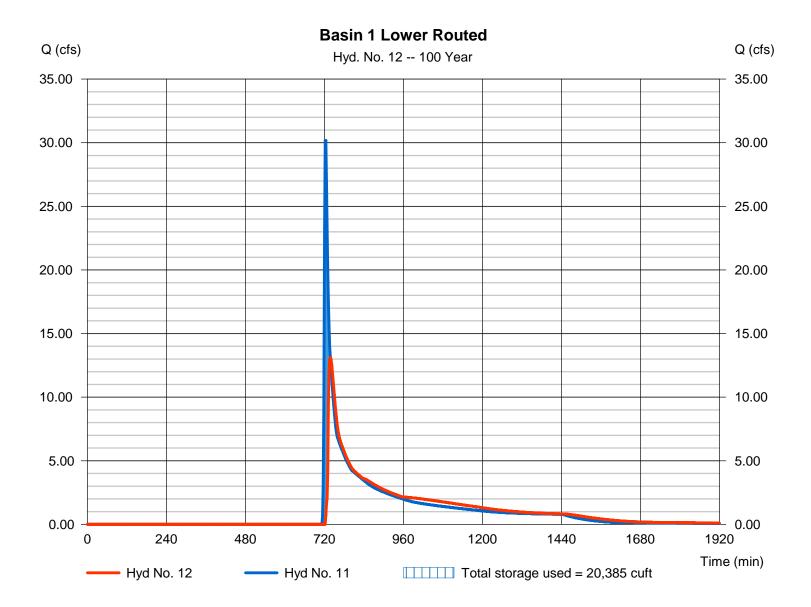

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 11

Basin 1 Upper Routed

Hydrograph type	= Reservoir	Peak discharge	= 30.18 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 120,378 cuft
Inflow hyd. No.	= 10 - Post Basin 1	Max. Elevation	= 324.12 ft
Reservoir name	= Basin 1 Upper	Max. Storage	= 70,140 cuft

Storage Indication method used.

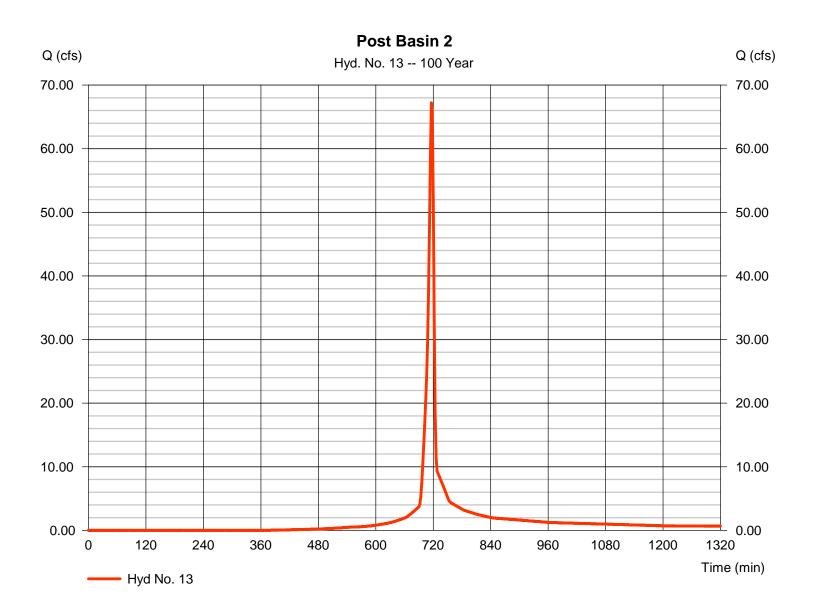

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 12

Basin 1 Lower Routed

Hydrograph type	= Reservoir	Peak discharge	= 13.13 cfs
Storm frequency	= 100 yrs	Time to peak	= 738 min
Time interval	= 2 min	Hyd. volume	= 114,181 cuft
Inflow hyd. No.	= 11 - Basin 1 Upper Routed	Max. Elevation	= 305.96 ft
Reservoir name	= Basin 1 Lower	Max. Storage	= 20,385 cuft

Storage Indication method used.

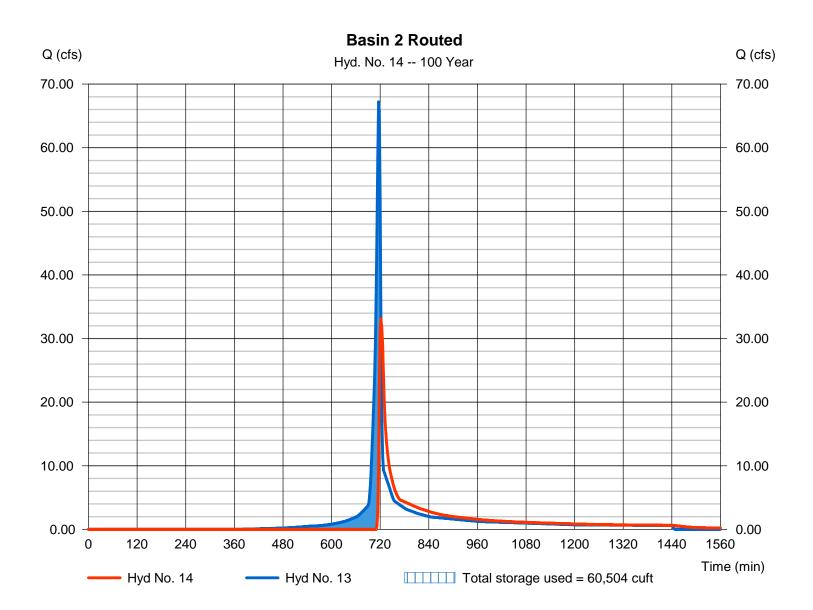


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 13

Post Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 67.22 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 138,052 cuft
Drainage area	= 8.540 ac	Curve number	= 76.4
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

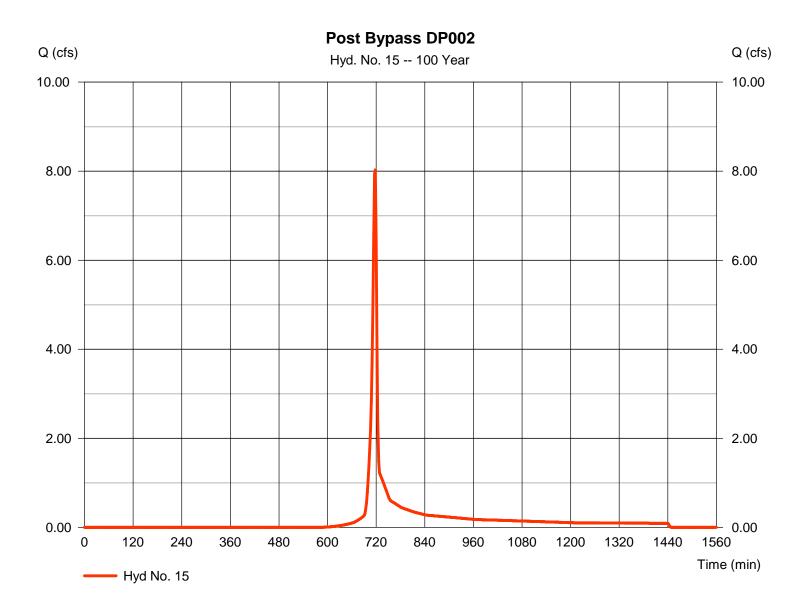

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 14

Basin 2 Routed

Hydrograph type	= Reservoir	Peak discharge	= 33.12 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 105,698 cuft
Inflow hyd. No.	= 13 - Post Basin 2	Max. Elevation	= 310.57 ft
Reservoir name	= Basin 2	Max. Storage	= 60,504 cuft

Storage Indication method used.


156

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 15

Post Bypass DP002

Hydrograph type	= SCS Runoff	Peak discharge	= 8.028 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 16,080 cuft
Drainage area	= 1.540 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

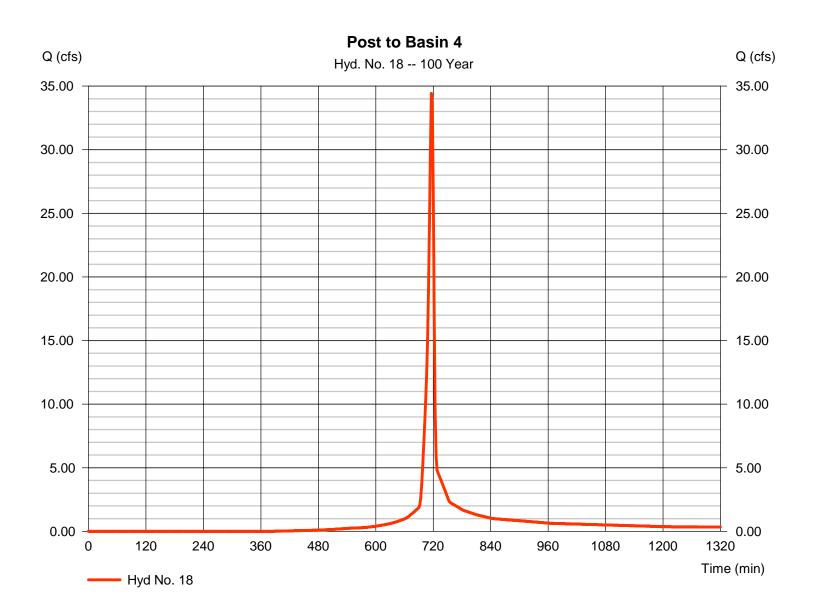

157

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 16

Post Total DP002

Storm frequency Time interval	= Combine = 100 yrs = 2 min = 12, 14, 15	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 37.69 cfs = 720 min = 235,959 cuft = 1.540 ac
Inflow nyas.	= 12, 14, 15	Contrib. drain. area	= 1.540 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

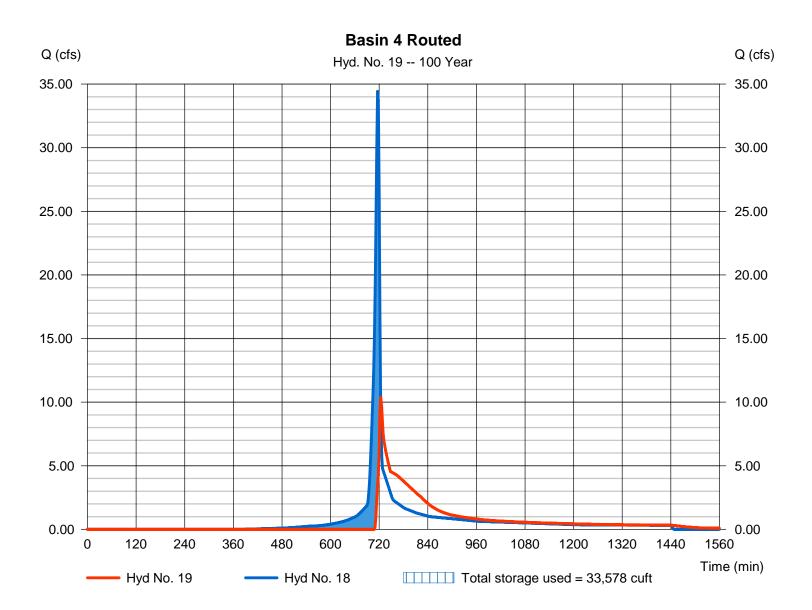
Hyd. No. 18

Post to Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 34.43 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 70,605 cuft
Drainage area	= 4.420 ac	Curve number	= 75.9*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 4.420

159

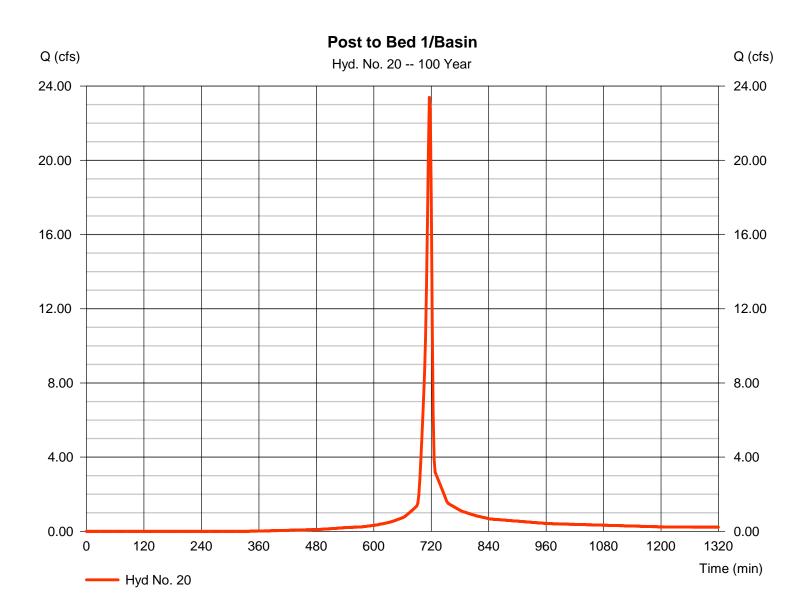

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 19

Basin 4 Routed

Hydrograph type	= Reservoir	Peak discharge	= 10.36 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 56,799 cuft
Inflow hyd. No.	= 18 - Post to Basin 4	Max. Elevation	= 348.51 ft
Reservoir name	= Basin 4	Max. Storage	= 33,578 cuft

Storage Indication method used.

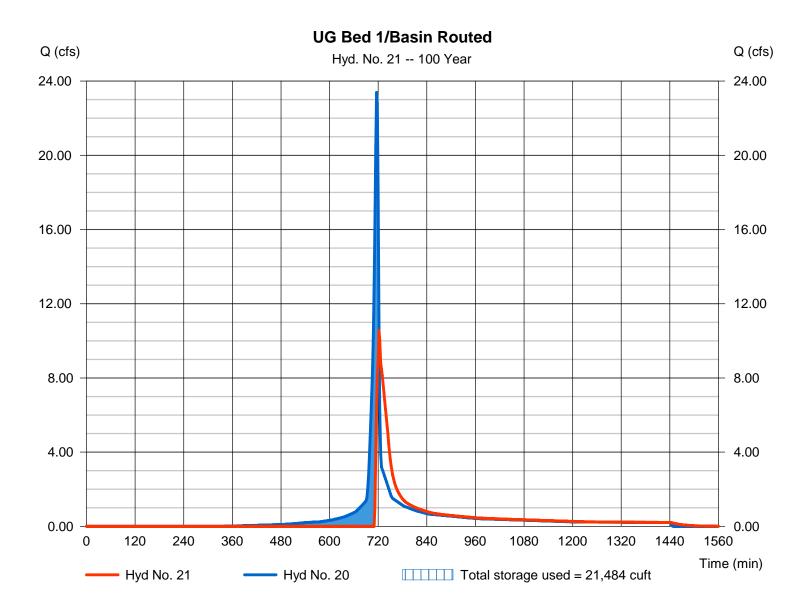

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 20

Post to Bed 1/Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 23.40 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 48,517 cuft
Drainage area	= 2.820 ac	Curve number	= 79.1*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.910 x 61) + (2.270 x 98) + (3.040 x 78)] / 2.820

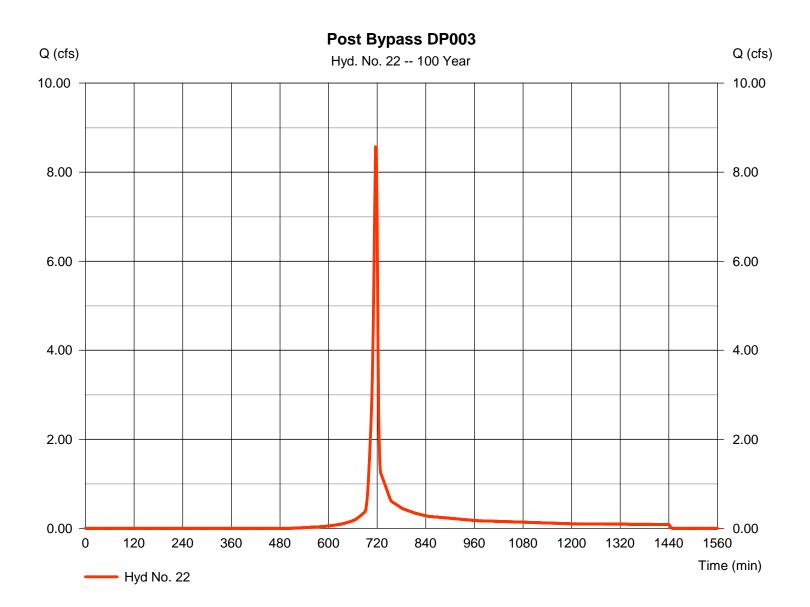

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 21

UG Bed 1/Basin Routed

Hydrograph type	= Reservoir	Peak discharge	= 10.57 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 36,419 cuft
Inflow hyd. No.	= 20 - Post to Bed 1/Basin	Max. Elevation	= 342.30 ft
Reservoir name	= UG Bed 1/Basin	Max. Storage	= 21,484 cuft

Storage Indication method used.

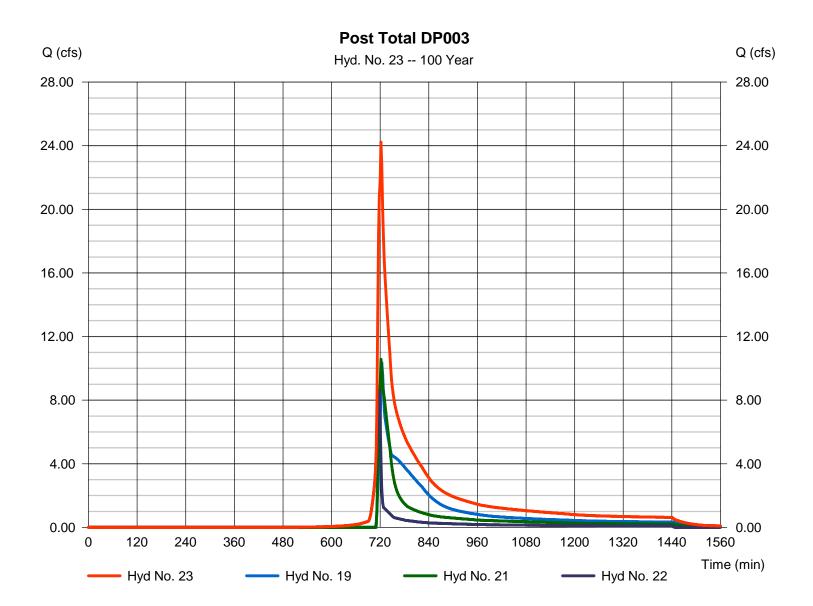


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 22

Post Bypass DP003

Hydrograph type	= SCS Runoff	Peak discharge	= 8.571 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 17,315 cuft
Drainage area	= 1.340 ac	Curve number	= 67.8
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.50 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

Hyd. No. 23

Post Total DP003

Hydrograph type	 Combine 100 yrs 2 min 19, 21, 22 	Peak discharge	= 24.22 cfs
Storm frequency		Time to peak	= 722 min
Time interval		Hyd. volume	= 110,534 cuft
Inflow hyds.		Contrib. drain. area	= 1.340 ac
innow nyas.	= 19, 21, 22	Contrib. drain. area	= 1.340 ac

APPENDIX E

USDA NRCS SOIL REPORT

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Chester County, Pennsylvania

Stokes

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	
Chester County, Pennsylvania	13
Ba—Baile silt loam	13
Co—Codorus silt loam	14
GdB—Gladstone gravelly loam, 3 to 8 percent slopes	16
GdC—Gladstone gravelly loam, 8 to 15 percent slopes	17
GfD—Gladstone gravelly loam, 8 to 25 percent slopes, very bouldery	19
Ha—Hatboro silt loam	20
MaD—Manor loam, 15 to 25 percent slopes	21
UrlB—Urban land-Gladstone complex, 0 to 8 percent slopes	23

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	Soil Map Unit PolygonsVery Stony SpotSoil Map Unit LinesVery Stony SpotSoil Map Unit PointsClay SpotBlowoutSpecial Line FeaturesImage: Discond Streams and CanalsStreams and CanalsImage: Discond CanalsClay SpotImage: Discond CanalsClay SpotImage: Discond CanalsStreams and CanalsImage: Discond CanalsClay SpotImage: Discond CanalsStreams and CanalsImage: Discond CanalsImage: Discond CanalsImage: Discond CanalsStong StongImage: Discond Canals<			MAP INFORMATION
Area of Int	. ,			The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons			Warning: Soil Map may not be valid at this scale.
	·	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
ల	Blowout		tures	contrasting soils that could have been shown at a more detailed scale.
×	Clay Spot	•		Please rely on the bar scale on each map sheet for map measurements.
X	Gravel Pit	~	U	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
<u>ىل</u> ە	Marsh or swamp	Backgrour		distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
0				This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
~				Soil Survey Area: Chester County, Pennsylvania Survey Area Data: Version 13, Jun 5, 2020
0 0 0 0	5 .			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
-				Date(s) aerial images were photographed: May 26, 2019—Jul 10, 2019
ß	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ва	Baile silt loam	11.2	16.9%
Со	Codorus silt loam	1.1	1.6%
GdB	Gladstone gravelly loam, 3 to 8 percent slopes	6.0	9.1%
GdC	Gladstone gravelly loam, 8 to 15 percent slopes	32.3	49.0%
GfD	Gladstone gravelly loam, 8 to 25 percent slopes, very bouldery	5.5	8.4%
На	Hatboro silt loam	6.0	9.1%
MaD	Manor loam, 15 to 25 percent slopes	3.8	5.8%
UrlB	Urban land-Gladstone complex, 0 to 8 percent slopes	0.1	0.1%
Totals for Area of Interest		66.0	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Chester County, Pennsylvania

Ba—Baile silt loam

Map Unit Setting

National map unit symbol: pjb7 Elevation: 200 to 2,000 feet Mean annual precipitation: 35 to 55 inches Mean annual air temperature: 45 to 61 degrees F Frost-free period: 110 to 235 days Farmland classification: Not prime farmland

Map Unit Composition

Baile and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Baile

Setting

Landform: Depressions Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear, concave Across-slope shape: Concave, linear Parent material: Local alluvium over residuum weathered from mica schist

Typical profile

Ap - 0 to 10 inches: silt loam Btg - 10 to 40 inches: silt loam Cg - 40 to 60 inches: loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 60 to 99 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 11.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Glenville

Percent of map unit: 9 percent Landform: Hillslopes Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, head slope Down-slope shape: Linear, concave Across-slope shape: Concave, linear Hydric soil rating: No

Manor

Percent of map unit: 2 percent Landform: Hills Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope, nose slope Down-slope shape: Linear, convex Across-slope shape: Convex, linear Hydric soil rating: No

Chester

Percent of map unit: 2 percent Landform: Hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Linear, convex Across-slope shape: Convex, linear Hydric soil rating: No

Glenelg

Percent of map unit: 2 percent Landform: Hillslopes Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear, convex Across-slope shape: Convex, linear Hydric soil rating: No

Co—Codorus silt loam

Map Unit Setting

National map unit symbol: pjfx Elevation: 200 to 2,000 feet Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 45 to 57 degrees F Frost-free period: 120 to 220 days Farmland classification: All areas are prime farmland

Map Unit Composition

Codorus and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Codorus

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Alluvium derived from gneiss and/or alluvium derived from mica schist

Typical profile

Ap - 0 to 12 inches: silt loam *Bw - 12 to 48 inches:* silt loam *C - 48 to 60 inches:* silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 72 to 99 inches to lithic bedrock
Drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: None
Available water capacity: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Hatboro

Percent of map unit: 8 percent Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

Glenville

Percent of map unit: 4 percent Landform: Hillslopes Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, head slope Down-slope shape: Linear, concave Across-slope shape: Concave, linear Hydric soil rating: No

Baile

Percent of map unit: 3 percent Landform: Depressions Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear, concave Across-slope shape: Concave, linear Hydric soil rating: Yes

GdB—Gladstone gravelly loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2v7gk Elevation: 250 to 1,200 feet Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 131 to 178 days Farmland classification: All areas are prime farmland

Map Unit Composition

Gladstone and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gladstone

Setting

Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Loamy colluvium derived from granite and gneiss and/or loamy residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 10 inches: gravelly loam Bt1 - 10 to 22 inches: sandy clay loam Bt2 - 22 to 37 inches: loam C - 37 to 66 inches: sandy loam R - 66 to 76 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 60 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Califon

Percent of map unit: 5 percent Landform: Flats Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Annandale

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Parker

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

GdC—Gladstone gravelly loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2v7gl Elevation: 250 to 1,200 feet Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F Frost-free period: 170 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Gladstone and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gladstone

Setting

Landform: Hillslopes Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear

Across-slope shape: Convex

Parent material: Loamy colluvium derived from granite and gneiss and/or loamy residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 10 inches: gravelly loam Bt1 - 10 to 22 inches: gravelly sandy clay loam Bt2 - 22 to 37 inches: gravelly loam C - 37 to 66 inches: gravelly sandy loam R - 66 to 76 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 65 to 67 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Parker

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Califon

Percent of map unit: 5 percent Landform: Flats Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Annandale

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

GfD—Gladstone gravelly loam, 8 to 25 percent slopes, very bouldery

Map Unit Setting

National map unit symbol: wphh Elevation: 200 to 1,200 feet Mean annual precipitation: 40 to 48 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 150 to 190 days Farmland classification: Not prime farmland

Map Unit Composition

Gladstone, very bouldery, and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gladstone, Very Bouldery

Setting

Landform: Hillslopes Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Nose slope, side slope Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Local colluvium and residuum weathered from granite and gneiss

Typical profile

A - 0 to 10 inches: gravelly loam Bt - 10 to 42 inches: gravelly clay loam C - 42 to 68 inches: very gravelly loam R - 68 to 78 inches: bedrock

Properties and qualities

Slope: 8 to 25 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 60 to 100 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Cokesbury

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Califon

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Head slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: No

Ha—Hatboro silt loam

Map Unit Setting

National map unit symbol: 1lwqq Elevation: 200 to 800 feet Mean annual precipitation: 36 to 50 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 140 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Hatboro and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hatboro

Setting

Landform: Flood plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread Down-slope shape: Concave, linear Across-slope shape: Concave, linear Parent material: Alluvium derived from metamorphic and sedimentary rock

Typical profile

Ap - 0 to 9 inches: silt loam Bg - 9 to 44 inches: silt loam Cg - 44 to 56 inches: sandy clay loam C - 56 to 70 inches: stratified gravelly sand to clay

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 60 to 99 inches to lithic bedrock
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: FrequentNone
Frequency of ponding: None
Available water capacity: High (about 9.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Glenville

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope, head slope Down-slope shape: Linear, concave Across-slope shape: Concave, linear Hydric soil rating: No

MaD—Manor loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2tmcg Elevation: 250 to 1,000 feet Mean annual precipitation: 40 to 55 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 150 to 192 days Farmland classification: Not prime farmland

Map Unit Composition

Manor and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Manor

Setting

Landform: Hillslopes Landform position (two-dimensional): Shoulder, backslope, summit Landform position (three-dimensional): Side slope *Down-slope shape:* Convex *Across-slope shape:* Convex *Parent material:* Residuum weathered from mica schist

Typical profile

A1 - 0 to 2 inches: loam A2 - 2 to 6 inches: sandy loam Bw1 - 6 to 13 inches: fine sandy loam Bw2 - 13 to 22 inches: fine sandy loam C1 - 22 to 30 inches: fine sandy loam C2 - 30 to 44 inches: channery coarse sand C3 - 44 to 53 inches: loamy sand C4 - 53 to 83 inches: channery loamy sand Cr - 83 to 108 inches: bedrock

R - 108 to 138 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 59 to 100 inches to paralithic bedrock; 100 to 128 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.01 to 0.07 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Glenville

Percent of map unit: 5 percent Landform: Drainageways, swales Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Base slope, head slope, interfluve Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Mt. airy

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, summit, shoulder Landform position (three-dimensional): Nose slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Blocktown

Percent of map unit: 5 percent

Custom Soil Resource Report

Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

UrlB—Urban land-Gladstone complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1r3cq Elevation: 200 to 1,200 feet Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 44 to 57 degrees F Frost-free period: 130 to 190 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 65 percent *Gladstone and similar soils:* 25 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Setting

Landform: Hills Down-slope shape: Linear Across-slope shape: Linear Parent material: Pavement, buildings and other artifically covered areas

Typical profile

C - 0 to 6 inches: variable

Properties and qualities

Slope: 0 to 8 percent *Depth to restrictive feature:* 10 to 100 inches to lithic bedrock *Available water capacity:* Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: No

Description of Gladstone

Setting

Landform: Hillslopes Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Nose slope, side slope Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Local colluvium and residuum weathered from granite and gneiss

Typical profile

A - 0 to 10 inches: gravelly loam C - 10 to 42 inches: gravelly clay loam 2Ap - 42 to 68 inches: gravelly loam R - 68 to 78 inches: bedrock

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 60 to 100 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Cokesbury

Percent of map unit: 5 percent Landform: Depressions Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Califon

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Head slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: No

APPENDIX E

STORMWATER INFILTRATION TESTING REPORT

STORMWATER INFILTRATION REPORT

FOR

1013 SHILOH ROAD WESTTOWN TOWNSHIP CHESTER COUNTY

PREPARED FOR:

Keystone Custom Homes

PREPARED BY:

D.L. Howell & Associates, Inc. 1250 Wrights Lane West Chester, PA 19380

March 2021

Stormwater Infiltration Test Report 1013 Shiloh Road Westtown Township Chester County

On Monday and Tuesday, March 22-23, 2021, D.L. Howell and Associates, Inc. preformed hydraulic conductivity tests for the proposed stormwater management areas for the property located at 1013 Shiloh Road in Westtown Township, Chester County. The purpose of the hydraulic conductivity testing was to determine site suitability for the proposed stormwater infiltration areas associated with proposed improvements at the site (see development plan).

Testing was conducted in general accordance with the Pennsylvania Department of Environmental Protection (PADEP)'s Pennsylvania Stormwater Best Management Practices Manual specifications, in a cased, sealed, borehole utilizing the falling head method designed to measure the vertical hydraulic conductivity of the soil. An approximate five-inch diameter borehole was hand dug to the depth of the proposed bottom elevation of the infiltration structure and a 3-inch diameter PVC casing was installed. A mixture of bentonite and soil was placed around the annulus of the casing and packed to seal the casing in place. The casing was presoaked immediately prior to the start of the test to simulate field saturated conditions. A measured amount of water was poured into the sealed casing to begin the 30-minute presoak. After the final 30-minute presoaking period, the water in the casing was adjusted to a known depth and consecutively re-adjusted after each reading and the drop of the water column is measured. The test continued until the readings became stabilized or for a maximum of eight readings. A stabilized rate of drop means a difference of ¹/₄ inch or less of drop between the highest and lowest readings of four consecutive readings.

Within the site, four hydraulic conductivity tests were conducted at the elevations associated with the proposed bottom of the infiltration structures. One deep test pit was excavated at each infiltration test location to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structures.

• Infiltration Test 3-23-1 was conducted at approximately \pm 5.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 317.0. One deep test pit was excavated at this location to a depth of 7.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 7.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-1: an infiltration rate of 1.50 inches per hour shall be used.

• Infiltration Test 3-23-2 was conducted at approximately \pm 4.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 314.0. One deep test pit was excavated at this location to a depth of 6.0 feet below existing grade. No limiting conditions were identified at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-2: an infiltration rate of 1.14 inches per hour shall be used.

• Infiltration Test 3-23-3 was conducted at approximately \pm 3.5 feet below existing grade, which corresponds to an approximate infiltration elevation of 303.5. One deep test pit was excavated at this location to a depth of 5.5 feet below existing grade. During excavation, rock was encountered at a depth of approximately 5.5 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-3: an infiltration rate of 1.68 inches per hour shall be used.

• Infiltration Test 3-23-4 was conducted at approximately \pm 5.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 298.0. One deep test pit was excavated at this location to a depth of 7.0 feet below existing grade. During excavation, groundwater was encountered at a depth of approximately 7.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-23-4: an infiltration rate of 1.96 inches per hour shall be used.

• Infiltration Test 3-22-5 was conducted at approximately \pm 6.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 334.0. One deep test pit was excavated at this location to a depth of 8.0 feet below existing grade. No limiting conditions were encountered at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-5: an infiltration rate of 2.81 inches per hour shall be used.

• Infiltration Test 3-22-6 was conducted at approximately \pm 2.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 306.0. One

deep test pit was excavated at this location to a depth of 6.0 feet below existing grade. No limiting conditions were encountered at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-6: an infiltration rate of 2.93 inches per hour shall be used.

• Infiltration Test 3-22-7 was conducted at approximately \pm 2.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 336.0. One deep test pit was excavated at this location to a depth of 4.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 4.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-7: an infiltration rate of 0.88 inches per hour shall be used.

• Infiltration Test 3-22-8 was conducted at approximately \pm 2.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 314.0. One deep test pit was excavated at this location to a depth of 4.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 4.0 feet below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, D.L. Howell & Associates, Inc., recommends the following infiltration rate for the soils underlying Test 3-22-8: an infiltration rate of 0.43 inches per hour shall be used.

Please reference plan drawings for exact locations and visual representation of infiltration tests and test pits. Results of the hydraulic conductivity testing and soil horizon descriptions can be found in the enclosed attachments.

Hydraulic Conductivity Calculation

Coefficient of Permeability: $K = [A/(F^*D^*t)] \times \ln(h1/h2)$

- Where: K = permeability (inches per hour) A = cross sectional area of cased hole
 - F = shape factor (2.75 constant of flat bottom)
 - D = cased hole diameter
 - t = time for head change from h1 to h2
 - h1 = initial height of water column in casing
 - h2 = final height of water column in casing

*Reference *Soil Hydraulic Conductivity Analysis Form* for infiltration testing data and *Soil Morphology Form* for soil profile data.

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

3/22/2021

DD

DATE:

BY:

JOB NO.: <u>3868</u> LOCATION: <u>1013 Shiloh Road</u> MUNICIPALITY: <u>Westtown Township, Chester County, Pa.</u> DESCRIPTION: <u>Stormwater Infiltration Testing</u>

Field Test Results

WEATHER CONDITIONS: <u>SUNNY</u> PRECIPITATION IN LAST 24 HOURS:

TEMPERATURE: 62 °F

<u>None</u>

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-5	72									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		15.00	14.75	14.75	14.50	14.50	n/a	n/a	n/a	n/a
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-6	24									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		15.25	15.00	14.75	14.75	14.75	n/a	n/a	n/a	n/a
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a

Determination of Hydraulic Conductivity (Kv)

Kv = [A/(F*D*t)] * ln(h1/h2)

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 3-22-5 Results

2.8062	(in/hour)
7.06858	(Sq.in.)
2 75	(Units)

-	()
3	(Inches)
0.5	(hrs.)
18	(Inches)

18 (Inches) 3.50 (Inches)

Test 3-22-6 Results

2.93319	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
3.25	(Inches)

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

3/22/2021

DD

DATE:

BY:

JOB NO.: 3868 LOCATION: 1013 Shiloh Road MUNICIPALITY: Westtown Township, Chester County, Pa. DESCRIPTION: Stormwater Infiltration Testing

Field Test Results

WEATHER CONDITIONS: SUNNY **PRECIPITATION IN LAST 24 HOURS:**

TEMPERATURE: 62 °F

<u>None</u>

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-7	24									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		7.25	7.25	7.25	7.25	7.25	n/a	n/a	n/a	n/a
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-22-8	24									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		4.25	4.00	4.00	4.00	4.00	n/a	n/a	n/a	n/a
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a

Determination of Hydraulic Conductivity (Kv)

Kv = [A/(F*D*t)] * ln(h1/h2)

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 3-22-7 Results

	_
0.8833	(in/hour)
	(a

7.06858 (Sq.in.) 2.75 (Units) 3 (Inches) 0.5 (hrs.) 18 (Inches)

10.75 (Inches)

Test 3-22-8 Results

0.43065	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
14.00	(Inches)

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

3/23/2021

DD

DATE:

BY:

JOB NO.: <u>3868</u> LOCATION: <u>1013 Shiloh Road</u> MUNICIPALITY: <u>Westtown Township, Chester County, Pa.</u> DESCRIPTION: <u>Stormwater Infiltration Testing</u>

Field Test Results

WEATHER CONDITIONS: <u>SUNNY</u> PRECIPITATION IN LAST 24 HOURS:

TEMPERATURE: 64 °F

<u>None</u>

			Readings							
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
Test 3-23-1	60									
Time(min.)		30	30	30	30	30	30	30	30	30
Drop(inches)		11.75	10.50	10.50	10.50	10.50	n/a	n/a	n/a	n/a
Initial Water Leve	I Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a

			Readings									
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th		
Test 3-23-2	48											
Time(min.)		30	30	30	30	30	30	30	30	30		
Drop(inches)		10.50	8.75	8.75	8.75	8.75	n/a	n/a	n/a	n/a		
Initial Water Leve	el Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a		

Determination of Hydraulic Conductivity (Kv)

$Kv = [A/(F^*D^*t)]^* ln(h1/h2)$

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 3-23-1 Results

1.5002	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
2.75	(Units)

2.10	(01113)
3	(Inches)
0.5	(hrs.)

18 (Inches) 7.50 (Inches)

Test 3-23-2 Results

(in/hour)
(Sq.in.)
(Units)
(Inches)
(hrs.)
(Inches)
(Inches)

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

3/23/2021

DD

DATE:

BY:

JOB NO.: <u>3868</u> LOCATION: <u>1013 Shiloh Road</u> MUNICIPALITY: <u>Westtown Township, Chester County, Pa.</u> DESCRIPTION: <u>Stormwater Infiltration Testing</u>

Field Test Results

WEATHER CONDITIONS: <u>SUNNY</u> PRECIPITATION IN LAST 24 HOURS:

TEMPERATURE: 64 °F

<u>None</u>

		Readings									
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th	
Test 3-23-3	42										
Time(min.)		30	30	30	30	30	30	30	30	30	
Drop(inches)		11.75	11.25	11.25	11.25	11.25	n/a	n/a	n/a	n/a	
Initial Water Leve	el Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a	

			Readings									
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th		
Test 3-23-4	60											
Time(min.)		30	30	30	30	30	30	30	30	30		
Drop(inches)		12.25	12.25	12.25	12.25	12.25	n/a	n/a	n/a	n/a		
Initial Water Leve	el Depth (inches)	18	18	18	18	18	n/a	n/a	n/a	n/a		

Determination of Hydraulic Conductivity (Kv)

$Kv = [A/(F^*D^*t)]^* ln(h1/h2)$

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 3-23-3 Results

1.68075	(in/hour)
	• •

 7.06858
 (Sq.in.)

 2.75
 (Units)

 3
 (Inches)

 0.5
 (hrs.)

 18
 (Inches)

6.75 (Inches)

Test 3-23-4 Results

1.95551	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
5.75	(Inches)

PIT NUMBER: TP 3-23-	1 DLH NUMBER:	3868	INVESTIGATOR	: DWD
DATE: <u>3/23/2021</u>	STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN TOWN	SHIP	CLIENT: KEY	STONE CUSTOM HOMES
SUBDIVISION:	STOKES ESTATI	E	SITE LOCATION	I: 1013 SHILOH ROAD
MORPHOLOGIC DETER	MINATION: SEW	AGE ST	ORMWATER	SHWT SOILS

Horizon	Dep	oth	Bound	dary	Color	т	exture	%CFs	F	REDC	X	Structure	Consistence	NOTES	
HUHZUH	Upper	Lower	Distrnct	Торо	000	1	exture	70CFS	Α	S	С	Siluciule	Consistence	NOTES	
	0	11	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	11	46	А	W	10 YR 5/6	6 SILTY CLAY		0				MA	FIRM		
	46	84			VAR	SANDY SILT		0				GRAN	LO		
COMMEN grade.	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-23-1.	During ex	cavation, rock w	as enco	unter	red at	a de	pth of appro	oximately 84 ind	ches below exist	ting
SOIL TYP	E:				Soil Drainage Class:					Soil Scientist Signature:					
LIMITING	CONDITIC	N: Rock			Excessively Drai	ned	Somewhat Po	orly Draii	ned						
Туре: V	Vater R	ock N	<i>l</i> ottling		Well Drained		Poorly Draine	d							
Depth: ~84	4"				Moderately Well	Drained	Very Poorly D	Drained							
		W	EATHER:		64° Sunny					МЕТІ	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		84"		
			COVER:		Meadow		NDSCAPE POSITION:			ION:		SW			

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast

 $Roots/Pores-f-few,\,c-common,\,m-many\,/\,f-fine,\,m-medium,\,c-coarse$

1250 Wrights Lane West Chester, PA 19380

PIT NUMBER: TP 3-23-2		2 DLH NUN	DLH NUMBER: 3868			TOR:	DWD		
DATE:	3/23/2021	STATE:	PA		COUNTY:		CHESTER		
MUNICIPAL	ITY:	WESTTOWN	ESTTOWN TOWNSHIP			CLIENT: KEYSTONE CUSTOM HO			
SUBDIVISION:		STOKES I	STOKES ESTATE		SITE LOCA	TION:	1013 SHILOH ROAD		
MORPHOLO	OGIC DETER	MINATION:	SEWAGE	ST	ORMWATER		SHWT SOILS		

Horizon	Dep	oth	Boun	dary	Color	т	exture	%CFs	F	REDOX		Structure	Consistence	NOTES	
HUHZUH	Upper	Lower	Distrnct	Торо	COIOI	I	exture	%CFS	Α	S	С	Structure	Consistence	NOTES	
	0	9	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	9	35	А	IR	10 YR 5/6	SILTY CLAY		0				MA	FIRM		
	35	72			VAR	SANDY SILT		0				GRAN	FRI		
COMMEN	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-23-2.	No limitin	g conditions we	re identif	ied a	t the	time	of excavati	on.		
SOIL TYP	E:				Soil Drainage Cl	Soil Drainage Class:					Soil Scientist Signature:				
LIMITING	CONDITIC	N:			Excessively Drai	ned	Somewhat Po	orly Drair	ned						
Туре: V	Vater R	ock N	lottling		Well Drained		Poorly Draine	d							
Depth: +72	2"				Moderately Well	Drained	Very Poorly D	rained							
		WI	EATHER:		64° Sunny				I	METH	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		72"		
			COVER:		Meadow	Meadow LANDSCAPE				OSIT	ION:		S		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

PIT NUMBE	R: <u>TP 3-23-3</u>	DLH NUME	BER: 386	<u>8</u> IN	VESTIGA	TOR:	DWD
DATE:	3/23/2021	STATE:	PA	CC	OUNTY:		CHESTER
MUNICIPALI	TY:	WESTTOWN T	OWNSHIP	CL	IENT:	KEYS	TONE CUSTOM HOMES
SUBDIVISIO	N:	STOKES ES	STATE	Sľ	TE LOCA	TION:	1013 SHILOH ROAD
MORPHOLC	GIC DETERM	INATION:	SEWAGE	STORM	WATER		SHWT SOILS

Horizon	Dep	oth	Bound	dary	Color Texture %C				F	REDC	X	Structure	Consistence	NOTES	
HOHZOH	Upper	Lower	Distrnct	Торо	COIOI	I	exture	%CFS	Α	S	С	Siluciule	Consistence	NOTES	
	0	11	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	11	47	А	W	10 YR 5/6	SIL	TY CLAY	0				MA	FIRM		
	47	66			10 YR 3/4	STO	ONY SILT	<20				GRAN	LO		
COMMEN grade.	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-23-1.	During ex	cavation, rock w	as enco	unter	red at	a de	pth of appr	oximately 66 ind	ches below exist	ting
SOIL TYP	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
LIMITING	CONDITIC	N: Rock			Excessively Drai	ned	Somewhat Po	orly Draii	ned						
Туре: И	Vater R	ock N	Nottling		Well Drained		Poorly Draine	d							
Depth: ~66	6"				Moderately Well	Drained	Very Poorly D	Drained							
		W	EATHER:		64° Sunny					МЕТІ	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		66"		
			COVER:		Meadow		LA	NDSCA	PE P	OSIT	ION:		S		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

PIT NUMBER: TP 3	DLH NUMBER:	3868	INVESTIGATOR:	DWD
DATE: 3/23/202	21 STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN TOWNS	HIP	CLIENT: KEYS	STONE CUSTOM HOMES
SUBDIVISION:	STOKES ESTATE		SITE LOCATION	1013 SHILOH ROAD
MORPHOLOGIC DET	ERMINATION: SEW	AGE ST	ORMWATER	SHWT SOILS

Horizon	Dep	oth	Boun	dary	Color	г	ovturo	%CFs	F	REDC	X	Structure	Consistence	NOTES	
Horizon	Upper	Lower	Distrnct	Торо	Color	I	exture	%CFS	Α	S	С	Structure	Consistence	NOTES	
	0	8	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	8	31	А	W	10 YR 4/4	SIL	TY CLAY	0				MA	FIRM		
	31	47	G	W	10 YR 6/4	SIL	T LOAM	0				MA	FRI		
	47	84			VAR	SAN	NDY SILT					GRAN	LO		
	MMENTS: This Deep Test Pit was co sting grade.				ed at Test 3-23-4.	During ex	cavation, ground	dwater w	as er	ncour	ntereo	l at a depth	of approximate	ely 84 inches bel	low
SOIL TYP					Soil Drainage Cl	ass:						Soil Scien	tist Signature:		
LIMITING	CONDITIC	N: Grou	ndwater		Excessively Drai	ined	Somewhat Po	orly Draii	ned						
Туре: И	Nater R	lock N	Nottling		Well Drained		Poorly Draine	d							
Depth: ~84	4"				Moderately Well	Drained	Very Poorly D	Prained							
-		W	EATHER:		64° Sunny					METI	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		84"		
			COVER:		Meadow		LA	NDSCA	PE P	OSIT	ION:		S		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

PIT NUMBER: TP 3-22-	1 DLH NUMBER:	3868	INVESTIGATOR	C DWD
DATE: <u>3/22/2021</u>	STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN TOWNS	SHIP	CLIENT: KEY	STONE CUSTOM HOMES
SUBDIVISION:	STOKES ESTATE		SITE LOCATION	N: 1013 SHILOH ROAD
MORPHOLOGIC DETER	MINATION: SEW	AGE ST	ORMWATER	SHWT SOILS

Horizon	Dep	oth	Boun	dary	Color Texture %Cl				F	REDC	X	Structure	Consistence	NOTES	
попдоп	Upper	Lower	Distrnct	Торо	000		exture	%CFS	Α	S	С	Structure	Consistence	NOTES	
	0	5	А	W	10 YR 4/2	SIL	T LOAM	0				SBK	FRI		
	5	50	А	W	7.5 YR 4/3	SIL	TY CLAY	0				MA	FIRM		
	50	96			VAR	SIL	T LOAM	0				GRAN	FRI		
COMMENTS: This Deep Test Pit was conducted at Test 3-22-5. No limiting conditions were identified at the time of excavation.															
SOIL TYPI	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
	CONDITIC	N:			Excessively Drai	ned	Somewhat Po	orly Draii	ned						
Туре: V	Vater R	ock N	lottling		Well Drained		Poorly Draine	ed							
Depth: +96	8"				Moderately Well	Drained	Very Poorly D	Drained							
		WI	EATHER:		62° Sunny					МЕТІ	HOD:	Ex	cavator		
			SLOPE:			EXCAVATION DEPTH:					96"				
			COVER:		Meadow LANDSCAPE POSITION:					SW					

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

PIT NUMBER: TP 3-22	2-6 DLH NUMBER:	3868	INVESTIGATOR	R: DWD
DATE: <u>3/22/2021</u>	STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN TOWNS	SHIP	CLIENT: KEY	STONE CUSTOM HOMES
SUBDIVISION:	STOKES ESTATE		SITE LOCATIO	N: 1013 SHILOH ROAD
MORPHOLOGIC DETE	RMINATION: SEW	AGE SI	ORMWATER	SHWT SOILS

Horizon	Dep	oth	Boun	dary	Color Texture %C				F	REDC	X	Structure	Consistence	NOTES	
попдоп	Upper	Lower	Distrnct	Торо	COIOI		lexiure	%CFS	Α	S	С	Siluciule	Consistence	NOTES	
	0	7	А	W	10 YR 4/2	SII	_T LOAM	0				MA	FRI		
	7	35	А	W	10 YR 4/3	SIL	TY CLAY	0				MA	FIRM		
	35	72			VAR	SAI	NDY SILT	0				GRAN	FRI		
COMMEN	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-22-6.	No limitin	g conditions wer	e identifi	ed at	the	time c	of excavation	on.		
SOIL TYPI	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
	CONDITIC	N: Rock			Excessively Drai	ined	Somewhat Po	orly Draii	ned						
Туре: V	Vater R	ock N	/lottling		Well Drained		Poorly Draine	ed							
Depth: ~84	t "				Moderately Well	Drained	Very Poorly D	Prained							
		W	EATHER:		62° Sunny					METI	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		84"		
			COVER:		Meadow		LA	NDSCA	PE P	OSIT	ION:		SW		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

PIT NUMBER: TP 3-22-	7 DLH NUMBER:	3868	INVESTIGATOR	R: DWD
DATE: <u>3/22/2021</u>	STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN TOWNS	SHIP	CLIENT: KEY	STONE CUSTOM HOMES
SUBDIVISION:	STOKES ESTATE		SITE LOCATIO	N: 1013 SHILOH ROAD
MORPHOLOGIC DETERM	MINATION: SEW	AGE ST	ORMWATER	SHWT SOILS

Horizon	De	oth	Boun	dary	Color	-	exture	%CFs	F	REDO	X	Structure	Consistence	NOTES	
HOHZOH	Upper	Lower	Distrnct	Торо	Color		exture	%CFS	Α	S	С	Structure	Consistence	NOTES	
	0	4	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	4	48			10 YR 5/4	STO	ONY SILT	<20				GRAN	FRI		
COMMENT grade.	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-22-7.	During ex	cavation, rock v	was enco	unter	red at	t a de	pth of appr	oximately 48 ind	ches below exist	ting
SOIL TYPE	Ξ:				Soil Drainage Cl	ass:						Soil Scien	tist Signature:		
LIMITING	CONDITIC	ON: Rock			Excessively Drai	ined	Somewhat Po	oorly Drai	ned						
Туре: И	Vater R	ock N	<i>l</i> ottling		Well Drained		Poorly Draine	d							
Depth: ~48	8"				Moderately Wel	I Drained	Very Poorly	Drained							
		W	EATHER:		62° Sunny					MET	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		48"		
			COVER:		Meadow		L	ANDSCA	PE P	rosi	FION:		NE		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

1250 Wrights Lane West Chester, PA 19380

PIT NUMBER: TP 3	DLH NUMBER:	3868	INVESTIGATOR:	DWD
DATE: <u>3/22/202</u>	21 STATE:	PA	COUNTY:	CHESTER
MUNICIPALITY:	WESTTOWN TOWNS	HIP	CLIENT: KEYS	STONE CUSTOM HOMES
SUBDIVISION:	STOKES ESTATE		SITE LOCATION	1013 SHILOH ROAD
MORPHOLOGIC DET	ERMINATION: SEW	AGE ST	ORMWATER	SHWT SOILS

Horizon	Dep	oth	Boun	dary	Color	т	exture	%CFs	F	REDC	X	Structure	Consistence	NOTES	
110112011	Upper	Lower	Distrnct	Торо	COIOI	I	exture	/0013	Α	S	С	Siluciule	Consistence	NOTES	
	0	3	А	W	10 YR 3/1	SIL	T LOAM	0				GRAN	FRI		
	3	11	А	W	2.5 Y 5/3	SIL	TY CLAY	0				MA	FRI		
	11	31	G	W	10 YR 5/6	SIL	TY CLAY	0				MA	FRI		
	31	48			10 YR 4/4	STO	ONY SILT	<20				GRAN	FRI		
COMMEN grade.	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-22-8.	During ex	cavation, rock w	as enco	unter	red at	a de	pth of appr	oximately 48 ind	ches below exist	ting
SOIL TYP	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
LIMITING	CONDITIC	N: Rock			Excessively Drai	ned	Somewhat Po	orly Draii	ned						
Type: V	Water R	ock N	Nottling		Well Drained		Poorly Drained	t							
Depth: ~48	8"				Moderately Wel	I Drained	Very Poorly	Drained							
		W	EATHER:		62° Sunny					METI	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		48"		
			COVER:		Woodlands		LA	NDSCA	PE P	OSIT	ION:		NE		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast

 $Roots/Pores-f-few,\,c-common,\,m-many\,/\,f-fine,\,m-medium,\,c-coarse$

1250 Wrights Lane West Chester, PA 19380

STORMWATER INFILTRATION REPORT

FOR

1007, 1011, 1013 SHILOH ROAD WESTTOWN TOWNSHIP CHESTER COUNTY

PREPARED FOR:

Keystone Custom Homes 227 Granite Run Drive, Suite 100 Lancaster, PA 17601

PREPARED BY:

Howell Engineering 1250 Wrights Lane West Chester, PA 19380

February 2023

Stormwater Infiltration Test Report 1007, 1011, 1013 Shiloh Road Westtown Township Chester County

On Wednesday-Thursday, February 1-2, 2023, Howell Engineering preformed hydraulic conductivity tests for the proposed stormwater management areas for the properties located at 1107, 1011, and 1013 Shiloh Road in Westtown Township, Chester County. The purpose of the hydraulic conductivity testing was to determine site suitability for the proposed stormwater infiltration area associated with proposed improvements at the site (see development plan).

Testing was conducted in general accordance with the Pennsylvania Department of Environmental Protection (PADEP)'s Pennsylvania Stormwater Best Management Practices Manual specifications, in a cased, sealed, borehole utilizing the falling head method designed to measure the vertical hydraulic conductivity of the soil. An approximate five-inch diameter borehole was hand dug to the depth of the proposed bottom elevation of the infiltration structure and a 3-inch diameter PVC casing was installed. A mixture of bentonite and soil was placed around the annulus of the casing and packed to seal the casing in place. The casing was presoaked immediately prior to the start of the test to simulate field saturated conditions. A measured amount of water was poured into the sealed casing to begin the 30-minute presoak. After the final 30-minute presoaking period, the water in the casing was adjusted to a known depth and consecutively re-adjusted after each reading and the drop of the water column is measured. The test continued until the readings became stabilized or for a maximum of eight readings. A stabilized rate of drop means a difference of ¼ inch or less of drop between the highest and lowest readings of four consecutive readings.

On lot 1007 Shiloh Road (Obrien property), one hydraulic conductivity test was conducted within the proposed infiltration area at the elevation associated with the proposed bottom of the infiltration structure. One deep test pit was excavated at this infiltration test to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structure.

• Infiltration Test 2-1-1 was conducted at approximately \pm 6.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 336.50. One deep test pit was excavated at this location to a depth of 9.0 feet below existing grade. During excavation, redoximorphic features were identified between 6-54 inches below existing grade. It is the opinion of Howell Engineering the observed redox was a result of variable permeability within that specific soil horizon and not an indication of a seasonably high water table.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 2-1-1: an infiltration rate of 0.15 inches per hour shall be used.

On lot 1011 Shiloh Road (Galilea property), one hydraulic conductivity test was conducted within the proposed infiltration area at the elevation associated with the proposed bottom of the infiltration structure. One deep test pit was excavated at this infiltration test to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structure.

• Infiltration Test 2-2-1 was conducted at approximately \pm 4.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 332.2. One deep test pit was excavated at this location to a depth of 76 inches below existing grade. During excavation, groundwater was encountered at a depth of approximately 76 inches below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 2-2-1: an infiltration rate of 0.20 inches per hour shall be used.

• A second infiltration test (2-2-2) was proposed on this property. During excavation, groundwater was encountered at a depth of approximately 26 inches below existing grade. AS a result of the groundwater encountered, no infiltration testing was conducted at this location.

On lot 1013 Shiloh Road (Stokes property), one hydraulic conductivity test was conducted within the proposed infiltration area at the elevation associated with the proposed bottom of the infiltration structure. One deep test pit was excavated at this infiltration test to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structure.

• Infiltration Test 2-2-3 was conducted at approximately \pm 7.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 336.0. One deep test pit was excavated at this location to a depth of 9.0 feet below existing grade. No limiting conditions were identified at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 2-2-3: an infiltration rate of 0.77 inches per hour shall be used.

Please reference plan drawings for exact locations and visual representation of infiltration tests and test pits. Results of the hydraulic conductivity testing and soil horizon descriptions can be found in the enclosed attachments.

Hydraulic Conductivity Calculation

Coefficient of Permeability: $K = [A/(F^*D^*t)] \times \ln(h1/h2)$

Where: K = permeability (inches per hour) A = cross sectional area of cased hole F = shape factor (2.75 constant of flat bottom) D = cased hole diameter t = time for head change from h1 to h2 h1 = initial height of water column in casing h2 = final height of water column in casing

*Reference *Soil Hydraulic Conductivity Analysis Form* for infiltration testing data and *Soil Morphology Form* for soil profile data.

Local Knowhow. Engineered.

<u>None</u>

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

2/2/2023

DWD

DATE:

BY:

JOB NO.: <u>3868</u> LOCATION: <u>1011-1013 Shiloh Road</u> MUNICIPALITY: <u>Westtown Township, Chester County, Pa.</u> DESCRIPTION: <u>Stormwater Infiltration Testing</u>

Field Test Results

WEATHER CONDITIONS: <u>SUNNY</u> PRECIPITATION IN LAST 24 HOURS:

TEMPERATURE: 43 °F

			Readings										
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th			
Test 2-2-1	48												
Time(min.)		30	30	30	30	30	30	30	30	30			
Drop(inches)		2.50	2.00	2.00	2.00	2.00	n/a	n/a	n/a	n/a			
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a			

			Readings									
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th		
Test 2-2-3	84											
Time(min.)		30	30	30	30	30	30	30	30	30		
Drop(inches)		8.75	6.50	6.50	6.50	6.50	n/a	n/a	n/a	n/a		
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a		

Detemination of Hydraulic Conductivity (Kv)

Kv = [A/F*D*t] * ln(h1/h2)

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 2-2-1 Results

201	022	lin	/hour

- 7.068583
 (Sq.in.)

 2.75
 (Units)

 3
 (Inches)
- 0.5 (hrs.) 18 (Inches)
- 16.00 (Inches)

Test 2-2-3 Results

0.767733	(in/hour)
7.068583	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
11.50	(Inches)

Local Knowhow. Engineered.

<u>None</u>

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

DATE: BY:

2/1/2023 DWD

JOB NO.: 3868 LOCATION: 1007 Shiloh Road MUNICIPALITY: Westtown Township, Chester County, Pa. DESCRIPTION: Stormwater Infiltration Testing

Field Test Results

WEATHER CONDITIONS: SUNNY **PRECIPITATION IN LAST 24 HOURS:** TEMPERATURE: 41 °F

			Readings										
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th			
Test 2-1-1	72												
Time(min.)		30	30	30	30	30	30	30	30	30			
Drop(inches)		1.50	1.50	1.50	1.50	1.50	n/a	n/a	n/a	n/a			
Initial Water Level Depth (inches)		18	18	18	18	18	18	18	n/a	n/a			

			Readings									
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th		
Test												
Time(min.)		30	30	30	30	30	30	30	30	30		
Drop(inches)	Drop(inches)		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a		

Detemination of Hydraulic Conductivity (Kv)

Kv = [A/F*D*t] * ln(h1/h2)

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 2-1-1 Results 0.1491 (in/hour)

7.06858 (Sq.in.) 2.75 (Units) 3 0.5 (hrs.) 18 (Inches) 16.50

Test Results

	-
	(in/hour)
7.0686	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
	(Inches)

(Inches) (Inches)

Test Permeability

0.15 (in./hr)

	PIT NUMBE	R: <u>TP 2-1-1</u>	JOB NUMBER: 3868			INVESTIG	ATOR:	DWD		
	DATE:	2/1/2023	STATE:			COUNTY:		CHESTER		
w. Engineered.	MUNICIPALI	ITY:	WESTTOWN TOWNSHIP			CLIENT:	KEYS	TONE CUSTOM H	OMES	
. Ligneereu.	SUBDIVISION:		N/A		SITE LOCA	TION:	1007 SHILOH	RD		
	MORPHOLOGIC DETERM		INATION: SEWAGE		ST	STORMWATER		SHWT SOILS		

LANDSCAPE POSITION: N

Horizon	De	oth	Bound	dary	Color	т	exture	%CFs	F	REDC		Structure	Consistence	NOTES	\square
110112011	Upper	Lower	Distrnct	Торо	0000		exture	70013	А	S	С	Structure	Consistence	NOTES	
	0	6	G	S	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	6	54	А	W	10 YR 6/4	SIL	FY CLAY	0				MA	VFIRM		
	54	88	А	W	10 YR 4/3 STONY SILT <		<20				GRAN	FIRM			
	88	108			10 YR 5/4	SIL	T LOAM	0				GRAN	LO		
COMMEN existing gra		eep Test	Pit was c	onducte	ed at Test 2-1-1. I	Redoximor	phic (redox) fea	atures we	ere er	ncoui	ntered	d from appr	oximately 6-54	inches below	
SOIL TYPE					Soil Drainage Cl	il Drainage Class:					Soil Scien	tist Signature:			
LIMITING	CONDITIC	DN:			Excessively Drai	ned	Somewhat Poorly Drained								
Туре: И	Vater R	ock N	lottling		Well Drained		Poorly Drain	ed							
Depth: +10	Depth: +108" Moderately Well Drained					Very Poorly I	Drained								
		WI	EATHER:	4	1° Mostly Sunny				I	METI	HOD:	Ex	cavator		
SLOPE:				EXCAVA		N DE	PTH:		108"						

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

COVER: Lawn

	PIT NUMBER	: TP 2-2-1	TP 2-2-1 JOB NUMBER:			INVESTIG	ATOR:	DWD	
	DATE: 2	2/2/2023	2/2023 STATE:		PA	COUNTY:		CHESTER	
ngineered.	MUNICIPALITY:		WESTTOWN TOWNSHIP			CLIENT:	KEYS	TONE CUSTOM HOMES	
igilieereu.	SUBDIVISION:		N/A			SITE LOCATION		1011 SHILOH RD	
	MORPHOLOG	IC DETERM	INATION:	SEWAG	GE	STORMWATER	2	SHWT SOILS	

Horizon	De	pth	Bound	dary	Color	т	exture	%CFs	F	REDC	X	Structure	Consistence	NOTES	
HUHZUH	Upper	Lower	Distrnct	Торо	Coloi	1	exture	70055	Α	S	С	Siluciule	Consistence	NOTES	
	0	6	G	S	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	6	20	А	W	10 YR 4/4	SIL	TY CLAY	0				MA	FRI		
	20	48	А	W	2.5 Y 6/4 SILTY CLAY		0				MA	FIRM			
	48	76			10 YR 5/1 SANDY SILT		0				GRAN	FRI			
COMMEN	TS: This E	Deep Test	Pit was c	onducte	ed at Test 2-2-1. (Groundwa	ter was encoun	tered at a	appro	xima	tely 7	6 inches be	elow existing gr	ade.	
SOIL TYPE	E:				Soil Drainage Cl	Class:						Soil Scient	tist Signature:		
LIMITING	CONDITIO	ON: Grou	ndwater		Excessively Drai	ned	Somewhat Poorly Drained								
Туре: V	Vater F	Rock N	lottling		Well Drained		Poorly Draine	d							
Depth: ~76	8"				Moderately Well	Drained	Very Poorly	Drained							
		W	EATHER:	4	3° Mostly Sunny				I	METH	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		76"		
			COVER:		Lawn		LA	LANDSCAPE POSITION:			ION:		E		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

	PIT NUMBER: TP 2-2-3 DATE: 2/2/2023		JOB NUMB	ER:	3868	INVESTIGA	ATOR:	DWD	_
			STATE:	PA		COUNTY:		CHESTER	_
ineered.	ed. MUNICIPALITY:		WESTTOWN T	WESTTOWN TOWNSHIP			KEYS	TONE CUSTOM HOMES	
meereu.			N/A			SITE LOCA	TION:	1013 SHILOH RD	
	MORPHOLOG	GIC DETERM	IINATION:	SEWAG	GE S	TORMWATER	2	SHWT SOILS	

Horizon	De	Depth		dary	Color	Т	exture	%CFs	REDOX		X	Structure	Consistence	NOTES	
TIONZON	Upper	Lower	Distrnct	Торо	000		xture	/0013	А	S	С	Siluciule	Consistence	NOTE3	
	0	7	G	S	10 YR 4/3	SIL	LOAM	0				GRAN	FRI		
	7	35	А	W	10 YR 5/4	0 YR 5/4 SILTY CLAY		0				MA	FRI		
	35	108			VAR SANDY SILT		0				GRAN	FRI			
COMMENT	TS: This D	eep Test	Pit was c	onducte	ed at Test 2-2-3. I	No limiting	conditions we	e identifie	ed at	the t	ime o	f excavatio	n.		
SOIL TYPE	Ξ:				Soil Drainage Class: Soil Scientist Signature:										
LIMITING	CONDITIC	ON:			Excessively Drai	vely Drained Somewhat Poorly Drained									
Туре: М	Vater R	Rock M	lottling		Well Drained		Poorly Draine	ed							
Depth: +10	8"				Moderately Wel	I Drained	Very Poorl	y Drained							
		WI	EATHER:	4	3° Mostly Sunny				ſ	ИЕТІ	HOD:	Ex	cavator		
			SLOPE:					EXCAVA		N DE	PTH:		108"		
			COVER:		Lawn		L	ANDSCA	PE P	OSIT	ION:		W		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

STORMWATER INFILTRATION REPORT

FOR

1007 & 1011 SHILOH ROAD WESTTOWN TOWNSHIP CHESTER COUNTY

PREPARED FOR:

Keystone Custom Homes 227 Granite Run Drive, Suite 100 Lancaster, PA 17601

PREPARED BY:

Howell Engineering 1250 Wrights Lane West Chester, PA 19380

March 2023

Stormwater Infiltration Test Report 1007 & 1011 Shiloh Road Westtown Township Chester County

On Wednesday-Thursday, March 8-9, 2023, Howell Engineering preformed hydraulic conductivity tests for the proposed stormwater management areas for the properties located at 1007 and 1011 Shiloh Road in Westtown Township, Chester County. The purpose of the hydraulic conductivity testing was to determine site suitability for the proposed stormwater infiltration area associated with proposed improvements at the site (see development plan).

Testing was conducted in general accordance with the Pennsylvania Department of Environmental Protection (PADEP)'s Pennsylvania Stormwater Best Management Practices Manual specifications, in a cased, sealed, borehole utilizing the falling head method designed to measure the vertical hydraulic conductivity of the soil. An approximate five-inch diameter borehole was hand dug to the depth of the proposed bottom elevation of the infiltration structure and a 3-inch diameter PVC casing was installed. A mixture of bentonite and soil was placed around the annulus of the casing and packed to seal the casing in place. The casing was presoaked immediately prior to the start of the test to simulate field saturated conditions. A measured amount of water was poured into the sealed casing to begin the 30-minute presoak. After the final 30-minute presoaking period, the water in the casing was adjusted to a known depth and consecutively re-adjusted after each reading and the drop of the water column is measured. The test continued until the readings became stabilized or for a maximum of eight readings. A stabilized rate of drop means a difference of ¹/₄ inch or less of drop between the highest and lowest readings of four consecutive readings.

On lot 1007 Shiloh Road (Obrien property), two hydraulic conductivity tests were conducted within the proposed infiltration areas at the elevations associated with the proposed bottom of the infiltration structures. One deep test pit was excavated at each infiltration test to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structure.

• Infiltration Test 3-9-1 was conducted at approximately ± 3.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 377.0. One deep test pit was excavated at this location to a depth of 5.0 feet below existing grade. During excavation, rock was encountered at a depth of approximately 61 inches below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 3-9-1: an infiltration rate of 0.175 inches per hour shall be used.

• Infiltration Test 3-9-2 was conducted at approximately \pm 8.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 342.0. One deep test pit was excavated at this location to a depth of 10.0 feet below existing grade. No limiting conditions were identified at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 3-9-2: an infiltration rate of 2.376 inches per hour shall be used.

On lot 1011 Shiloh Road (Galilea property), three hydraulic conductivity tests were conducted within the proposed infiltration areas at the elevations associated with the proposed bottom of the infiltration structures. One deep test pit was excavated at each infiltration test to identify limiting conditions such as mottling, depth of bedrock, and depth of groundwater. Testing was to be conducted within the footprint of the proposed infiltration structures.

• Infiltration Test 3-8-1 was conducted at approximately \pm 8.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 364.0. One deep test pit was excavated at this location to a depth of 10.0 feet below existing grade. No limiting conditions were identified at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 3-8-1: an infiltration rate of 4.855 inches per hour shall be used.

• Infiltration Test 3-8-2 was conducted at approximately \pm 4.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 362.0. One deep test pit was excavated at this location to a depth of 6.0 feet below existing grade. No limiting conditions were identified at the time of excavation.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 3-8-2: an infiltration rate of 0.284 inches per hour shall be used.

• Infiltration Test 3-8-3 was conducted at approximately \pm 4.0 feet below existing grade, which corresponds to an approximate infiltration elevation of 357.0. One deep test pit was excavated at this location to a depth of 6.0 feet below existing grade. During excavation, redoximorphic features were identified from approximately 41-72 inches below existing grade.

Based on the hydraulic conductivity testing located within the footprint of the infiltration structure, Howell Engineering recommends the following infiltration rate for the soils underlying Test 3-8-3: an infiltration rate of 0.123 inches per hour shall be used.

Please reference plan drawings for exact locations and visual representation of infiltration tests and test pits. Results of the hydraulic conductivity testing and soil horizon descriptions can be found in the enclosed attachments.

Hydraulic Conductivity Calculation

Coefficient of Permeability: $K = [A/(F^*D^*t)] \times \ln(h1 / h2)$

Where:K = permeability (inches per hour)A = cross sectional area of cased holeF = shape factor (2.75 constant of flat bottom)D = cased hole diametert = time for head change from h1 to h2h1 = initial height of water column in casingh2 = final height of water column in casing

*Reference *Soil Hydraulic Conductivity Analysis Form* for infiltration testing data and *Soil Morphology Form* for soil profile data.

Local Knowhow. Engineered.

<u>None</u>

Stormwater Infiltration Testing &

Hydraulic Conductivity Calculations

3/9/2023

DWD

DATE:

BY:

JOB NO.: <u>3868</u> LOCATION: <u>1007 Shiloh Road</u> MUNICIPALITY: <u>Westtown Township, Chester County, Pa.</u> DESCRIPTION: <u>Stormwater Infiltration Testing</u>

Field Test Results

WEATHER CONDITIONS: <u>SUNNY</u> PRECIPITATION IN LAST 24 HOURS:

TEMPERATURE: 48 °F

		Readings							
Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th
36									
	30	30	30	30	30	30	30	30	30
	2.50	2.00	1.75	1.75	1.75	n/a	n/a	n/a	n/a
Initial Water Level Depth (inches)		18	18	18	18	n/a	n/a	n/a	n/a
	36	36 30 2.50	36 30 2.50 2.00	36 30 30 30 2.50 2.00 1.75	Depth (Inches) Pre-Soak 1st 2nd 3rd 36 -	Depth (Inches) Pre-Soak 1st 2nd 3rd 4th 36 - <td< td=""><td>Depth (Inches) Pre-Soak 1st 2nd 3rd 4th 5th 36 - <</td><td>36 30<</td><td>Depth (Inches) Pre-Soak 1st 2nd 3rd 4th 5th 6th 7th 36 -</td></td<>	Depth (Inches) Pre-Soak 1st 2nd 3rd 4th 5th 36 - <	36 30<	Depth (Inches) Pre-Soak 1st 2nd 3rd 4th 5th 6th 7th 36 -

			Readings								
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th	
Test 3-9-2	96										
Time(min.)		30	30	30	30	30	30	30	30	30	
Drop(inches)		13.50	13.50	13.50	13.50	13.50	n/a	n/a	n/a	n/a	
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a	

Detemination of Hydraulic Conductivity (Kv)

Kv = [A/F*D*t] * ln(h1/h2)

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 3-9-1 Results

0.17526	(in/hour)

 7.06858
 (Sq.in.)

 2.75
 (Units)

 3
 (Inches)

 0.5
 (hrs.)

(Inches)

(Inches)

18

16.25

Test 3-9-2 Results

2.375548	(in/hour)
7.068583	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
4.50	(Inches)

Stormwater Infiltration Testing &

<u>3/8/202</u>3

DWD

Hydraulic Conductivity Calculations

DATE:

BY:

JOB NO.: <u>3868</u> LOCATION: <u>1011 Shiloh Road</u> MUNICIPALITY: <u>Westtown Township, Chester County, Pa.</u> DESCRIPTION: <u>Stormwater Infiltration Testing</u>

<u>None</u>

Field Test Results

WEATHER CONDITIONS: Mostly Sunny PRECIPITATION IN LAST 24 HOURS:

TEMPERATURE: 48 °F

			Readings								
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th	
Test 3-8-1	96										
Time(min.)		30	10	10	10	10	10	10	10	10	
Drop(inches)		18.00	11.50	11.00	11.00	11.00	11.00	n/a	n/a	n/a	
Initial Water Level Depth (inches)		18	18	18	18	18	18	n/a	n/a	n/a	

			Readings								
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th	
Test 3-8-2	48										
Time(min.)		30	30	30	30	30	30	30	30	30	
Drop(inches)		3.50	3.00	2.75	2.75	2.75	n/a	n/a	n/a	n/a	
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a	

			Readings								
Hole #	Depth (Inches)	Pre-Soak	1st	2nd	3rd	4th	5th	6th	7th	8th	
Test 3-8-3	48										
Time(min.)		30	30	30	30	30	30	30	30	30	
Drop(inches)		1.50	1.50	1.25	1.25	1.25	n/a	n/a	n/a	n/a	
Initial Water Level Depth (inches)		18	18	18	18	18	n/a	n/a	n/a	n/a	

Determination of Hydraulic Conductivity (Kv)

Kv = [A/(F*D*t)] * ln(h1/h2)

Kv = Vertical Permeability

- A = Cross-sectional area of cased hole
- F = shape factor (2.75 constant for flat bottom)
- D = cased hole diameter
- t = time for head to change from h1 to h2
- h1 = initial height of water column in casing
- h2 = final height of water column in casing

Test 3-8-1 Results

4.85528	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.16667	(hrs.)
18	(Inches)
7.00	(Inches)

Test 3-8-2 Results

0.2841	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
15.25	(Inches)

Test 3-8-3 Results

0.12333	(in/hour)
7.06858	(Sq.in.)
2.75	(Units)
3	(Inches)
0.5	(hrs.)
18	(Inches)
16.75	(Inches)
	-

	PIT NUMBER: TP 3-9-1 DATE: 3/9/2023		JOB NUMBER: 3868		INVESTIGA	ATOR:	DWD	_	
			STATE:	PA		COUNTY:		CHESTER	
gineered.	MUNICIPALITY	WESTTOWN TOWNSHIP			CLIENT:	KEYS	TONE CUSTOM HOMES		
,	SUBDIVISION:		N/A			SITE LOCATION:		1007 SHILOH RD	
	MORPHOLOGIC DETERMINATION:			SEWAG	E S1		2	SHWT SOILS	

LANDSCAPE POSITION:

Ν

Horizon	Dep	oth	Bound	dary	Color	т	exture	%CFs	F	REDO	X	Structure	Consistence	NOTES	
TIONZON	Upper	Lower	Distrnct	Торо	000	-	exture	/0013	Α	S	С	Siluciule	Consistence	NOTES	
	0	10	А	W	10 YR 4/2	SIL	T LOAM	0				GRAN	FRI		
	10	37	А	W	7.5 YR 4/4	SIL	TY CLAY	0				MA	VFIRM		
	37	61			7.5 YR 4/6	STO	ONY SILT	<20				GRAN	FRI		
COMMEN	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-9-1. I	During exc	avation, rock w	as encou	intere	ed at	a dep	oth of appro	ximately 61 inc	hes below existi	ing
grade.												-			
SOIL TYPE	Ξ:				Soil Drainage Class:					Soil Scient	tist Signature:				
LIMITING	CONDITIC	N: Rock			Excessively Drai	ned	Somewhat Poorly Drained								
Туре: И	Vater R	ock N	/lottling		Well Drained		Poorly Draine	d							
Depth: app	Depth: approx. 61"					Drained	Very Poorly [Drained							
		WI	EATHER:	8° Mostly Sunny				I	MET	HOD:	Ex	cavator			
			SLOPE:				EXCAVATION DEPTH:					61"			

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

Lawn

1250 Wrights Lane West Chester, PA 19380 COVER:

	PIT NUMBE	R: <u>TP 3-9-2</u>	JOB NUME	BER:	3868	INVESTIGA	TOR:	DWD	_
	DATE:	3/9/2023	STATE:		PA	COUNTY:		CHESTER	_
ngineered.	MUNICIPALI	TY:	WESTTOWN TOWNSHIP			CLIENT:	KEY	STONE CUSTOM HOMES	_
	SUBDIVISIO	N:	N/A			SITE LOCA	TION:	1007 SHILOH RD	_
	MORPHOLO	GIC DETERM	IINATION:	SEWAG	GE SI	ORMWATER		SHWT SOILS	

Horizon	De	oth	Bound	dary	Color	т	exture	%CFs	F	REDC		Structure	Consistence	NOTES	
110112011	Upper	Lower	Distrnct	Торо	00101		CATOL	/001 3	Α	S	С	Olluciale	Consistence	NOTED	
	0	6	А	W	10 YR 4/2	SIL	T LOAM	0				SBK	FRI		
	6	24	G	S	10 YR 4/6	SIL	T LOAM	0				MA	FRI		
	24	57	G	S	10 YR 4/3	SIL	T LOAM	0				GRAN	FRI		
	57	120			VAR	SAN	IDY SILT	0				GRAN	LO	some large rock	
COMMEN	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-9-2. I	No limiting	conditions wer	e identifie	ed at	the ti	ime o	f excavatio	n.		
SOIL TYPE	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
LIMITING	CONDITIC	DN:			Excessively Drai	ned	Somewhat P	oorly Dra	ined						
Туре: И	Vater R	ock M	lottling		Well Drained		Poorly Drain	ed							
Depth: +12								Drained							
		WI	EATHER:	4	8° Mostly Sunny				I	METH	HOD:	Ex	cavator	_	
			SLOPE:				EXCAVATION DEPTH: 120"					-			
	COVER: Lawn LANDSCAPE POSITI							ION:		E					

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

	PIT NUMBER:	TP 3-8-1	JOB NUMB	ER:	3868	INVESTIGA	TOR:	DWD	_
	DATE: 3	8/8/2023	STATE:		PA	COUNTY:		CHESTER	_
ngineered.	MUNICIPALITY	/: <u></u>	WESTTOWN T	IP	CLIENT:	KEY	STONE CUSTOM HOMES		
	SUBDIVISION:		N/A			SITE LOCA	TION:	1011 SHILOH RD	
	MORPHOLOG	IC DETERM	IINATION:	SEWAG	GE ST	ORMWATER		SHWT SOILS	

Horizon	De	pth	Bound	dary	Color	т	exture	%CFs	F	REDC		Structure	Consistence	NOTES	
TIONZON	Upper	Lower	Distrnct	Торо	Coloi	Į.	exture	/0013	Α	S	С	Siluciule	Consistence	NOTES	
	0	4	А	W	10 YR 4/2	SIL	T LOAM	0				SBK	FIRM		
	4	33	G	S	7.5 YR 4/4	SILT	TY CLAY	0				MA	FRI		
	33	59	А	С	VAR	SILT	TY CLAY	0				MA	FRI		
	59	120			VAR	SAN	IDY SILT	0				GRAN	LO		
COMMEN	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-8-1. I	No limiting	conditions wer	e identifie	ed at	the t	ime o	f excavatio	n.		
SOIL TYPI	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
LIMITING	CONDITIC	DN:			Excessively Drai	ned	Somewhat Poorly Drained								
Type: V	Vater R	Rock M	lottling		Well Drained		Poorly Drain	ed							
Depth: +12	20"				Moderately Well	Drained	Very Poorly	Drained							
	WEATHER: 48° Mostly Sunny_								ļ	МЕТІ	HOD:	Ex	cavator		
			SLOPE:				EXCAVATION DEPTH: 120"								
		COVER: Pasture LANDSCAPE POSITI								ION:		Ν			

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

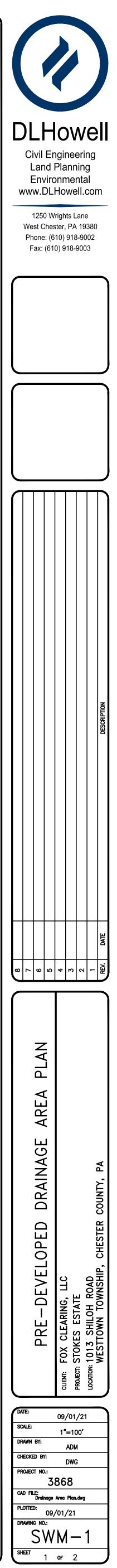
	PIT NUMBE	R: <u>TP 3-8-2</u>	JOB NUME	BER:	3868	INVESTIGA	TOR:	DWD
	DATE:	3/8/2023	STATE:		PA	COUNTY:		CHESTER
Engineered.	MUNICIPALI	TY:	WESTTOWN T	lIP	CLIENT:	KEY	STONE CUSTOM HOMES	
- inginie circui	SUBDIVISIO	N:	N/A			SITE LOCA	TION:	1011 SHILOH RD
	MORPHOLO	GIC DETERM	IINATION:	NATION: SEWAGE				SHWT SOILS

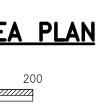
Horizon	De	oth	Bound	dary	Color	т	exture	%CFs	F	REDC	X	Structure	Consistence	NOTES	Π
TIONZON	Upper	Lower	Distrnct	Торо	COIOI	Į	exture	/0013	А	S	С	Siluciule	Consistence	NOTES	
	0	7	А	W	10 YR 5/2	SIL	T LOAM	0				SBK	FIRM		
	7	45	G	S	10 YR 5/8	SIL	TY CLAY	0				MA	VFIRM		
	45	72			10 YR 3/3	SIL	T LOAM	0				GRAN	FRI		
COMMEN	TS: This D	eep Test	Pit was c	onducte	ed at Test 3-8-2. I	No limiting	conditions were	e identifie	ed at	the t	ime o	f excavatio	n.		
SOIL TYPI	E:				Soil Drainage Cl	ass:						Soil Scient	tist Signature:		
LIMITING	CONDITIC	DN:			Excessively Drai	ned	Somewhat Poorly Drained								
Type: V	Vater R	ock N	lottling		Well Drained		Poorly Draine	d							
Depth: +72	2"				Moderately Well	Drained	Drained								
	WEATHER: 48° Mostly Sunny									МЕТІ	HOD:	Ex	cavator		
		SLOPE:					EXCAVATION DEPTH:					72"			
			COVER:		Pasture	Pasture LANDSCAPE				OSIT	ION:		Ν		

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse

	PIT NUMBER	R: TP 3-8-3	JOB NUME	ER:	3868	INVESTIGA	TOR:	DWD	_
	DATE:	3/8/2023	STATE:		PA	COUNTY:		CHESTER	_
Engineered.	MUNICIPALIT	-Y:	WESTTOWN T	OWNSH	IP	CLIENT:	KEY	STONE CUSTOM HOMES	
Lingineeree	MUNICIPALITY: SUBDIVISION:		N/A			SITE LOCA	TION:	1011 SHILOH RD	_
			IINATION:	SEWAG	GE S	TORMWATER		SHWT SOILS	

Horizon	De	oth	Bound		Color	т	exture	%CFs	F	REDO		Structure	Consistence	NOTES	
110112011	Upper	Lower	Distrnct	Торо	00101	I	exture	/0013	А	S	С	Olluciale	Consistence	NOTEO	
	0	13	А	W	10 YR 4/2	SIL	T LOAM	0				MA	FRI		
	13	41	G	S	10 YR 5/6	SIL	TY CLAY	0				MA	FIRM		
	41	72			10 YR 6/4	SIL	TY CLAY	0	f	с	d	MA	FIRM		
COMMEN exiting grad		eep Test	Pit was c	onducte	ed at Test 3-8-3. I	During exc	avation, redoxi	norphic f	eatu	res w	vere ic	lentified at	approximatley 4	11-72 inches belov	v
SOIL TYPI					Soil Drainage Cl						Soil Scien	tist Signature:			
LIMITING	CONDITIC	DN: Redo	x		Excessively Drai	ned	Somewhat Po	Somewhat Poorly Drained							
Туре: V	Vater R	ock N	lottling		Well Drained		Poorly Drain	ed							
Depth: app	u u u u u u u u u u u u u u u u u u u				Moderately Well	Drained	Very Poorly	Drained							
	WEATHER:				8° Mostly Sunny				I	METI	HOD:	Ex	cavator		
SLOPE:					E			EXCAVATION DEPTH:			PTH:		72"		
COVER:				Pasture	Pasture LA			LANDSCAPE POSITION:				SE			

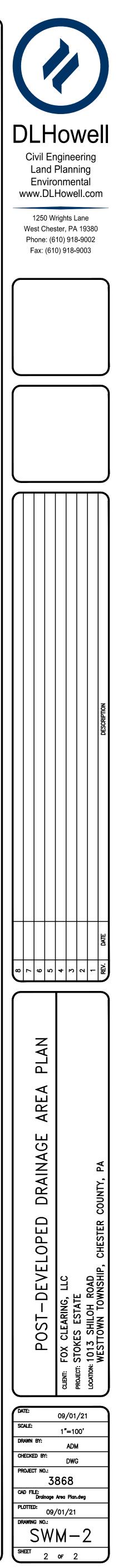

REDOX – Redoxymorphic features (Drainage Mottling) A/S/C – Abundance/Size/Contrast Roots/Pores – f – few, c – common, m – many / f – fine, m – medium, c – coarse




PRE-DEVELOPED DRAINAGE AREA PLAN SCALE: 1"=100'

100

0 50 100 $\frac{\text{GRAPHIC SCALE}}{1 \text{ inch } = 100 \text{ feet}}$



POST-DEVELOPED DRAINAGE AREA PLAN SCALE: 1"=100'

100

0 50 100 GRAPHIC SCALE 1 inch = 100 feet

200