NPDES PCSM MODULE 2/ POST CONSTRUCTION STORM WATER MANAGEMENT REPORT

FOR

THE WESTTOWN SCHOOL OAK LANE PROJECT

WESTTOWN TOWNSHIP CHESTER COUNTY, PA

PROJECT NO: 1091-001

January 27, 2023 **Revised: September 19, 2023**

This report is intended to provide supporting information and calculations associated with the approved PCSM Plans. Refer to the Approved Preliminary/Final Land Development Plan for Westtown School – Oak Lane Project, dated, January 27, 2023, last revised September 19, 2023

Prepared By:

ELA GROUP, INC.

743 S. Broad Street • Lititz, PA 17543 (717) 626-7271 • Fax (717) 626-7040

Website: www.elagroup.com • Email: staff@elagroup.com

Central PA Office • State College, PA

TABLE OF CONTENTS

NPDES PCSM MODULE 2
APPENDIX A – STORMWATER MANAGEMENT NARRATIVE
APPENDIX B – PADEP PCSM SPREADSHEETS
APPENDIX C – REFERENCE & SUPPORTING DOCUMENTS
APPDENDIX D – SUPPORTING VOLUME CALCULATIONS
APPENDIX E – RATE CONTROL ANALYSIS67
APPENDIX F – STORM SEWER CALCULATIONS
APPENDIX G - SPILLWAY/ANTI-SEEP COLLAR DESIGN CALCULATIONS
APPENDIX I – RIP RAP DESIGN CALCULATIONS
Infiltration Feasibility Report
Supplemental Infiltration Feasibility Report239
WATERSHED MAPSBACK

3800-PM-BCW0406b Rev. 12/2019 PCSM Module 2 pennsylvania

DEPARTMENT OF ENVIRONMENTAL PROTECTION

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF CLEAN WATER

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGES OF STORMWATER ASSOCIATED WITH CONSTRUCTION ACTIVITIES POST-CONSTRUCTION STORMWATER MANAGEMENT (PCSM) MODULE 2

Applicant: The Westtown School Surface Water Name(s): East Branch Chester Creek, Unt. to East Branch Chester Creek		ttown School	Project Site Name:	The Westtown School - Oak Lane Projects			
		Creek, Unt. to East	Surface Water Use(s	TSF, MF			
		PCSM PL	AN INFORMATION				
1. Identify	all structura	al and non-structural PCSM BMPs t	hat have been selected	and provide the	e information red	quested.	
Discharge Point(s)	BMP ID	BMP Name	BMP Manual	Latitude	Longitude	DA Treated (ac)	
001	1	Infiltration Basin	6.4.2	39.944325	-75.539241	4.99	
002	2	Subsurface Infiltration Bed	6.4.3	39.944787	-75.537636	2.22	
002	3	Subsurface Infiltration Bed	6.4.3	39.945473	-75.537325	2.22	
002	4	Infiltration Basin	6.4.2	39.946011	-75.535373	9.67	
Undetained	Areas:	4.86 acre(s)	· · ·				
☐ The Proj	ect Qualifie	es as a Site Restoration Project (25	Pa. Code §102.8(n))				

Describe the sequence of PCSM BMP implementation in relation to earth disturbance activities and a schedule of

inspections for the critical stages of PCSM BMP installation.

3800-PM-BCW0406b Rev. 12/2019 PCSM Module 2

	See plan sheet 4.
3.	
4.	
5.	Recycling and proper disposal of materials associated with PCSM BMPs are addressed as part of long-term operation and maintenance of the PCSM BMPs.
6.	Identify naturally occurring geologic formations or soil conditions that may have the potential to cause pollution after earth disturbance activities are completed and PCSM BMPs are operational and the applicant's plan to avoid or minimize potential pollution and its impacts.
	See plan sheet 4.
7.	Identify whether the potential exists for thermal impacts to surface waters from post-construction stormwater. If such potential exists, identify BMPs that will be implemented to avoid, minimize, or mitigate potential thermal impacts.
	See plan sheet 4.
8.	☐ The PCSM Plan has been planned, designed, and will be implemented to be consistent with the E&S Plan.
9.	A pre-development site characterization has been performed.

STORMWATER ANALYSIS – RUNOFF VOLUME										
Surface Water Name: East Bra	anch Chester Creek				Discha	rge Point(s):	001			
1. The design standard is base	1. The design standard is based on volume management requirements in an Act 167 Plan approved by DEP within the past five years.									
2. The design standard is base	ed on managing the net cha	nge for storms ι	up to and inclu	ding the 2	2-year/24-hour st	orm.				
3. An alternative design stand	ard is being used.									
4. A printout of DEP's PCSM S	Spreadsheet – Volume Work	ksheet is attache	ed.							
5. 2-Year/24-Hour Storm Event:	3.26 inches	Source of precip	oitation data:	NOAA A	Atlas 14					
6. Stormwater Runoff Volume, Pre	e-Construction Conditions:	8,282	CF	🛛 Calcu	lations attached					
7. Stormwater Runoff Volume, Pos	st-Construction Conditions:	18,798	8 CF	⊠ Calcu	lations attached					
8. Net Change (Post-Construction	– Pre-Construction Volume	s): 10,51 0	6 CF							
9. Identify all selected structural P	CSM BMPs and provide the	information req	uested.	⊠ Calcu	lations attached					
DP No. BMP ID Series	Vol. Routed Inf. Area to BMP (CF) (SF)	Inf. Rate (in/hr)	Inf. Period (hrs)	Veg?	Media Depth (ft)	Storage Vol. (CF)	Inf. Credit (CF)	ET Credit (CF)		
Total Infiltration & ET Credits (CF): 14,4								14,438		

Managed Release Credits (CF) (Attach MRC Design Summary):

Volume Required to Reduce/Manage (CF): 10,516

> Total Credits (CF): 14,438

	INFILTRATION INFORMATION								
BN	BMP ID: 1 Soil/geologic test results are attached.								
1.	No. of infiltration tests completed: 3								
2.	Method(s) used for infiltration testing: double ring infiltrometer								
3.	Test Pit Identifiers (from PCSM Plan Drawings): 14A, 14B, & 16A								
4.	Avg Infiltration Rate: 0.81 in/hr 5. FOS: 2 : 1								
6.	Infiltration rate used for design: 0.41 in/hr								
7.	Separation distance between the BMP bottom and bedrock: >3.5' feet								
8.	Separation distance between the BMP bottom and seasonal high-water table: >3.5' feet								
9.	Comments:								
BN	IP ID: Soil/geologic test results are attached.								
1.	No. of infiltration tests completed:								
2.	Method(s) used for infiltration testing:								
3.	Test Pit Identifiers (from PCSM Plan Drawings):								
4.	Avg Infiltration Rate: in/hr 5. FOS: : 1								
6.	Infiltration Rate Used for Design: in/hr								
7.	Separation distance between the BMP bottom and bedrock: feet								
8.	Separation distance between the BMP bottom and seasonal high-water table: feet								
9.	Comments:								
BN	IP ID: Soil/geologic test results are attached.								
1.	No. of infiltration tests completed:								
2.	Method(s) used for infiltration testing:								
3.	Test Pit Identifiers (from PCSM Plan Drawings):								
4.	Avg Infiltration Rate: in/hr 5. FOS: : 1								
6.	Infiltration Rate Used for Design: in/hr								
7.	Separation distance between the BMP bottom and bedrock: feet								
8.	Separation distance between the BMP bottom and seasonal high-water table: feet								
9.	Comments:								

STORMWATER ANALYSIS – RUNOFF VOLUME											
Surface Wat	ter Name:	Unt. to E	East Branch Che	ster Creek				Discha	rge Point(s):	002	
1.	design stand	ard is bas	ed on volume ma	nagement re	quirements in	an Act 167 Pla	an approv	ed by DEP withi	n the past five	years.	
2. 🛛 The	design stand	ard is bas	ed on managing	the net chang	je for storms u	p to and includ	ding the 2	-year/24-hour st	orm.		
3.	Iternative de	sign stand	ard is being used								
4. 🛛 A pri	ntout of DEP	's PCSM S	Spreadsheet – Vo	olume Worksh	neet is attache	ed.					
5. 2-Year/2	4-Hour Storr	n Event:	3.26 in	ches So	ource of precip	oitation data:	NOAA A	Atlas 14			
6. Stormwa	ater Runoff V	olume, Pre	e-Construction Co	onditions:	20,730	O CF	⊠ Calcu	lations attached			
7. Stormwa	ater Runoff V	olume, Po	st-Construction C	Conditions:	70,26	5 CF	⊠ Calcu	lations attached			
8. Net Cha	nge (Post-Co	nstruction	- Pre-Constructi	on Volumes)	: 49,53	5 CF					
9. Identify a	all selected s	tructural P	CSM BMPs and	provide the in	formation req	uested.	⊠ Calcu	lations attached			
DP No.	BMP ID	Series	Vol. Routed to BMP (CF)	Inf. Area (SF)	Inf. Rate (in/hr)	Inf. Period (hrs)	Veg?	Media Depth (ft)	Storage Vol. (CF)	Inf. Credit (CF)	ET Credit (CF)
1											
	Total Infiltration & ET Credits (CF): 63,695 Non-Structural BMP Volume Credits (CF) (Attach Calculations):										

Managed Release Credits (CF) (Attach MRC Design Summary):

Volume Required to Reduce/Manage (CF): 49,535

Total Credits (CF): 63,695

	INFILTRATION INFORMATION						
BN	IP ID: 2						
1.	No. of infiltration tests completed: 2						
2.	Method(s) used for infiltration testing: double ring infiltrometer						
3.	Test Pit Identifiers (from PCSM Plan Drawings): 1A & 3B						
4.	Avg Infiltration Rate: 4.65 in/hr 5. FOS: 2 :1						
6.	Infiltration rate used for design: 2.32 in/hr						
7.	Separation distance between the BMP bottom and bedrock: >4' feet						
8.	Separation distance between the BMP bottom and seasonal high-water table: >4' feet						
9.	Comments:						
BN	IP ID: 3 ⊠ Soil/geologic test results are attached.						
1.	No. of infiltration tests completed: 2						
2.	Method(s) used for infiltration testing: double ring infiltrometer						
3.	Test Pit Identifiers (from PCSM Plan Drawings): 4A & 5A						
4.	Avg Infiltration Rate: 2.02 in/hr 5. FOS: 2 : 1						
6.	Infiltration Rate Used for Design: 1.01 in/hr						
7.	Separation distance between the BMP bottom and bedrock: >4' feet						
8.	Separation distance between the BMP bottom and seasonal high-water table: >4' feet						
9.	Comments:						
BN	IP ID: 4 ☐ Soil/geologic test results are attached.						
1.	No. of infiltration tests completed: 2						
2.	Method(s) used for infiltration testing: double ring infiltrometer						
3.	Test Pit Identifiers (from PCSM Plan Drawings): 6A & 7B						
4.	Avg Infiltration Rate: 1.67 in/hr 5. FOS: 2 : 1						
6.	Infiltration Rate Used for Design: 0.84 in/hr						
7.	Separation distance between the BMP bottom and bedrock: >2' feet						
8.	Separation distance between the BMP bottom and seasonal high-water table: 2' feet						
9.	Comments:						

STORMWATER ANALYSIS – PEAK RATE									
Surface Water Name:	East Bran	ch Chester	r Creek		Disc	charge Poir	nt(s): 0	01	
1. The design sta	ındard is base	d on rate re	quirements	in an Act 167	7 Plan appro	ved by DEP	within th	e past five ye	ears.
2.	ındard is base	d on manag	ging the net o	change for 2	-, 10-, 50-, a	nd 100-yeaı	/24-hour	storms.	
3. An alternative	design standa	ard is being	used.						
4. A printout of D	EP's PCSM S	preadsheet	– Rate Wor	ksheet is atta	ached.				
5. Alternative rate		-							
<u> </u>				ation data:					
6. Identify precipitation		Sourc	e of precipita						
2-Year/24-Hour St	orm:			10-Yea	r/24-Hour S	torm			
50-Year/24-Hour S	Storm:			100-Ye	ar/24-Hour \$	Storm			
7. Report peak disch	arge rates, pro	e- and post-	construction	(without BM	IPs), based	on a time of	concentra	ation analysi	S.
Design Storm	Pre-Cons	truction Pe (cfs)	ak Rate	Post-Con	struction P	eak Rate	Difference (cfs)		
2-Year/24-Hour									
10-Year/24-Hour									
50-Year/24-Hour									
100-Year/24-Hour									
8. Identify all BMPs u	ised to mitigat	e peak rate	differences	and provide	the requeste	ed information	on.		
BMP ID			Inflow to BMP (cfs) Ou			utflow fro	om BMP (cfs	s)	
		2-Yr	10-Yr	50-Yr	100-Yr	2-Yr	10-Yr	50-Yr	100-Yr
Report peak rates	for pre-constr	uction and r	oost-constru	tion with BN	│ ⁄IPs and ider	ntify the diffe	erences.		
Design Storm	•	truction Pe (cfs)		Post-Con	struction P	eak Rate)ifference (c	fs)
2-Year/24-Hour		2.38		<u> </u>	1.27	-		-1.11	
10-Year/24-Hour		8.96		3.28			-5.68		
50-Year/24-Hour		19.09			8.40			-10.69	
100-Year/24-Hour		24.73			12.51			-12.22	

STORMWATER ANALYSIS – PEAK RATE										
Surface Water Name:	Unt. to Ea	ast Branch	Chester Cre	ek	Disc	charge Poi	nt(s): 002	2		
1. The design sta	andard is base	ed on rate re	quirements	in an Act 167	7 Plan appro	ved by DEF	within the	past five ye	ears.	
2. X The design sta	andard is base	ed on manaç	ging the net	change for 2	-, 10-, 50-, a	nd 100-yea	r/24-hour s	torms.		
3. An alternative	design standa	ard is being	used.							
4. A printout of D	EP's PCSM S	Spreadsheet	– Rate Wor	ksheet is atta	ached.					
5. Alternative rate	e calculations	are attache	d.							
6. Identify precipitation	on amounts.	Sourc	e of precipita	ation data:						
2-Year/24-Hour St					r/24-Hour S	torm				
50-Year/24-Hour S					ar/24-Hour S					
7. Report peak disch	arge rates, pr	e- and post-	construction	•			concentrat	ion analysi	S.	
Design Storm	Pre-Cons	struction Pe (cfs)	ak Rate	Post-Con	struction P	eak Rate	Difference (cfs)			
2-Year/24-Hour										
10-Year/24-Hour										
50-Year/24-Hour										
100-Year/24-Hour										
8. Identify all BMPs u	used to mitigat	te peak rate	differences	and provide	the requeste	ed information	on.			
BMP ID			Inflow to	BMP (cfs)		0	utflow from	low from BMP (cfs)		
DIVIT ID		2-Yr	10-Yr	50-Yr	100-Yr	2-Yr	10-Yr	50-Yr	100-Yr	
O. Barratarahartar	.			- Cara and the DA	4Da and ida	- C.C Cl L.C.C.				
9. Report peak rates	•					-	erences.			
Design Storm	Pre-Cons	struction Pe (cfs)	eak Rate		struction P th BMPs) (c		Di	fference (c	fs)	
2-Year/24-Hour		5.02			2.51			-2.51		
10-Year/24-Hour		19.34		7.23			-12.11			
50-Year/24-Hour		42.19			17.45			-24.74		
100-Year/24-Hour	54.74 26.78 -27.96									

	STORMWATER AN	IALYSIS – WATER (QUALITY							
	☑ A printout of DEP's PCSM Spreadsheet – Quality Worksheet is attached for all surface waters receiving discharges.									
	LON	G-TERM O&M								
Describe the	Describe the long-term operation and maintenance (O&M) requirements for each selected PCSM BMP.									
BMP ID	O&M Requirements									
1	See plan sheet 5									
2	See plan sheet 5									
3	See plan sheet 5									
4	See plan sheet 5									
	PCSM PI	LAN DEVELOPER								
☐ I am train	ned and experienced in PCSM methods.	I am a licen	sed professional.							
Name:	Tyler E. Hill, PE	Title:	Project Manager							
Company:	ELA Group, Inc.	Phone No.:	717-626-7271							
Address:	743 S. Broad St.	Email:	tehill@elagroup.com							
City, State, ZIP: Lititz, PA 17543		License No.:	PE086960							
License Typ	e: Professional Engineer	Exp. Date	09/30/2023							
	Blestel	1/0	/2023							
	PCSM Plan Developer Signature	-	12023							
	rosivi riali Developei Signature	Date								

APPENDIX A STORMWATER MANAGEMENT NARRATIVE

STORMWATER MANAGEMENT NARRATIVE

SITE DESCRIPTION

The project site is located near the center of the Westtown School campus, just south of Oak Lane. The existing site is largely comprised of existing grass athletic fields which are bordered to the north by a partially forested area and the school's academic centers; to the east by a baseball field and residential area; the south by agricultural fields (i.e. row crops) and a partially forested riparian area; and to the west by the school's working farm and agricultural area.

During the past 50 years, the site's primary use has been agricultural (i.e. row crops). The site is currently utilized primarily for athletic fields, with row crops along the southeastern portion of the project site. The site has been utilized as such for at least the past five years, with no significant improvements being constructed during that time.

SUMMARY OF PROPOSED IMPROVEMENTS

The Westtown School is proposing to improve upon the existing athletic facilities on campus by constructing two new synthetic turf multipurpose fields, along with reconfiguring the remaining area to maximize field space. Additional components of the project involve the construction of a support building, parking lot and improved pedestrian access.

SOIL DESCRIPTIONS, LIMITATIONS AND RESOULTIONS

As per the USDA NRCS Web Soil Survey, the soils within the project area (Limit of Disturbance) are classified as follows:

- CaB Califon Loam (3-8% slopes, Hydrologic Soil Group "D")
- GgC Glenelg Silt Loam (8-15% slopes, Hydrologic Soil Group "B")
- MaA Manor Loam (0-3% slopes, Hydrologic Soil Group "B")
- MaB Manor Loam (3-8% slopes, Hydrologic Soil Group "B")
- MaC Manor Loam (8-15% slopes, Hydrologic Soil Group "B")

See the Supplemental Design Information section for a summary of the Soil Facts, Use Limitations and Resolutions.

GEOTECHNICAL ASSESSMENT

A geotechnical investigation was performed on site to evaluate the site for infiltration of post-construction stormwater. The investigation determined that the site is underlain by the politic schist of the Glenarm Wissahickon Formation. This formation includes lenticular amphibolite bodies having ocean-floor basalt chemistry and is not considered karst. Infiltration tests performed on site found suitable infiltration rates in nearly every test pit, but not at all depths. In general, the site was found to be well drained and suitable for infiltration.

The complete Stormwater Infiltration Feasibility Report, dated October 8, 2018, and Supplemental Infiltration Feasibility Report, dated November 9, 2018, has been provided as an attachment to this report.

NARRATIVE DESCRIPTION OF STORMWATER MANAGEMENT CONCEPT

The project site generally sits along a watershed drainage boundary and thus has been analyzed as two drainage areas. The south/western portion of the site generally drains to the southwest towards East Branch Chester Creek (TSF, MF). In post development there is one proposed discharge point (DP001) in this watershed. The eastern portion of the site drains to an existing riparian area consisting of wetlands, forested area and the headwaters of an unnamed tributary to East Branch Chester Creek. In post development, there is one proposed discharge point (DP002) in this watershed. See the Pre and Post Watershed Mapping in this report for watershed delineation.

In order to address rate control, volume control, and water quality requirements the following structural and non-structural BMPs are being proposed:

Infiltration Basin (BMP 1 & BMP 4)

- An infiltration basin is a constructed impoundment intended to capture and infiltrate stormwater runoff.
- Infiltration basin typically contains a layer of installed amended soils which typically contain a high percent of organic matter and additional large grained materials (such as sand) to provide an improved cation exchange rate and assure permeability.
- Infiltration basins are often planted with water-tolerant, native vegetation in order to increase water uptake via the vegetation's root system and increase pollutant removal.

Subsurface Infiltration Bed (BMP 2 and BMP 3)

- A subsurface detention bed is a void space, typically angular stone and/or manufactured chamber system, constructed beneath the surface on virgin material with the intent to capture and infiltrate stormwater runoff.
- Infiltration Beds BMP 2 and BMP 3 are to be installed beneath the synthetic turf fields and consist of crushed angular stone with perforated distribution pipes

BMP DESIGN NOTES

The proposed structural BMPs have been designed in general accordance with the PADEP Stormwater BMP Manual. Given the site topography and location of existing improvements, the design of Basin A required a slightly modified approach with minor deviations from the BMP Manual. First, as the only feasible location for infiltration within the East Branch Chester Creek watershed, impervious and overall loading ratios exceed the recommended values of 5:1 and 8:1, respectively. Loading ratios of approximately 7:1 and 28:1 are proposed. These loading ratios are acceptable as the contributing area does not present a high potential for pollution, the geology is not karst and thus sinkholes and groundwater contamination are not of concern, and the site is general well-drained.

Additionally, three (3) infiltration tests were performed within the infiltration footprint of BMP 1 at the infiltration invert elevation and yielded results of 0.0 in/hr, 1.0 in/hr, and 6.0 in/hr. Based on the results, and the general soil characteristics of the site the area is feasible for infiltration, however determination of a design infiltration rate is not straightforward due to the wide range and the presence of test with zero infiltration. As a result, the design infiltration rate has been determined by removing the highest and lowest recorded infiltration

rates and applying a safety factor of two (2) to the remaining infiltration rate. This approach is reasonable as the recorded infiltration rates in the other proposed infiltration facilities ranged from 1.00 in/hr to 6.00 in/hr, which suggests the site as a whole consists of relatively variable soils but is generally conducive for infiltration. The recorded rates of TP-14 and TP-16 of 1.00 in/hr and 6.00 in/hr are within the range of recorded values elsewhere onsite and thus utilizing the lower of the two would produce a conservative design rate. Additionally, notes have been added to the plan regarding the potentially unsuitable soils within BMP 1 which outline in-situ testing protocol to determine the extent of unsuitable soils and a remediation plan.

VOLUME MANAGEMENT SUMMARY

A geotechnical evaluation was performed by Advantage Engineers to determine the suitability of the site for infiltration practices. Based upon the analysis, the site is generally well-drained and suitable for infiltration. See the *Stormwater Infiltration Feasibility Report*, dated October 8, 2018 and the Supplemental Infiltration Feasibility Report, dated November 9, 2018, for more information and a complete list of infiltration test pit results.

The volume removal requirements have been analyzed separately for compliance with NPDES PAG-02 and the municipal requirements. NPDES PAG-02 requires that 20% of existing impervious area be considered meadow in good condition, whereas the Westtown Township Stormwater Management Ordinance (SWMO) requires that 40% of existing impervious area be considered meadow in good condition.

NPDES volume management calculations can be found in Appendix B – PADEP PCSM Spreadsheets and the volume management calculations for Westtown Township can be found in Appendix D – Supporting Volume Calculations.

A summary of the volume removal calculations considering NPDES and municipal requirements can be found for each watershed in the tables below.

East Branch Chester Creek

The increase in runoff for the 2-year/24-hour storm for East Branch Chester Creek is being fully mitigated within the Infiltration Basin (BMP 1). A summary of the volume calculatons can be seen in the following tables:

NPDES:

VOLUME SUMMARY East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project
LOCATION: Westtown Township

COUNTY: Chester

JOB # : 1091-001 DATE: 1/13/2023 REVISED: 9/17/2023

Req'd Infiltration Volume 10,516 CF					CF						
STRUCTURAL BMPS											
BMP ID	Infiltration Area (sf)	Imperv Area (sf)	ious LR			2 YR Runoff Volume (cf)	Storage Vol. (cf) @ Elev.		Infiltration & ET Credit (CF)*		
BMP 1	10,675	53,560	5.0:1	217,187	20:1	15,663	11,503	289.50	14,438		
Total	10,675	53,560	5.0:1	217,187	20:1	15,663	11,503		14,438		

^{*}See Infiltration Volume Worksheets

Westtown Township:

VOLUME SUMMARY (Twp. Analysis)

East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project

LOCATION: Westtown Township

COUNTY: Chester

JOB # : 1091-001 DATE: 9/17/2023 REVISED:

	Req'd Ir	10,971	CF									
	STRUCTURAL BMPS											
BMP ID	Infiltration Area (sf)	Imperv Area (sf)	ious LR	Overall Area (sf) LR		2 YR Runoff Volume (cf)	Storage Vol. (cf) @ Elev.		Infiltration & ET Credit (CF)*			
BMP 1	10,675	53,560	5.0:1	217,187	20:1	15,663	11,503	289.50	14,438			
Total	10,675	53,560	5.0:1	217,187	20:1	15,663	11,503		14,438			

^{*}See Infiltration Volume Worksheets

Unt. to East Branch Chester Creek

The increase in volume for the 2-year/24-hour storm for the Unnamed Tributary to East Branch Chester Creek is being controlled through two (2) subsurface infiltration beds (BMP's 2&3) and an infiltration basin (BMP 4). A summary of the volume calculatons can be seen in the following tables:

NPDES:

VOLUME SUMMARY UNT. TO EAST BRANCH CHESTER CREEK

PROJECT: The Westtown School - Oak Lane Project JOB #: 1091-001

LOCATION: Westtown Township DATE: 1/13/2023

COUNTY: Chester REVISED: 9/17/2023

Re	q'd Infiltration Vo	ws 4)	49,535	CF							
	STRUCTURAL BMPS										
BMP ID	Infiltration Area (sf)	Imperv Area (sf)	ious LR	Overa Area (sf)	all LR	2 YR Runoff Volume (cf)	Stora Vol. (cf) @	age Elev.	Volume Credits (cf)*		
2	75,725	96,824	1.3:1	96,824	1.3:1	24,426	23,035	316.75	24,426		
3	26,795	96,824	3.6:1	96,824	3.6:1	24,426	21,916	321.00	24,357		
4	19,809	12,972	0.7:1	421,241	21.3:1	14,912	22,478	311.00	14,912		
Total	122,329	206,620	1.7:1	614,889	5:1	63,764	67,429		63,695		

^{*}See Infiltration Volume Worksheets

Westtown Township:

VOLUME SUMMARY UNT. TO EAST BRANCH CHESTER CREEK

PROJECT: The Westtown School - Oak Lane Project JOB #: 1091-001

LOCATION: Westtown Township DATE: 1/13/2023

COUNTY: Chester REVISED:

Re	eq'd Infiltration Vo	lume (from	WS 4)	49,557	CF					
				STRUCTU	JRAL BM	PS				
BMP ID	Infiltration Area (sf)	Imperv Area (sf)	ious LR			2 YR Runoff Volume (cf)	Storage Vol. (cf) @ Elev.		Infiltration Volume *	
2	75,725	96,824	1.3:1	96,824	1.3:1	24,426	23,035	316.75	24,426	
3	26,795	96,824	3.6:1	96,824	3.6:1	24,426	21,916	321.00	24,357	
4	19,809	12,972	0.7:1	421,241	21.3:1	14,912	22,478	311.00	14,912	
Total	122,329	206,620	1.7:1	614,889	5:1	63,764	67,429		63,695	

^{*}See Infiltration Volume Worksheets

See Appendix B for complete volume calculations.

PEAK RATE SUMMARY CALCULATIONS

The peak rate calculations have been provided to show compliance with the Westtown Township SWMO as well as NPDES PAG-02 requirements. The Township requires that all non-impervious areas be treated as meadow and 40% of impervious areas be treated as meadow in pre-development conditions. Since this requirement is more stringent than NDPES requirements it has been used as the standard for peak rate calculations.

Additionally, the Township requires a 50% reduction in onsite peak flows from pre- to post-development.

The following tables summarize the calculations for the pre-development peak flows, allowable post-development outflows, and the calculated outflow from each BMP and subdrainage area. Post development flows assume hydraulic routing through the proposed detention/infiltration facilities. All flows are in cfs. See Appendix E within this report for complete area calculations and hydrographs.

SUMMARY OF FLOWS - NRCS Rainfall-Runoff

East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project	JOB #: 1091-001					
LOCATION: Westtown Township				DATE:	1/13/2023	
COUNTY: Chester				REVISED:	9/17/2023	
<u>WATERSHEDS</u>	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
PRE-DEVELOPMENT	Flows (cfs)					
Pre-Dev. (E. Branch Chester Creek(EBCC))	2.38	5.68	8.96	14.25	19.09	24.73
Total Pre-Development						
EBCC Onsite (Reduction Factor)	1.53	3.84	6.21	10.05	13.58	17.68
50% Reduction	0.76	1.92	3.11	5.03	6.79	8.84
Allowable Post-Development Flow (Pre-Dev 50% Reduction)	1.62	3.76	5.86	9.23	12.30	15.89
POST-DEVELOPMENT						
EBCC-Undetained	1.27	2.31	3.28	4.79	6.12	7.62
BMP 1	0.16	0.62	1.63	4.43	7.56	11.46
Total Post-Development(Combined Hydrographs)	1.27	2.31	3.28	5.06	8.40	12.51

SUMMARY OF FLOWS - NRCS Rainfall-Runoff

Unt. to East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester	JOB # : 1091-001 DATE: 1/13/2023 REVISED: 9/17/2023					
WATERSHEDS	2 yr	5 yr	10 yr	25 yr	50 yr	100 yr
PRE-DEVELOPMENT	Flows (cfs)					
Pre-Dev. UNT. to East Branch Chester Creek (EBCC)	5.02	12.03	19.34	31.25	42.19	54.74
Total Pre-Development						
Unt. to EBCC Onsite (Reduction Factor)	3.66	8.78	14.12	22.81	30.80	39.96
50% Reduction	1.83	4.39	7.06	11.41	15.40	19.98
Allowable Post-Development Flow	3.19	7.64	12.28	19.85	26.79	34.76
POST-DEVELOPMENT						
BMP 3	0.01	0.08	0.12	0.17	0.22	0.44
BMP 2	0.00	0.15	0.32	0.76	1.33	2.11
BMP 4	0.02	0.75	2.04	7.99	15.12	23.74
Unt. to EBCC Undetained	2.51	4.94	7.23	10.84	14.08	17.79
Total Post-Development(Combined Hydrographs)	2.51	4.94	7.23	10.84	17.45	26.78

OFFSITE DISCHARGE ANALYSIS

DP001

Discharge Point (DP)001 is considered to be the proposed outfall of BMP 1. In order to reduce the risk of downstream erosion a rip-rap apron will be imployed to dissipate the energy and spread out the concentrated discharge of the endwall. The rip-rap has been designed using current design standards based on pipe size, outflow and anticipated velocity. Approximately 100 feet downslope of the discharge point the outflow enters and existing roadside swale. The flowpath between the discharge path and drainage swale is a well vegetated open area. The relatively short flowpath should reduce the amount of reconcentration of runoff. After the runoff enters the swale it continues on to an existing culvert which discharges to another reach of swale that enters the receiving surface water (refer to the Overall Drainage Map, sheet 44 of 44). Since the post-development rate and volume of runoff from the project site tributary to the existing drainage swale is being reduced from pre- to post development there is no risk of accelerated erosion to the downstream flowpath of runoff leaving the site at DP001. Further, mitigation is being provided in the form of a rip-rap apron to prevent erosion prior to runoff entering the existing drainage swale.

DP002

Discharge Point (DP)002 is considered to be the proposed outfall of BMP 4. DP002 discharges to an existing, well vegetated natural draw. This natural draw becomes the headwaters of the receiving watercourse approximately 350' downslope of DP002. In order to reduce the risk of downstream erosion a rip-rap apron will be imployed to dissipate the energy and spread out the concentrated discharge of the endwall. The rip-rap has been designed using current design standards based on pipe size, outflow and anticipated velocity. Given the mild slope of the draw, quality and density of the vegetation, and the proposed outlet protection (rip-rap) there is no anticipated risk of accelerated erosion to the downstream flowpath.

APPENDIX B PADEP PCSM SPREADSHEETS

APPENDIX B PADEP PCSM SPREADSHEETS (EAST BRANCH CHESTER CREEK)

General Information

Instructions Gen	veral Volume	Rate	Quality					
Project Name:	The Westtown Sch	ool - Oak Lan	e Project	Application Type:	PAG-02 NOI			
County:	Chester			Municipality:	Westtown Township			
Project Type:	Other			New Project	O Minor / Major Amendment			
Area: (In Watershed)	6.60	acres		Total Earth Disturba (In Watershed)	nce: 4.91 acres			
No. of Post-Constr	uction Discharge Poir	nts: 1		Start DP Numbering	at: 001			

Discharge Point (DP) No.	Drainage Area (DA) (acres)	Earth Disturbance in DA (acres)	Existing Impervious in DA (acres)	Proposed Impervious in DA (acres)	Receiving Waters	Ch. 93 Class	Structural BMP(s)
001	4.99	3.36	0.34	1.23	Discharge to MS4	TSF, MF	Yes
Undetained Areas	1.27	1.21	0.08	0.15	Discharge to MS4	TSF, MF	

Totals: 6.26 4.57 0.42 1.38

Volume Management

Project: The Westtown School - Oak Lane Project

Instructions General Volume Rate Quality											
2-Year / 24-Hour Storm Event (NOAA Atlas 14): 3.26 inches Alternative 2-Year / 24-Hour Storm Event inches											
Alternative Source:											
Pre-Construction Conditions: No. Rows: □ Exempt from Meadow in Good Condition □ Automatically Calculate CN, Ia, Runoff and Volume											
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)					
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	0.19	В	98	0.041	3.03	2,066					
Pervious as Meadow	4.68	В	58	1.448	0.36	6,154					
Impervious as Meadow	0.05	В	58	1.448	0.36	62					
TOTAL (ACRES):	4.91				TOTAL (CF):	8,282					

Post-Construction Conditions:

No. Rows: 2

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	1.19	В	98	0.041	3.03	13,033
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	3.39	В	61	1.279	0.47	5,765

TOTAL (ACRES): 4.57 TOTAL (CF): 18,798

IET CHANGE IN VOLUME TO MANAGE (CF): 10,516

Structural BMP Volume Credits:	No. Structural BMPs:	1	Start BMP Numbering at:	1
Other (attach calculations):				
Tree Planting Credit				

DP No.	BMP No.	BMP Name	MRC?	Discharge	Incrementa I BMP DA (acres)	Volume Routed to BMP (CF)	/ VAGAtatad	Infiltration	Infiltration Period (hrs)		Media Depth (ft)	Storage Volume (CF)	Infiltration Credit (CF)	ET Credit (CF)
001	1	Infiltration Basin		Off-Site	3.36	15,663	10,675	0.41	34	Yes	1.0	11,503	11,161	3,277

Totals: 11,161 3,277

INFILTRATION & ET CREDITS (CF): 14,438

NET CHANGE IN VOLUME TO MANAGE (CF): 10,516

TOTAL CREDITS (CF): 14,438

VOLUME REQUIREMENT SATISFIED

Rate Control

Project: The Westtown School - Oak Lane Project

Instructions General Volume	Rate	Quality
Precipitation Amounts:		
NOAA 2-Year 24-Hour Storm Event (in):	3.26	Alternative 2-Year 24-Hour Storm Event (in):
NOAA 10-Year 24-Hour Storm Event (in):	4.8	Alternative 10-Year 24-Hour Storm Event (in):
NOAA 50-Year 24-Hour Storm Event (in):	6.66	Alternative 50-Year 24-Hour Storm Event (in):
NOAA 100-Year 24-Hour Storm Event (in):	7.58	Alternative 100-Year 24-Hour Storm Event (in):

☑ Report Summary of Peak Rates Only

Attach model input and output data or other calculations to support the rates reported below.

	Ped	Peak Discharge Rates (cfs)								
	Pre-Construction	Post-Construction	Net Change							
2-Year Storm:	2.38	1.27	-1.11							
10-Year Storm:	8.96	3.28	-5.68							
50-Year Storm:	19.09	8.40	-10.69							
100-Year Storm:	24.73	12.51	-12.22							

Rate Control Satisfied
Rate Control Satisfied
Rate Control Satisfied
Rate Control Satisfied

Water Quality

Project: The Westtown School - Oak Lane Project

PRINT

Instructions General Volume **Rate** Quality

Pre-Construction Pollutant Loads:

Land Cover (from Volume Worksheet)	Land Cover for Water	Land Cover for Water Area		Runoff Volume	Pollutant Conc. (mg/L)			Pollutant Loads (lbs)		ls (lbs)
Land Cover (from Volume Worksheet)	Quality	(acres)	Group	Group (cf)		TP	TN	TSS	TP	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	0.19	В	2,066	65.0	0.29	2.05	8.39	0.04	0.26
Pervious as Meadow	Grassland/Herbaceous	4.68	В	6,154	48.8	0.22	2.30	18.75	0.08	0.88
Impervious as Meadow	Grassland/Herbaceous	0.05	В	62	48.8	0.22	2.30	0.19	0.00	0.01
	TOTAL (ACRES):	4.91				TC	OTALS:	27.33	0.12	1.16

Post-Construction Pollutant Loads (without BMPs):

Land Cover (from Valuma Markshoot)	Land Cover for Water	Area (acres)	Soil Group	Runoff Volume (cf)	Pollutant Conc. (mg/L)			Pollut	Pollutant Loads (lbs)		
Land Cover (from Volume Worksheet)	Quality				TSS	TP	TN	TSS	TP	TN	
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	1.19	В	13,033	65.0	0.29	2.05	52.90	0.24	1.67	
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Open Space	3.39	В	5,765	78.0	0.25	1.25	28.08	0.09	0.45	

TOTAL (ACRES): 4.57 TOTALS: 80.98 0.33 2.12

POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS):

53.65

0.20 0.

0.96

Characterize Undetained Areas (for Untreated Stormwater)

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)

Non-Structural BMP Water Quality Credits:

Pervious Undetained Area Credit

Other (attach calculations)

Structural BMP Water Quality Credits:

☑ Use default BMP Outflows and Median BMP Outflow Concentrations

DP No	ВМР	BMP Name	ARC?	BMP DA	Vol. Routed Inf.	Inf. & ET	Capture & Inf. & ET Buffer	Outflow	Outflow Conc. (mg/L)			Pollutant Loads (lbs)			
	DP No.	No.	o. Bivir Name		(acres)	to BMP (CF)	Credits (CF)	Credits (CF)	(CF)	TSS	TP	TN	TSS	TP	TN
	001	1	Infiltration Basin		3.36	15,663	14,438		1,225	10.00	0.24	0.96	0.76	0.02	0.07

POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS):

POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS):

NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS):

NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS):

POLLUTANT LOADS FROM SITE, PRE-CONSTRUCTION (LBS):

	133		
:	0.76	0.02	0.07
:	13.50	0.05	0.35
:			
:	14.27	0.07	0.43

0.12

TP

TN

WATER QUALITY REQUIREMENT SATISFIED

27.33

TSS

1.16

I certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.

Tyler E. Hill, PE

9/17/2023

Spreadsheet User Name

Date

UNT. TO EAST BRANCH CHESTER CREEK

General Information

Instructions Gen	veral Volume Rate Qu	ality	
Project Name:	The Westtown School - Oak Lane Proj	ect Application Type:	PAG-02 NOI
County:	Chester	Municipality:	Westtown Township
Project Type:	Other	New Project	O Minor / Major Amendment
Area: (In Watershed)	17.70 acres	Total Earth Disturba (In Watershed)	nce: 13.02 acres
No. of Post-Constr	uction Discharge Points: 1	Start DP Numbering	at: 002

Discharge Point (DP) No.	Drainage Area (DA) (acres)	Earth Disturbance in DA (acres)	Existing Impervious in DA (acres)	Proposed Impervious in DA (acres)	Receiving Waters	Ch. 93 Class	Structural BMP(s)
	, , , ,	(4.2.2.7)	(3.2.2.7)	(1222)			(-)
					Unt. to E. Branch Chester		
002	14.11	10.41	0.01	4.74	Creek	TSF, MF	Yes
Undetained					Unt. to E. Branch Chester		
Areas	3.59	2.61	0.01	0.00	Creek	TSF, MF	
Areas	3.59	2.61	0.01	0.00	Creek	TSF, MF	

Totals: 17.70 13.02 0.02 4.74

Volume Management

Project: The Westtown School - Oak Lane Project

Instructions General Volume Rate Quality									
2-Year / 24-Hour Storm Event (NOAA Atlas 14): 3.26 inches	Alternative 2-Year / 24-Hour Storm Event inches								
	Alternative Sour	ce:							
Pre-Construction Conditions: No. Rows: 4	from Meadow in	Good Condition	☑ Automa	itically Calcu	late CN, Ia, Runo	ff and Volume			
Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)			
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	0.01	В	98	0.041	3.03	88			
Pervious as Meadow	11.53	В	58	1.448	0.36	15,168			
Impervious as Meadow	0.00	В	58	1.448	0.36	3			
Pervious as Meadow	1.14	D	78	0.564	1.32	5,471			
TOTAL (ACRES):	12 68			-	TOTAL (CF):	20 730			

Post-Construction Conditions:

No. Rows:

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	4.74	В	98	0.041	3.03	52,121
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	7.13	В	61	1.279	0.47	12,130
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	1.14	D	80	0.500	1.45	6,014

TOTAL (ACRES): 13.02 TOTAL (CF): 70,265

IET CHANGE IN VOLUME TO MANAGE (CF):	49,535
--------------------------------------	--------

Non-Structural BMP Volume Credits:

Other	(attach	calcula	tions):

☐ Tree Planting Credit

Structural BMP Volume Credits:

No. Structural BMPs:

3

Start BMP Numbering at:

2

DP No.	BMP No.	BMP Name	MRC?	Discharge	Incrementa I BMP DA (acres)		Infiltration / Vegetated Area (SF)	Intiltration		_	Media Depth (ft)	Storage Volume (CF)	Infiltration Credit (CF)	ET Credit (CF)
002	2	Infiltration Bed		to BMP No. 4	2.22	24,426	75,725	2.32	12	No		23,035	24,426	
002	3	Infiltration Bed		to BMP No. 4	2.22	24,426	26,795	1.01	12	No		21,916	24,357	
002	4	Infiltration Basin		Off-Site	9.67	14,912	19,809	0.84	16	Yes	1.0	14,912	14,912	0

Totals: 63,695

INFILTRATION & ET CREDITS (CF): 63,695

NET CHANGE IN VOLUME TO MANAGE (CF): 49,535

TOTAL CREDITS (CF): 63,695

VOLUME REQUIREMENT SATISFIED

Rate Control

Project: The Westtown School - Oak Lane Project

Instructions General Volume	Rate	Quality
Precipitation Amounts:		
NOAA 2-Year 24-Hour Storm Event (in):	3.26	Alternative 2-Year 24-Hour Storm Event (in):
NOAA 10-Year 24-Hour Storm Event (in):	4.8	Alternative 10-Year 24-Hour Storm Event (in):
NOAA 50-Year 24-Hour Storm Event (in):	6.66	Alternative 50-Year 24-Hour Storm Event (in):
NOAA 100-Year 24-Hour Storm Event (in):	7.58	Alternative 100-Year 24-Hour Storm Event (in):

☑ Report Summary of Peak Rates Only

Attach model input and output data or other calculations to support the rates reported below.

	Ped	ak Discharge Rates (d	fs)		
	Pre-Construction				
2-Year Storm:	5.02	2.51	-2.51		
10-Year Storm:	19.34	7.23	-12.11		
50-Year Storm:	42.19	17.45	-24.74		
100-Year Storm:	54.74	26.78	-27.96		

Rate Control Satisfied
Rate Control Satisfied
Rate Control Satisfied
Rate Control Satisfied

Water Quality

Project: The Westtown School - Oak Lane Project

PRINT

Instructions General Volume **Rate** Quality

Pre-Construction Pollutant Loads:

Land Cover (from Volume Morkshoot)	Land Cover for Water	Area	Soil	Runoff Volume	Polluta	nt Conc.	(mg/L)	Pollutant Loads (lbs)		
Land Cover (from Volume Worksheet)	Quality	(acres)	Group	(cf)	TSS	TP	TN	TSS	TP	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	0.01	В	88	65.0	0.29	2.05	0.36	0.00	0.01
Pervious as Meadow	Grassland/Herbaceous	11.53	В	15,168	48.8	0.22	2.30	46.22	0.21	2.18
Impervious as Meadow	Grassland/Herbaceous	0.00	В	3	48.8	0.22	2.30	0.01	0.00	0.00
Pervious as Meadow	Grassland/Herbaceous	1.14	D	5,471	48.8	0.22	2.30	16.67	0.08	0.79
	12.68			•	TO	OTALS:	63.26	0.29	2.98	

TOTAL (ACRES): 12.68

Post-Construction Pollutant Loads (without BMPs):

Land Cover (from Volume Worksheet)	Land Cover for Water	Area	Soil	Volume	Polluta	nt Conc.	(mg/L)	Pollutant Loads (lbs)		
	Quality	(acres)	Group		TSS	TP	TN	TSS	TP	TN
Impervious Areas: Paved Parking Lots, Roofs, Driveways, Etc. (Excluding ROW)	Residential	4.74	В	52,121	65.0	0.29	2.05	211.55	0.94	6.67

Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Open Space	7.13	В	12,130	78.0	0.25	1.25	59.08	0.19	0.95
Open Space (Lawns, Parks, Golf Courses, Cemeteries, Etc.) - Good Condition (Grass Cover > 75%)	Open Space	1.14	D	6,014	78.0	0.25	1.25	29.29	0.09	0.47

TOTAL (ACRES): 13.02 TOTALS: 299.92 1.23 8.09

POLLUTANT LOAD REDUCTION REQUIREMENTS (LBS): 236.66 0.94

Characterize Undetained Areas (for Untreated Stormwater)

Land Cover	Area (acres)	Soil Group	CN	la (in)	Q Runoff (in)	Runoff Volume (cf)

Non-Structural BMP Water Quality Credits:

	Pervious	Undetained	Area	Credit
--	----------	------------	------	--------

	Other	/attach	calculations)	١
	Other	(attatii	calculations	,

Structural BMP Water Quality Credits:

☑ Use default BMP Outflows and Median BMP Outflow Concentrations

DP No.	ВМР	BMP Name	MRC?	BMP DA	Vol. Routed	Inf. & ET	Capture & Buffer	Outflow	Outflo	w Conc.	(mg/L)	Pollut	ant Load	ls (lbs)
DP NO.	No.	DIVIF Name	MR	(acres)	to BMP (CF)	Credits (CF)	Credits (CF)	(CF)	TSS	TP	TN	TSS	TP	TN
002	2	Infiltration Bed		2.22	24,426	24,426		0	-	-	-	-	-	-
002	3	Infiltration Bed		2.22	24,426	24,357		69	1	1	1	ı	ı	1
002	4	Infiltration Basin		9.74	14,912	14,912		0	10.00	0.24	0.96	0.00	0.00	0.00

5.11

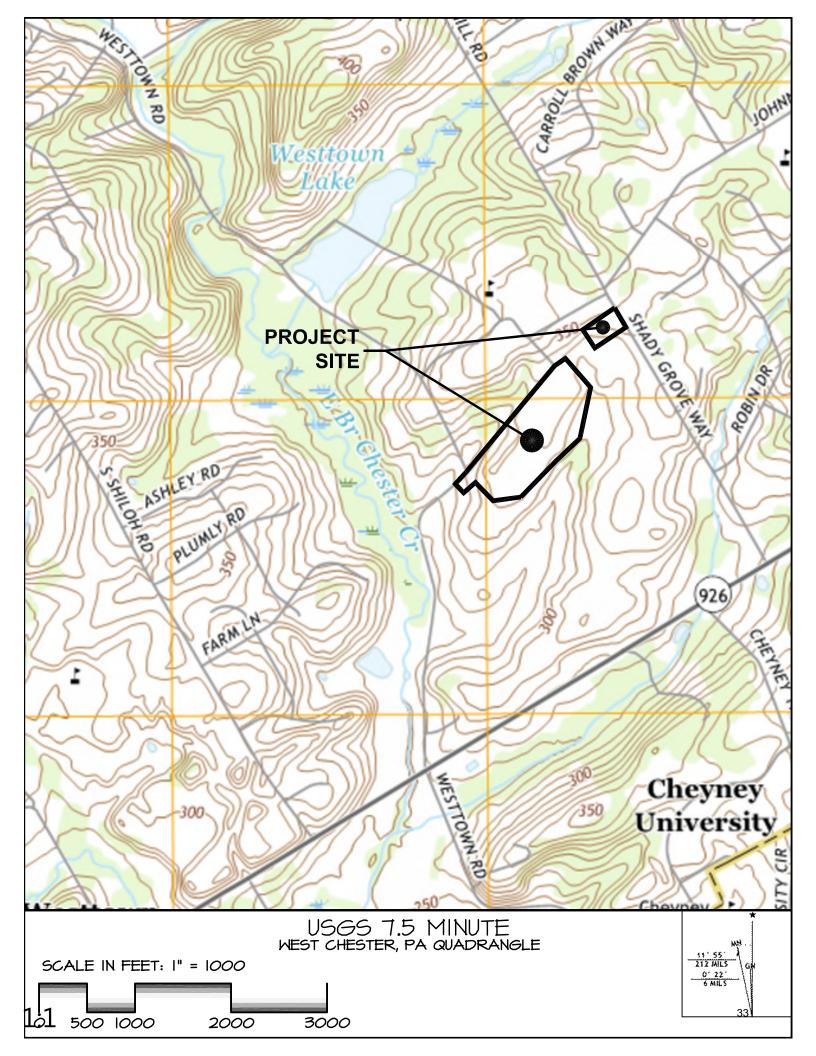
	TSS	TP	TN
POLLUTANT LOADS FROM STRUCTURAL BMP (TREATED) OUTFLOWS (LBS):	0.00	0.00	0.00
POLLUTANT LOADS FROM UNTREATED STORMWATER (LBS):	28.04	0.11	0.76
NON-STRUCTURAL BMP WATER QUALITY CREDITS (LBS):			
NET POLLUTANT LOADS FROM SITE, POST-CONSTRUCTION (LBS):	28.04	0.11	0.76
POLLUTANT LOADS FROM SITE, PRE-CONSTRUCTION (LBS):	63.26	0.29	2.98

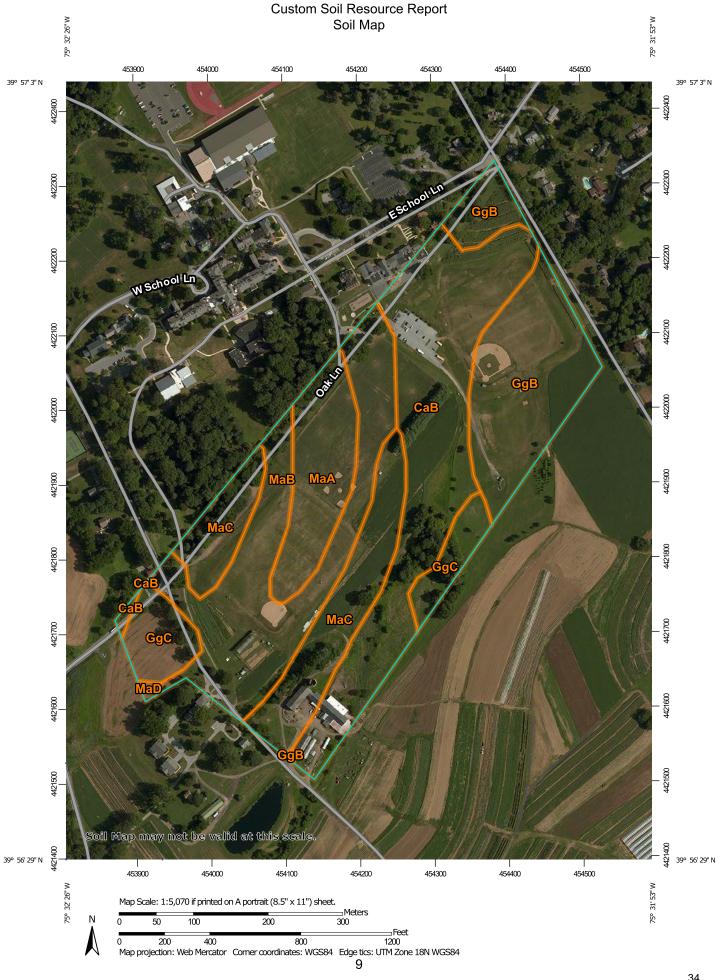
WATER QUALITY REQUIREMENT SATISFIED

CERTIFICATION

I certify under penalty of law and subject to the penalties of 18 Pa.C.S. § 4904 (relating to unsworn falsification to authorities) that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that the structure, function, and calculations contained in this spreadsheet have not been modified in comparison to the spreadsheet DEP has posted to its website or, if modifications were made, an explanation of the modifications made is attached to this spreadsheet.

Tyler E. Hill, PE


9/17/2023


Spreadsheet User Name

Date

APPENDIX C REFERENCE & SUPPORTING DOCUMENTS

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
СаВ	Califon loam, 3 to 8 percent slopes	16.5	28.4%
GgB	Glenelg silt loam, 3 to 8 percent slopes	10.4	17.9%
GgC	Glenelg silt loam, 8 to 15 percent slopes	4.0	6.9%
MaA	Manor loam, 0 to 3 percent slopes	5.5	9.4%
МаВ	Manor loam, 3 to 8 percent slopes	12.9	22.2%
MaC	Manor loam, 8 to 15 percent slopes	8.7	15.0%
MaD	Manor loam, 15 to 25 percent slopes	0.1	0.2%
Totals for Area of Interest		58.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

11 ₃₅

Job Number: 1091-001
Date: 10/25/2018

SOILS INFORMATION FACT SHEET

_						
NOIT	TOPSOIL	Fair	Fair	Fair	Fair	Poor
SOIL CONDITIONS FOR CONSTRUCTION	ROADFILL	Fair	Fair	Poor	Poor	Poor
IDITIONS FO	BUILDING SITE	Very Limited	Very Limited	Somewhat Limited	Somewhat Limited	Very Limited
SOILCON	SURFACE WATER MANAGEMENT	Somewhat Limited	Very Limited	Not Limited	Very Limited	Very Limited
	FROST ACTION	High	Moderate	Moderate	Moderate	Moderate
SUITABILITY	WINTER GRADING	Limited	Somewhat Limited	Somewhat Limited	Somewhat Limited	Somewhat Limited
SUITA	DEPTH TO BEDROCK (IN)	72 to 99	+08	72 to 99	72 to 99	59 to 100
SUITABI	DEPTH OF WATER TABLE (IN)	6 to 36	+08	+08	+08	+08
	ERODIBILITY (K)	0.32	78:0	0.28	0.28	0.28
	HYDRIC (INCLUSIONS)					
	HYDRO. SOIL GROUP	Q	В	В	В	В
SOIL	SLOPE, %	3 to 8	8 to 15	0 to 3	3 to 8	8 to 15
	TEXTURE	Loam	Silt Loam	Loam	Loam	Loam
	SYMBOL NAME	CaB Califon	GgC Glenelg	MaA Manor	MaB Manor	MaC

Job Number: 1091-001 Date: 10/25/2018

			SOIL LIMITATION	ONS & RESOLUTIONS	Date: 10/25/2018
SOIL	LIM	1ITATIONS	CHARACTERISTICS	RESOLUTIONS	COMMENTS
CaB GgC MaA MaB Mac	Cutbanks Cave	Excavations	The walls of excavations tend to cave in or slough	It is imperative that appropriate precautions be taken to safeguard workers during all trenching and excavation operations.	All applicable OSHA standards and regulations must be implemented at all times.
CaB (C/S) GgC (C) MaA (C) MaB (C) MaC (C)	Corrosive to Concrete/ Steel	Foundation and other infrastructural materials that may contact the soil	Weakening or dissolution of concrete or uncoated steel caused by soil-induced electrochemical or chemical action.	Suitable precautions should be taken to protect all underground pipes, conduits, and storage tanks from concrete and steel corrosion. If potential corrosive properties are encountered during construction, impacted utilities in that area shall be backfilled with processed aggregate to reduce the potential of corrosion from soil backfill.	Refer to the Geotechnical Report
GgC MaA MaB MaC	Erodibility	Grassed Waterways Terraces Slopes Stabilization Landscaping	Easily Erodible Rill and/or Gully Erosion	Excavation should occur during low-rainfall periods when possible Minimize duration of earth disturbance Immediately stabilize with erosion control matting, mulch, or sod. Avoid concentrating runoff in disturbed areas	See Erosion and Sediment Control Plan
СаВ	Depth to Saturated Zone/ Seasonal High Water Table	Buildings w/ basements Excavations Stormwater Facilities	High table Wetness Soil mottling	Suitable precautions should be taken if water is encountered Contractor is to utilize pumping techniques and other methods as recommended by a Geotechnical Engineer.	Contact Geotechnical Engineer if shallow groundwater is encountered
CaB GgC MaA MaB Mac	Frost Action	Winter Grading	Frost heaving or upward swelling of soil during freezing conditions.	Do not grade, fill, or backfill during periods of freezing temperatures. Proper precautions should be taken to prevent damage, especially to roadways.	
GgC	Hydric/ Hydric Inclusions	unless authorized by DEP and/or ACOE if wetlands	Wetlands Wetness	Delineate and Protect Wetlands Obtain all permits/authorizations Utilize pumping techniques where appropriate	See wetland delineation repot
CaB GgC MaA MaB MaC	Low Strength/ Landslide Prone	Structural Fill	Low strength soils are prone failure on steep slopes.	Precautions should be taken to prevent slope failures due to improper construction practices such as over-steepening and overloading of slopes, removal of lateral support, and failure to prevent saturation of slopes. Setbacks should comply with the standards contained in Chapter 16 unless it can be shown that proposed cuts and fills do not pose a hazard to public safety or to surface waters. Road fill/other structural fill material will likely need to be imported in areas where soils have low strength.	See geotechnical engineering report or consult the geotechnical professional on record
CaB GgC MaA MaB MaC	Slow Percolation	Stormwater Infiltration On-lot Sewage Facilities	Wetness Soil mottling Shallow groundwater	Soil testing should be performed if infiltration BMPs or on-lot sewage facilities are proposed. Ammend soils with compost and/or sand.	See geotechnical engineering report or consult the geotechnical professional on record See Appendix A of the PA Stormwater BMP Manual
GgC MaA MaB MaC	Piping		Formation of subsurface tunnels or pipelike cavities by water moving through the soil	Avoid concentrating runoff. Avoid infiltrating in areas with excessive infiltration rates. Install trench plugs, anti-seep collars, key trenches, etc.	See plans See geotechnical engineering report or consult the geotechnical professional on record
GgC MaA MaB MaC	Poor Source of Topsoil	Vegetative Growth/ Stabilization	Low Fertility Droughty or Wet High Acidity	Soil Testsing and appropriate supplementation. Soil amendment/restoration practices	See plan notes
CaB GgC GgC	Wetness	Site work/grading Fill operations	Slow percolation Soil Mottling Shallow groundwater	Concrete stabilization Undercut and replace with suitable material Provide positive drainage	See geotechnical report or consult geotechnical engineer on record

ORDINANCE APPENDIX C

RUNOFF COEFFICIENTS AND CURVE NUMBERS

TABLE C-1. RUNOFF CURVE NUMBERS

Source: Table 2-2a, Table 2-2b, and Table 2-2c from U. S. Department of Agriculture, Natural Resources Conservation Service, June 1986, <u>Urban Hydrology for Small Watersheds, Technical Release No. 55 (TR-55)</u>, Second Edition.

TABLE C-2. RATIONAL RUNOFF COEFFICIENTS

Source: Table F.2 from Delaware County Planning Department, December 2011, <u>Crum Creek Watershed Act 167 Stormwater Management Plan</u>.

TABLE C-3. MANNING'S 'n' VALUES

Source: Table 3-1 from United States Army Corps of Engineers, January 2010, HEC-RAS River Analysis System, Hydraulic Reference Manual, Version 4.1.

FIGURE C-1. REDEVELOPMENT PROJECTS RUNOFF CRITERIA ADJUSTMENT FOR PRE-DEVELOPMENT CONDITIONS

Source: Figure B-3 from the Delaware County Planning Department and Chester County Planning Commission, June 2002, <u>Act 167 Stormwater Management Plan Chester Creek Watershed.</u>

TABLE C-1. RUNOFF CURVE NUMBERS

(3 pages)

Source: Table 2-2a, Table 2-2b, and Table 2-2c from U. S. Department of Agriculture, Natural Resources Conservation Service, June 1986, *Urban Hydrology for Small Watersheds, Technical Release No. 55 (TR-55)*, Second Edition.

TABLE C-2. RATIONAL RUNOFF COEFFICIENTS

(1 page)

Source: Table F.2 from Delaware County Planning Department, December 2011, <u>Crum Creek Watershed Act 167 Stormwater Management Plan</u>.

TABLE C-3. MANNING'S 'n' VALUES

(3 pages)

Source: Table 3-1 from United States Army Corps of Engineers, January 2010, <u>HEC-RAS River Analysis System, Hydraulic Reference Manual</u>, Version 4.1.

Table 2-2a Runoff curve numbers for urban areas 1/

Cover description			Curve n hydrologi-	umbers for c soil group	
	Average percent			01	
Cover type and hydrologic condition	mpervious area ^{2/}	A	В	C	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) 3/:					
Poor condition (grass cover < 50%)	******	68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:		-			
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:			00	00	00
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)	*****	83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:		,	01	01	00
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier,		00		OO	00
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Jrban districts:		00	00	00	00
Commercial and business	85	89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:		01	00	01	00
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres		46	65	77	82
		10	00	11	02
Developing urban areas					
lewly graded areas					
(pervious areas only, no vegetation) 5/		77	86	91	94
lle lands (CN's are determined using cover types					
similar to those in table $2-2c$).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

 $^{^{5}}$ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

 Table 2-2b
 Runoff curve numbers for cultivated agricultural lands \mathcal{V}

	Cover description			Curve nun hydrologic s		
		Hydrologic		, 610 %	on Group	
Cover type	Treatment 2/	condition 3/	A	В	С	D
Fallow	Bare soil	_	77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
		Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+ CR	Poor	65	73	7 9	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	C	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast	_	Good	58	72	81	85
legumes or	C	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

 $^{^{\}rm I}$ Average runoff condition, and I_a =0.2S

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness.

Table 2-2c Runoff curve numbers for other agricultural lands 1/

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	A	В	С	D	
Pasture, grassland, or range—continuous	Poor	68	79	86	89	
forage for grazing. 2/	Fair	49	69	79	84	
	Good	39	61	74	80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78	
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83	
the major element. 3/	Fair	35	56	70	77	
	Good	30 4/	48	65	73	
Woods—grass combination (orchard	Poor	57	73	82	86	
or tree farm). 5/	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods, &	Poor	45	66	77	83	
	Fair	36	60	73	79	
	Good	30 4∕	55	70	77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.		59	74	82	86	

Average runoff condition, and $I_a = 0.2S$.

Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

Poor: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

 $^{^4}$ Actual curve number is less than 30; use CN = 30 for runoff computations.

 $^{^{5}}$ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

TABLE F-2 RATIONAL RUNOFF COEFFICIENTS

	HYDR	OLOGIC	SOIL (GROUP
LAND USE DESCRIPTION	A	В	С	D
Cultivated land: without conservation treatment	.49	.67	.81	.88
: with conservation treatment	.27	.43	.61	.67
Pasture or range land: poor condition	.38	.63	.78	.84
: good condition	*	.25	.51	.65
Meadow: good condition	*	*	.44	.61
Woods: thin stand, poor cover, no mulch	*	.34	.59	.70
: good cover	*	*	.45	.59
Open spaces, lawns, parks, golf courses, cemeteries				
Good condition: grass cover on 75% or more of	*	.25	.51	.65
the area				
Fair condition: grass cover on 50% to 75% of	*	.45	.63	.74
the area				
Commercial and business areas (85% impervious)	.84	.90	.93	.96
Industrial districts (72% impervious)	.67	.81	.88	.92
Residential:				
Average lot size Average % impervious				
1/8 acre or less 65	.59	.76	.86	.90
1/4 acre 38	.25	.49	.67	.78
1/3 acre 30	*	.49	.67	.78
1/2 acre 25	*	.45	.65	.76
1 acre 20	*	.41	.63	.74
Paved parking lots, roofs, driveways, etc.	.99	.99	.99	.99
Streets and roads:				
Paved with curbs and storm sewers	.99	.99	.99	.99
Gravel	.57	.76	.84	.88
Dirt	.49	.69	.80	.84

Notes: Values are based on SCS definitions and are average values.

Values indicated by ---* should be determined by the design engineer based on site characteristics.

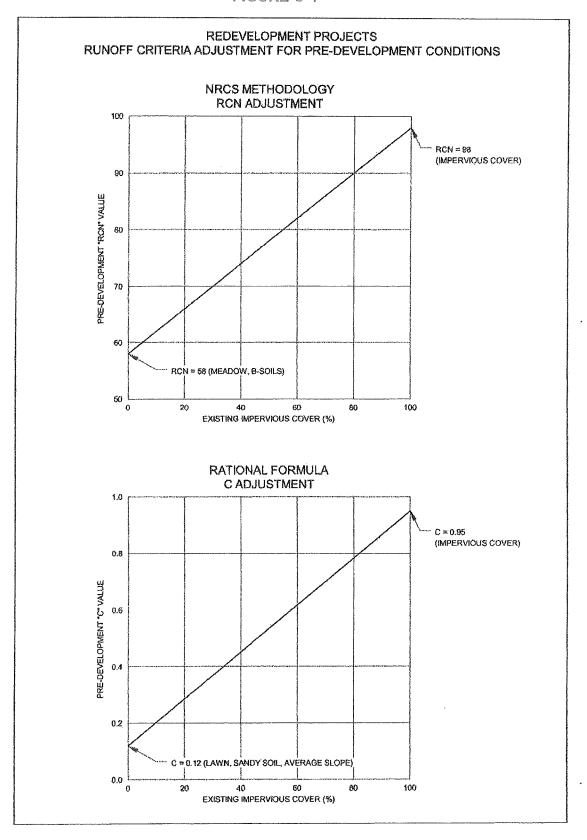
Source: New Jersey Department of Environmental Protection, Technical Manual for Stream Encroachment, August 1984

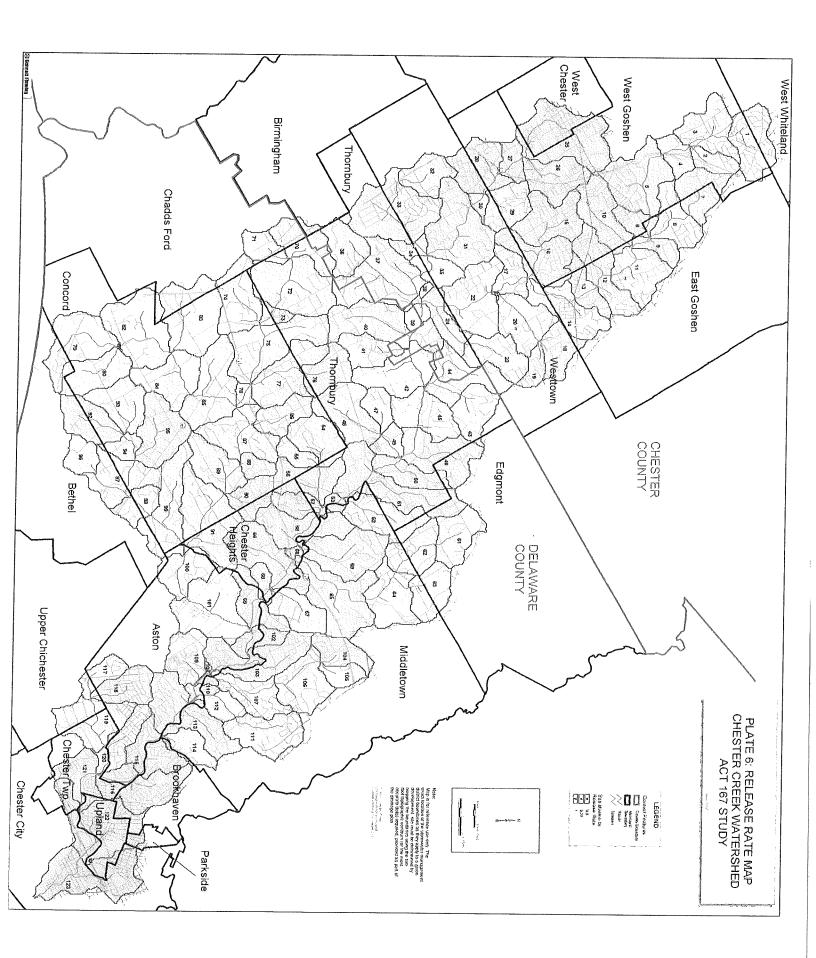
Table 3-1 Manning's 'n' Values

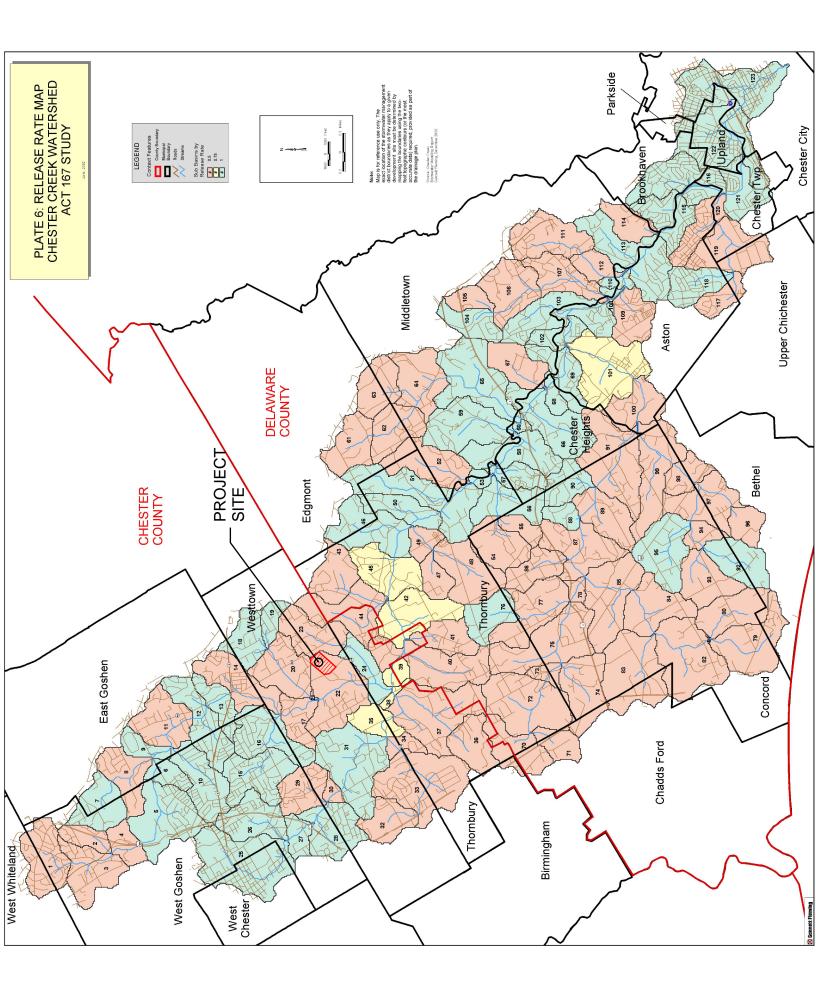
		Type of Channel and Description	Minimum	Normal	Maximum
A. No	atural Str	eams .			
	ain Chan				
a	. Clean,	straight, full, no rifts or deep pools			
b	. Same a	s above, but more stones and weeds	0.025	0.030	0.033
c	. Clean,	winding, some pools and shoals	0.030	0.035	0.040
d	. Same a	s above, but some weeds and stones	0.033	0.040	0.045
e.	. Same as	s above, lower stages, more ineffective slopes and	0.035	0.045	0.050
se	ections	, o , , , , , , , , , , , , , , , , , ,	0.040	0.048	0.055
f.	Same as	"d" but more stones			
g.	. Sluggis	n reaches, weedy, deep pools	0.045	0.050	0.060
ĥ.	. Very we	edy reaches, deep pools, or floodways with heavy stands	0.050	0.070	0.080
of	f timber a	and brush	0.070	0.100	0.150
2. Floo	od Plain:				
a.	Pastu	re no brush			
	1.	Short grass	0.025	0.030	0.035
	2.	High grass	0.030	0.035	0.050
b.	Cultiv	ated areas			
•	1.	No crop	0.020	0.030	0.040
	2.	Mature row crops	0.025	0.035	0.045
	3.	Mature field crops	0.030	0.040	0.050
c.	Brush	mature field crops	•		
٠.	1,	Scattered brush, heavy weeds	0.035	0.050	0.070
	2.	Light brush and trees, in winter	0.035	0.050	0.060
	3.	Light brush and trees, in summer	0.040	0.060	0.080
	4.	Medium to dense brush, in winter	0.045	0.070	0.110
	5.	Medium to dense brush, in summer	0.070	0.100	0.160
d.	Trees	Wiedlan to dense brush, in summer			******
u,	1.	Cleared land with tree stumps, no sprouts	0.030	0.040	0.050
	2.	Same as above, but heavy sprouts	0.050	0.060	0.080
	3.	Heavy stand of timber, few down trees, little	0.080	0.100	0.120
	J.	undergrowth, flow below branches			0.120
	4.	Same as above, but with flow into branches	0.100	0.120	0.160
	5.	Dense willows, summer, straight			0,100
	J.	Dense whows, summer, straight	0.110	0.150	0.200
Mou	ntain Sti	eams, no vegetation in channel, banks usually steep,			
with t	rees and	brush on banks submerged			
a.	Bottom	gravels, cobbles, and few boulders			
b.	Bottom	cobbles with large boulders	0.030	0.040	0.050
٠.	Pottolii	. cooles with large bounders	0.040	0.050	0.070

Table 3-1 (Continued) Manning's 'n' Values

Type of Channel and Description	Minimum	Normal	Maximum
B. Lined or Built-Up Channels			
1. Concrete			
a. Trowel finish	0.011	0.013	0.015
b. Float Finish	0.013	0.015	0.015
c. Finished, with gravel bottom	0.015	0.017	0.010
d. Unfinished	0.013	0.017	0.020
e. Gunite, good section	0.014	0.017	0.020
f. Gunite, wavy section	0.018	0.019	0.023
g. On good excavated rock	0.017	0.022	0,025
h. On irregular excavated rock	0.022	0.020	
0	0.022	0.027	
. Concrete bottom float finished with sides of:			
a. Dressed stone in mortar	0.015	0.017	0.020
b. Random stone in mortar	0.017	0.020	0.024
c. Cement rubble masonry, plastered	0.017	0.020	0.024
d. Cement rubble masonry	0.020	0.025	0.024
e. Dry rubble on riprap	0.020	0.023	0.035
	0.020	0.030	0.033
. Gravel bottom with sides of:			
a. Formed concrete	0.017	0.020	0.025
b. Random stone in mortar	0.020	0.023	0.025
c. Dry rubble or riprap	0.023	0.023	0.026
• •	0.023	0.033	0.030
. Brick			
a. Glazed	0.011	0.013	0.015
b. In cement mortar	0.012	0.015	0.013
	VIV12	0.015	0.016
Metal			
a. Smooth steel surfaces	0.011	0.012	0.014
b. Corrugated metal	0.021	0.025	0.014
			0.050
Asphalt			
a. Smooth	0.013	0.013	
b. Rough	0.016	0.016	
Vegetal lining	0.030		0.500


Table 3-1 (Continued) Manning's 'n' Values


Type of Channel and Description	Minimum	Normal	Maximum
C. Excavated or Dredged Channels			
1. Earth, straight and uniform			
a. Clean, recently completed	0.016	0.018	0.020
b. Clean, after weathering	0.018	0.022	0.025
c. Gravel, uniform section, clean	0.022	0.025	0.030
d. With short grass, few weeds	0.022	0.027	0.033
2. Earth, winding and sluggish			
a. No vegetation	0.023	0.025	0.030
b. Grass, some weeds	0.025	0.030	0.033
c. Dense weeds or aquatic plants in deep channels	0.030	0.035	0.040
d. Earth bottom and rubble side	0.028	0.030	0.035
e. Stony bottom and weedy banks	0.025	0.035	0.040
f. Cobble bottom and clean sides	0.030	0.040	0.050
. Dragline-excavated or dredged			
a. No vegetation	0.025	0.028	0.033
b. Light brush on banks	0.035	0.050	0.060
. Rock cuts			
a. Smooth and uniform	0.025	0.035	0.040
b. Jagged and irregular	0.035	0.040	0.050
Channels not maintained, weeds and brush			
a. Clean bottom, brush on sides	0.040	0.050	0.080
b. Same as above, highest stage of flow	0.045	0.070	0.110
c. Dense weeds, high as flow depth	0.050	0.080	0.110
d. Dense brush, high stage	0.080	0.100	0.120


Other sources that include pictures of selected streams as a guide to n value determination are available (Fasken, 1963; Barnes, 1967; and Hicks and Mason, 1991). In general, these references provide color photos with tables of calibrated n values for a range of flows.

Although there are many factors that affect the selection of the n value for the channel, some of the most important factors are the type and size of materials that compose the bed and banks of a channel, and the shape of the channel. Cowan (1956) developed a procedure for estimating the effects of these factors to determine the value of Manning's n of a channel. In Cowan's procedure, the value of n is computed by the following equation:

FIGURE C-1

NOAA Atlas 14, Volume 2, Version 3 Location name: West Chester, Pennsylvania, USA* Latitude: 39.9456°, Longitude: -75.5371° Elevation: 319.37 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PD	S-based p	oint prec	ipitation f	requency	estimates	with 90%	confiden	ce interv	als (in inc	hes) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.353 (0.323-0.385)	0.421 (0.386-0.459)	0.492 (0.450-0.537)	0.542 (0.495-0.591)	0.600 (0.546-0.655)	0.640 (0.578-0.699)	0.679 (0.611-0.742)	0.712 (0.637-0.781)	0.750 (0.665-0.825)	0.778 (0.684-0.860
10-min	0.563 (0.517-0.615)	0.673 (0.617-0.734)	0.788 (0.720-0.859)	0.866 (0.791-0.946)	0.957 (0.870-1.04)	1.02 (0.921-1.11)	1.08 (0.971-1.18)	1.13 (1.01-1.24)	1.19 (1.05-1.31)	1.23 (1.08-1.36)
15-min	0.704 (0.646-0.769)	0.846 (0.775-0.923)	0.996 (0.911-1.09)	1.10 (1.00-1.20)	1.21 (1.10-1.32)	1.29 (1.17-1.41)	1.36 (1.23-1.49)	1.42 (1.27-1.56)	1.49 (1.32-1.64)	1.54 (1.35-1.70)
30-min	0.966 (0.885-1.06)	1.17 (1.07-1.27)	1.42 (1.30-1.54)	1.59 (1.45-1.73)	1.80 (1.63-1.96)	1.94 (1.76-2.12)	2.09 (1.88-2.28)	2.22 (1.98-2.43)	2.38 (2.11-2.62)	2.49 (2.19-2.75)
60-min	1.20 (1.10-1.32)	1.47 (1.34-1.60)	1.82 (1.66-1.98)	2.07 (1.89-2.26)	2.39 (2.17-2.61)	2.63 (2.38-2.88)	2.88 (2.59-3.15)	3.11 (2.78-3.41)	3.41 (3.02-3.75)	3.64 (3.20-4.02)
2-hr	1.44 (1.31-1.59)	1.75 (1.59-1.93)	2.17 (1.97-2.40)	2.50 (2.26-2.76)	2.93 (2.63-3.22)	3.27 (2.92-3.60)	3.60 (3.20-3.97)	3.94 (3.47-4.35)	4.39 (3.83-4.86)	4.74 (4.09-5.27)
3-hr	1.56 (1.42-1.73)	1.90 (1.73-2.09)	2.37 (2.15-2.61)	2.73 (2.47-3.01)	3.20 (2.88-3.53)	3.58 (3.20-3.94)	3.96 (3.52-4.36)	4.34 (3.82-4.79)	4.86 (4.22-5.38)	5.25 (4.51-5.83)
6-hr	1.93 (1.75-2.14)	2.33 (2.12-2.58)	2.90 (2.63-3.21)	3.36 (3.03-3.71)	3.99 (3.58-4.41)	4.51 (4.01-4.97)	5.05 (4.45-5.57)	5.61 (4.89-6.19)	6.39 (5.48-7.09)	7.01 (5.93-7.82)
12-hr	2.35 (2.13-2.62)	2.83 (2.57-3.16)	3.55 (3.21-3.95)	4.14 (3.73-4.60)	4.99 (4.45-5.54)	5.71 (5.05-6.33)	6.48 (5.66-7.19)	7.32 (6.30-8.14)	8.53 (7.19-9.51)	9.53 (7.89-10.7)
24-hr	2.71 (2.49-2.96)	3.26 (3.00-3.56)	4.10 (3.76-4.48)	4.80 (4.39-5.23)	5.81 (5.29-6.33)	6.66 (6.03-7.24)	7.58 (6.82-8.23)	8.57 (7.67-9.30)	10.0 (8.87-10.9)	11.2 (9.85-12.2)
2-day	3.13 (2.87-3.43)	3.78 (3.47-4.14)	4.76 (4.36-5.20)	5.55 (5.08-6.07)	6.69 (6.09-7.31)	7.63 (6.92-8.33)	8.64 (7.79-9.42)	9.71 (8.70-10.6)	11.3 (9.99-12.3)	12.5 (11.0-13.7)
3-day	3.30 (3.03-3.62)	3.98 (3.66-4.36)	5.00 (4.59-5.46)	5.83 (5.33-6.37)	7.00 (6.38-7.65)	7.98 (7.24-8.70)	9.02 (8.14-9.83)	10.1 (9.08-11.0)	11.7 (10.4-12.8)	13.0 (11.5-14.2)
4-day	3.47 (3.19-3.80)	4.19 (3.85-4.58)	5.24 (4.81-5.73)	6.10 (5.59-6.66)	7.32 (6.67-7.99)	8.33 (7.56-9.08)	9.40 (8.49-10.2)	10.5 (9.46-11.5)	12.2 (10.8-13.3)	13.5 (11.9-14.7)
7-day	4.06 (3.77-4.41)	4.87 (4.51-5.29)	6.03 (5.58-6.55)	6.98 (6.45-7.57)	8.34 (7.68-9.04)	9.47 (8.67-10.2)	10.7 (9.72-11.5)	12.0 (10.8-12.9)	13.8 (12.4-14.9)	15.3 (13.6-16.6)
10-day	4.62 (4.30-4.98)	5.52 (5.14-5.95)	6.73 (6.26-7.26)	7.71 (7.16-8.31)	9.08 (8.40-9.77)	10.2 (9.40-11.0)	11.3 (10.4-12.2)	12.5 (11.4-13.5)	14.2 (12.9-15.3)	15.6 (14.0-16.8)
20-day	6.24 (5.84-6.69)	7.41 (6.94-7.93)	8.84 (8.27-9.47)	9.97 (9.31-10.7)	11.5 (10.7-12.3)	12.7 (11.8-13.6)	13.9 (12.9-14.9)	15.1 (13.9-16.2)	16.8 (15.4-18.0)	18.0 (16.4-19.4)
30-day	7.77 (7.32-8.24)	9.16 (8.63-9.72)	10.7 (10.1-11.3)	11.9 (11.2-12.6)	13.4 (12.6-14.3)	14.6 (13.7-15.5)	15.8 (14.8-16.8)	17.0 (15.8-18.0)	18.5 (17.1-19.6)	19.6 (18.1-20.9)
45-day	9.86 (9.35-10.4)	11.6 (11.0-12.2)	13.3 (12.6-14.1)	14.6 (13.9-15.5)	16.3 (15.4-17.2)	17.6 (16.6-18.5)	18.7 (17.7-19.8)	19.8 (18.7-21.0)	21.2 (19.9-22.4)	22.2 (20.8-23.5)
60-day	11.8 (11.2-12.4)	13.8 (13.2-14.6)	15.8 (15.0-16.6)	17.3 (16.4-18.2)	19.1 (18.1-20.1)	20.4 (19.4-21.5)	21.7 (20.5-22.8)	22.8 (21.6-24.0)	24.2 (22.9-25.5)	25.2 (23.8-26.6)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

NOAA Atlas 14, Volume 2, Version 3 Location name: West Chester, Pennsylvania, USA* Latitude: 39.9456°, Longitude: -75.5371° Elevation: 319.37 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

		rr tabulai								
PDS-k	pased poi	nt precipit	ation freq					intervals	(in inche	s/hour) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.24 (3.88-4.62)	5.05 (4.63-5.51)	5.90 (5.40-6.44)	6.50 (5.94-7.09)	7.20 (6.55-7.86)	7.68 (6.94-8.39)	8.15 (7.33-8.90)	8.54 (7.64-9.37)	9.00 (7.98-9.90)	9.34 (8.21-10.3)
10-min	3.38 (3.10-3.69)	4.04 (3.70-4.40)	4.73 (4.32-5.15)	5.20 (4.75-5.68)	5.74 (5.22-6.26)	6.11 (5.53-6.68)	6.47 (5.83-7.08)	6.77 (6.06-7.43)	7.12 (6.31-7.84)	7.35 (6.46-8.13)
15-min	2.82 (2.58-3.08)	3.38 (3.10-3.69)	3.98 (3.64-4.35)	4.38 (4.00-4.78)	4.85 (4.41-5.29)	5.16 (4.66-5.64)	5.46 (4.91-5.96)	5.70 (5.10-6.25)	5.97 (5.29-6.57)	6.15 (5.41-6.80)
30-min	1.93 (1.77-2.11)	2.34 (2.14-2.55)	2.83 (2.59-3.09)	3.17 (2.90-3.47)	3.59 (3.27-3.92)	3.89 (3.51-4.24)	4.18 (3.76-4.57)	4.43 (3.97-4.86)	4.75 (4.21-5.23)	4.98 (4.38-5.51)
60-min	1.20 (1.10-1.32)	1.47 (1.34-1.60)	1.82 (1.66-1.98)	2.07 (1.89-2.26)	2.39 (2.17-2.61)	2.63 (2.38-2.88)	2.88 (2.59-3.15)	3.11 (2.78-3.41)	3.41 (3.02-3.75)	3.64 (3.20-4.02)
2-hr	0.719 (0.652-0.792)	0.874 (0.794-0.964)	1.09 (0.986-1.20)	1.25 (1.13-1.38)	1.47 (1.32-1.61)	1.63 (1.46-1.80)	1.80 (1.60-1.99)	1.97 (1.74-2.17)	2.20 (1.91-2.43)	2.37 (2.04-2.63)
3-hr	0.521 (0.474-0.575)	0.632 (0.575-0.697)	0.789 (0.716-0.869)	0.908 (0.822-1.00)	1.07 (0.959-1.17)	1.19 (1.07-1.31)	1.32 (1.17-1.45)	1.45 (1.27-1.60)	1.62 (1.40-1.79)	1.75 (1.50-1.94)
6-hr	0.322 (0.293-0.357)	0.389 (0.354-0.431)	0.484 (0.439-0.536)	0.560 (0.507-0.620)	0.667 (0.598-0.736)	0.752 (0.670-0.830)	0.843 (0.743-0.930)	0.937 (0.817-1.03)	1.07 (0.915-1.18)	1.17 (0.990-1.31)
12-hr	0.195 (0.177-0.218)	0.235 (0.213-0.262)	0.294 (0.267-0.328)	0.343 (0.309-0.382)	0.415 (0.370-0.460)	0.474 (0.419-0.525)	0.538 (0.470-0.597)	0.607 (0.523-0.675)	0.708 (0.597-0.789)	0.791 (0.655-0.885)
24-hr	0.113 (0.104-0.123)	0.136 (0.125-0.149)	0.171 (0.157-0.187)	0.200 (0.183-0.218)	0.242 (0.220-0.264)	0.277 (0.251-0.302)	0.316 (0.284-0.343)	0.357 (0.319-0.388)	0.418 (0.370-0.453)	0.468 (0.410-0.508)
2-day	0.065 (0.060-0.071)	0.079 (0.072-0.086)	0.099 (0.091-0.108)	0.116 (0.106-0.127)	0.139 (0.127-0.152)	0.159 (0.144-0.173)	0.180 (0.162-0.196)	0.202 (0.181-0.221)	0.234 (0.208-0.256)	0.261 (0.230-0.284)
3-day	0.046 (0.042-0.050)	0.055 (0.051-0.061)	0.069 (0.064-0.076)	0.081 (0.074-0.088)	0.097 (0.089-0.106)	0.111 (0.101-0.121)	0.125 (0.113-0.137)	0.141 (0.126-0.153)	0.163 (0.145-0.177)	0.181 (0.159-0.197)
4-day	0.036 (0.033-0.040)	0.044 (0.040-0.048)	0.055 (0.050-0.060)	0.064 (0.058-0.069)	0.076 (0.070-0.083)	0.087 (0.079-0.095)	0.098 (0.088-0.107)	0.110 (0.099-0.120)	0.127 (0.113-0.138)	0.141 (0.124-0.153)
7-day	0.024 (0.022-0.026)	0.029 (0.027-0.031)	0.036 (0.033-0.039)	0.042 (0.038-0.045)	0.050 (0.046-0.054)	0.056 (0.052-0.061)	0.064 (0.058-0.069)	0.071 (0.064-0.077)	0.082 (0.074-0.089)	0.091 (0.081-0.099)
10-day	0.019 (0.018-0.021)	0.023 (0.021-0.025)	0.028 (0.026-0.030)	0.032 (0.030-0.035)	0.038 (0.035-0.041)	0.042 (0.039-0.046)	0.047 (0.043-0.051)	0.052 (0.048-0.056)	0.059 (0.054-0.064)	0.065 (0.058-0.070)
20-day	0.013 (0.012-0.014)	0.015 (0.014-0.017)	0.018 (0.017-0.020)	0.021 (0.019-0.022)	0.024 (0.022-0.026)	0.026 (0.025-0.028)	0.029 (0.027-0.031)	0.032 (0.029-0.034)	0.035 (0.032-0.037)	0.038 (0.034-0.040)
30-day	0.011 (0.010-0.011)	0.013 (0.012-0.013)	0.015 (0.014-0.016)	0.016 (0.016-0.017)	0.019 (0.018-0.020)	0.020 (0.019-0.022)	0.022 (0.020-0.023)	0.024 (0.022-0.025)	0.026 (0.024-0.027)	0.027 (0.025-0.029)
45-day	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.012 (0.012-0.013)	0.014 (0.013-0.014)	0.015 (0.014-0.016)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.018 (0.017-0.019)	0.020 (0.018-0.021)	0.021 (0.019-0.022)
60-day	0.008 (0.008-0.009)	0.010 (0.009-0.010)	0.011 (0.010-0.012)	0.012 (0.011-0.013)	0.013 (0.013-0.014)	0.014 (0.013-0.015)	0.015 (0.014-0.016)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.018 (0.016-0.018)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

APPENDIX D SUPPORTING VOLUME CALCULATIONS (EAST BRANCH CHESTER CREEK)

Worksheet 4. Change in Runoff Volume for 2-YR Storm Event

East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project

Drainage Area East Branch Chester Creek

2-Year Rainfall: 3.26 in

Existing Conditions:

							Q	Runoff
	Soil	Area	Area			la	Runoff ¹	Volume ²
Cover Type/Condition	Type	(sf)	(ac)	CN	S	(0.2*S)	(in)	(ft ³)
Paved/Impervious Areas	В	6,143	0.141	98	0.20	0.04	3.03	1,550
Meadow	В	203,696	4.676	58	7.24	1.45	0.36	6,154
40% Impervious Area as Meadow	В	4095	0.094	58	7.24	1.45	0.36	124
TOTAL:		213,934	4.911				3.75	7,828

Developed Conditions:

							Q	Runoff
	Soil	Area	Area			la	Runoff ¹	Volume ²
Cover Type/Condition	Type	(sf)	(ac)	CN	S	(0.2*S)	(in)	(ft ³)
Paved/Impervious Areas	В	51,664	1.186	98	0.20	0.04	3.03	13,033
Lawn (Good condition)	В	147,588	3.388	61	6.39	1.28	0.47	5,765
TOTAL:		199,252	4.574		·		3.50	18,798

2-Year Volume Increase (ft ³):	10,971

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = $Q = (P-0.2S)^2 / (P+0.8S)$ where P = 2-Year Rainfall (in) S = (1000 / CN) - 102. Runoff Volume (CF) = $Q \times Area \times 1/12$ Q = Runoff (in) Area = Land use area (sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

BMP Volume Calculation Worksheet

PROJECT: The Westtown School - Oak Lane Project

2-Year Rainfall: 3.26 in

Drainage Area Name: Infiltration BMP 1

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn (Good condition)	В	99734	2.29	61	6.39	1.28	0.47	3,896
Paved/Impervious Areas	В	46644	1.07	98	0.20	0.04	3.03	11,767
TOTAL ONSITE:		146378	3.36					15,663
Undisturbed Area								
Lawn (Good condition)	В	63893	1.47	61	6.39	1.28	0.47	2,496
Paved/Impervious Areas	В	6916	0.16	98	0.20	0.04	3.03	1,745
TOTAL:		217187	4.99					19,903

1. Runoff (in) = $Q = (P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S=(1000 / CN) - 10

2. Runoff Volume (CF) = $Q \times Area \times 1/12$

Q=Runoff (in)

Area = Land use area (sq. ft)

Infiltration BMP 1 Calculations

Infiltration Volume

Inf Rate: 0.41 in/hr
Inf Area: 10,675 sf

Storage Volume = 11,503 cf at elev: 289.50

Infiltration Volume = Inf. Rate x Inf Area X Inf Period

= 0.41 in/hr x 10,675 sf x 2 hr x (1ft/12in)

= 724 CF

Total Inf. Volume¹ = Storage Volume + Infiltration Volume

= 12,227 cf at elev: 289.5

Volume Captured = 15,663 cf

Infiltration Credit = 11,161 cf²

ET Credit = 3277 cf^2

Total Credits 14,438

	Infiltration Rate
Test Pit	(in/hr)
TP-14A	0.20
TP-14B	1.00
TP-15A*	0.00
TP-15B*	0.00
TP-16A	2.70
TP-16B*	6.00
Geomean	0.81
Safety Factor	2.00
Adjusted Rate	0.41

*The highest and lowest recorded rates were removed from the calculation.

Loading Ratios

Total Drainage Area = 217,187 sf
Impervious Area = 53,560 sf
Infiltration Area = 10,675 sf
Impervious Loading Ratio = 5.0:1

Overall Loading Ratio = 5.0.1

20.3:1

Dewatering Time (After Rainfall Event)

T= Infiltration Volume/ (Inf. Rate/12 x Inf. Area)

= 33.8 hrs

¹ For dewatering calculation analysis

² See PADEP PCSM Volume Spreadsheet

UNT. TO EAST BRANCH CHESTER CREEK

Worksheet 4. Change in Runoff Volume for 2-YR Storm Event

UNT to East Branch Chester Creek

PROJECT: The Westtown School - Oak Lane Project

Drainage AreaUnt. to East Branch Chester Creek

2-Year Rainfall: 3.26 in

Existing Conditions:

							Q	Runoff
	Soil	Area	Area			la	Runoff ¹	Volume ²
Cover Type/Condition	Туре	(sf)	(ac)	CN	S	(0.2*S)	(in)	(ft ³)
Paved/Impervious Areas	В	263	0.006	98	0.20	0.04	3.03	66
Meadow	В	502,049	11.525	58	7.24	1.45	0.36	15,169
40% Impervious Area as Meadow	В	175	0.004	58	7.24	1.45	0.36	5
Meadow	D	49,830	1.144	78	2.82	0.56	1.32	5,471
TOTAL:		552,317	12.679				3.75	20,711

Developed Conditions:

							Q	Runoff
	Soil	Area	Area			la	Runoff ¹	Volume ²
Cover Type/Condition	Туре	(sf)	(ac)	CN	S	(0.2*S)	(in)	(ft ³)
Paved/Impervious Areas	В	206,620	4.743	98	0.20	0.04	3.03	52,125
Lawn (Good condition)	В	310,539	7.129	61	6.39	1.28	0.47	12,130
Lawn (Good condition)	D	49,830	1.144	80	2.50	0.50	1.45	6,014
TOTAL:		566,989	13.016				4.94	70,268

2-Year Volume Increase (ft ³):	49,557

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = $Q = (P-0.2S)^2 / (P+0.8S)$ where P = 2-Year Rainfall (in) S = (1000 / CN) - 10

2. Runoff Volume (CF) = $Q \times Area \times 1/12$ Q = Runoff (in) Area = Land use area (sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

BMP Volume Calculation Worksheet

PROJECT: The Westtown School - Oak Lane Project

2-Year Rainfall: 3.26 in

Drainage Area Name: Infiltration Bed - BMP 2

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В	96824	2.22	98	0.20	0.04	3.03	24,426
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Lawn (Good condition)	D			80	2.50	0.50	1.45	0
TOTAL ONSITE:		96824	2.22					24,426

Drainage Area Name: Infiltration Bed - BMP 3

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В	96824	2.22	98	0.20	0.04	3.03	24,426
Lawn (Good condition)	В			61	6.39	1.28	0.47	0
Lawn (Good condition)	D			80	2.50	0.50	1.45	0
TOTAL ONSITE:		96824	2.22				·	24,426
			Val	uma Infiltra	tad / fram D	LD DCCN4 C*	roadsboot)	24 257

Volume Infiltrated (from DEP PCSM Spreadsheet) 24,357

Overflow volume to BMP 4 69

1. Runoff (in) = Q = $(P-0.2S)^2$ / (P+0.8S) where P = 2-Year Rainfall (in) S=(1000 / CN) - 10

BMP Volume Calculation Worksheet

PROJECT: The Westtown School - Oak Lane Project

2-Year Rainfall: 3.26 i

Drainage Area Name: Infiltration Basin - BMP 4

Cover Type/Condition Disturbed Area	Soil Type	Area (sf)	Area (ac)	CN	S	la ((0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Paved/Impervious Areas	В	12972	0.30	98	0.20	0.04	3.03	3,272
Lawn (Good condition)	В	222976	5.12	61	6.39	1.28	0.47	8,710
Lawn (Good condition)	D	23706	0.54	80	2.50	0.50	1.45	2,861
TOTAL ONSITE:		259654	5.96					14,843
					Addition	nal Volume f	rom BMP 3	69
					,	Volume Rou	ted to BMP	14,912
Undisturbed Area								
Paved/Impervious Areas	В			98	0.20	0.04	3.03	0
Lawn (Good condition)	В	121339	2.79	61	6.39	1.28	0.47	4,740
Lawn (Good condition)	D	40248	0.92	80	2.50	0.50	1.45	4.857

9.67

1. Runoff (in) = $Q = (P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S=(1000 / CN) - 10

2. Runoff Volume (CF) = Q x Area x 1/12

TOTAL:

Q=Runoff (in)

Area = Land use area (sq. ft)

421241

S=(1000 / CN) - 10

2. Runoff Volume (CF) = $Q \times Area \times 1/12$

Q=Runoff (in)

Area = Land use area (sq. ft)

24,440

Infiltration Bed - BMP 2 Calculations

Subsurface Infiltration Bed Volume

Inf Rate: 2.32 in/hr
Inf Area: 75,725 sf

Storage Volume = 23,035 cf at elev: 316.75

Infiltration Volume = Inf. Rate x Inf Area X Inf Period

= 2.32 in/hr x 75,725 sf x 2 hr x (1ft/12in)

= 29328 CF

Total Inf. Volume = Storage Volume + Infiltration Volume

= 52,363 cf at elev: 316.75

Volume Captured = 24,426 cf

Volume Infiltrated = 24,426 cf

Test Pit (in/hr)
TP-1A 1.80
TP-3B 12.00

Geomean 4.65
Safety Factor 2.00
Adjusted Rate 2.32

Loading Ratios

Total Drainage Area = 96824 sf
Impervious Area = 96824 sf
Infiltration Area = 75,725 sf
Impervious Loading Ratio = 1.3:1

Impervious Loading Ratio = 1.3:1 Overall Loading Ratio = 1.3:1

Dewatering Time (After Rainfall Event)

T= Infiltration Volume/ (Inf. Rate/12 x Inf. Area)

= 1.7 hrs

Synthetic Turf Field Storage Calculations

<u>BMP 2</u>

WATER SURFACE	SUBGRADE	AVERAGE	Δ				
ELEVATION	AREA	AREA	ELEV.	STORAGE	x 0.40 (40% Void		
(FEET)	(SQ.FT.)	(SQ.FT.)	(FEET)	VOLUME	space)	Σ (CU.FT.)	(AC. FT.)
316	75725					0	0
		75725	0.67	50,736	20294		
316.67	75725					20,294	0.4659
		85638	0.08	6,851	2740		
316.75	95550					23,035	0.5288
		95550	0.75	71,663	28665		
317.5	95550					51,700	1.1869
		0	0.00	0	0		
						0	0.0000
		0	0.00	0	0		
						0	0.0000
		0	0.00	0	0		
						0	0.0000

Infiltration Bed - BMP 3 Calculations

Subsurface Infiltration Bed Volume

Inf Rate: 1.01 in/hr
Inf Area: 26,795 sf

Storage Volume = 21,916 cf at elev: 321.00

Infiltration Volume = Inf. Rate x Inf Area X Inf Period

= 1.01 in/hr x 26,795 sf x 2 hr x (1ft/12in)

= 4510 CF

Total Inf. Volume = Storage Volume + Infiltration Volume

= 26,426 cf at elev: 321

Volume Captured = 24,426 cf

Volume Infiltrated = 24,357 cf

Test Pit (in/hr)
TP-4A 1.20
TP-5A 3.40

Geomean 2.02
Safety Factor 2.00
Adjusted Rate 1.01

Loading Ratios

Total Drainage Area = 96824 sf
Impervious Area = 96824 sf
Infiltration Area = 26,795 sf
pervious Loading Ratio = 3.6:1

Impervious Loading Ratio = 3.6:1 Overall Loading Ratio = 3.6:1

Dewatering Time (After Rainfall Event)

T= Infiltration Volume/ (Inf. Rate/12 x Inf. Area)

= 10.8 hrs

Synthetic Turf Field Storage Calculations

<u>BMP 3</u>

WATER SURFACE	SUBGRADE	AVERAGE	Δ		x 0.40		
ELEVATION	AREA	AREA	ELEV.	STORAGE	(40% Void		
(FEET)	(SQ.FT.)	(SQ.FT.)	(FEET)	VOLUME	` space)	Σ (CU.FT.)	(AC. FT.)
319	26795					0	0
		27195	1.00	27,195	10878		
320	27595					10,878	0.2497
		27595	1.00	27,595	11038		
321	27595					21,916	0.5031
		56028	0.65	36,418	14567		
321.65	84460					36,483	0.8375
		90005	0.10	9,001	3600		
321.75	95550					40,083	0.9202
		95550	0.75	71,663	28665		
322.5	95550					68,748	1.5782
		0	0.00	0	0		
						0	0.0000

Infiltration Basin - BMP 4 Calculations

Infiltration Volume

Inf Rate: 0.84 in/hr
Inf Area: 19,809 sf

Storage Volume = 22,478 cf at elev: 311.00

Infiltration Volume = Inf. Rate x Inf Area X Inf Period

= 0.84 in/hr x 19,809 sf x 2 hr x (1ft/12in)

= 2762 CF

Total Inf. Volume = Storage Volume + Infiltration Volume

= 25,240 cf at elev: 311.00

Volume Captured = 14,843 cf

Overflow volume from BMP 3 = 69 Total Volume Captured = 14,912

Volume Infiltrated¹ = 14,912 cf²

ET Credit¹= 0 cf²

Total Credit= 14,912

	Infiltration Rate
Test Pit	(in/hr)
TP-6A	1.00
TP-7B	2.80
Geomean	1.67
Safety Factor	2.00
Adjusted Rate	0.84

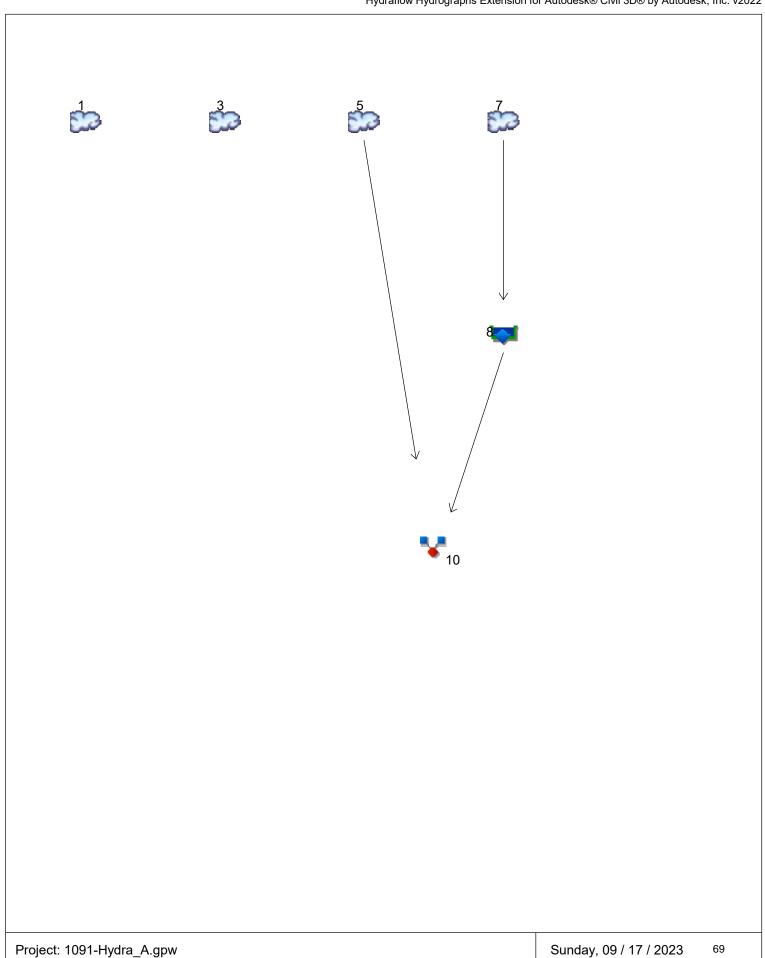
Loading Ratios

Total Drainage Area = 421241 sf
Impervious Area = 12972 sf
Infiltration Area = 19,809 sf
Impervious Loading Ratio = 0.7:1

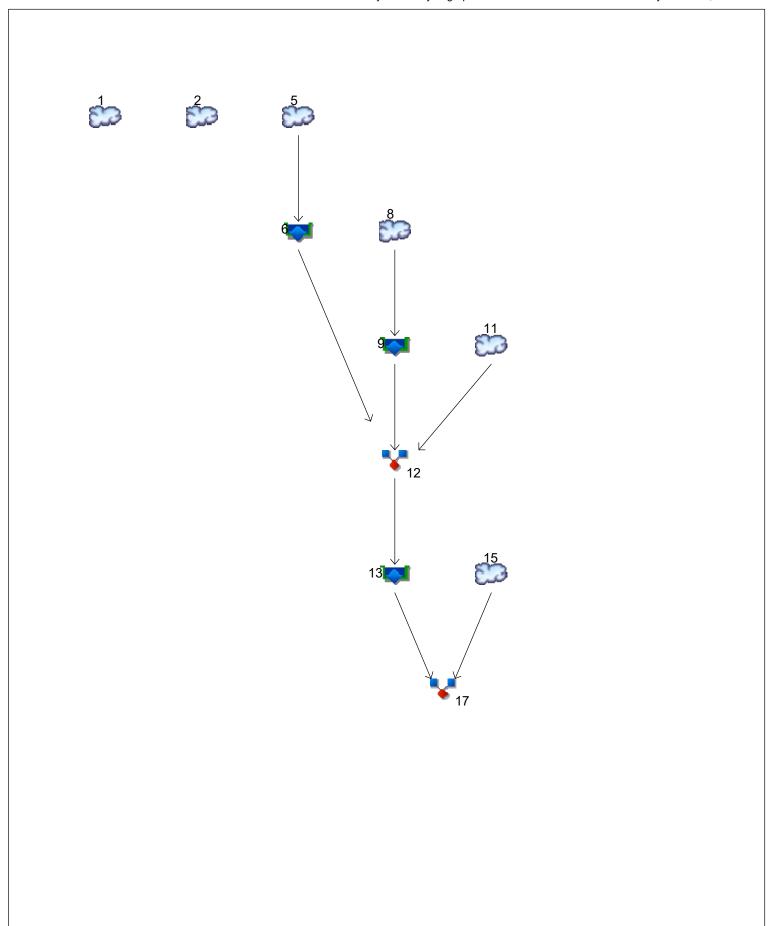
Overall Loading Ratio = 21.3:1

Dewatering Time (After Rainfall Event)

T= Storage Volume/ (Inf. Rate/12 x Inf. Area)
= 16.3 hrs


¹ See PADEP PCSM Volume Spreadsheet

APPENDIX E RATE CONTROL ANALYSIS


OVERALL HYDROLOGY

Hydrograph Return Period Recap

Hyd. No.		Inflow		Peak Outflow (cfs)							Hydrograph
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		0.857	2.379		5.681	8.961	14.25	19.09	24.73	Pre-Dev. (E. Branch Chester Creek)
3	SCS Runoff		0.498	1.525		3.844	6.212	10.05	13.58	17.68	Pre-Dev. (EBCC) Onsite
5	SCS Runoff		0.678	1.267		2.311	3.279	4.785	6.123	7.622	EBCC-Undetained
7	SCS Runoff		3.519	5.831		9.819	13.44	19.04	24.03	29.58	BMP 1 IN
8	Reservoir	7	0.000	0.162		0.667	1.829	5.137	8.706	13.69	BMP 1 Routed
10	Combine	5, 8,	0.678	1.267		2.311	3.279	5.795	9.564	14.78	Post-Dev. E. Branch Chester (Combi

Proj. file: 1091-Hydra_A.gpw Sunday, 09 / 17 / 2023 70

Hydrograph Return Period Recap

-	Hydrograph	Inflow	Peak Outflow (cfs)								Hydrograph
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.827	5.020		12.03	19.34	31.25	42.19	54.74	Pre-Dev. (Unt. to EBCC)
2	SCS Runoff		1.333	3.664		8.779	14.12	22.81	30.80	39.96	Pre-Dev. Unt. to EBCC Onsite (Redu
5	SCS Runoff		8.084	9.771		12.34	14.48	17.55	20.14	22.94	BMP 3 IN
6	Reservoir	5	0.000	0.006		0.076	0.116	0.165	0.219	0.435	BMP 3 Routed
8	SCS Runoff		8.084	9.771		12.34	14.48	17.55	20.14	22.94	BMP 2 IN
9	Reservoir	8	0.000	0.000		0.148	0.319	0.762	1.333	2.110	BMP 2 Routed
11	SCS Runoff		2.564	5.132		10.10	14.80	22.21	28.86	36.45	BMP 4 DA
12	Combine	6, 9, 11	2.564	5.132		10.10	14.80	22.76	30.13	38.61	BMP 4 IN
13	Reservoir	12	0.000	0.019		0.745	2.040	7.989	15.12	23.74	BMP 4 Routed
15	SCS Runoff		1.201	2.510		4.941	7.232	10.84	14.08	17.79	Unt. to EBCC Undetained
17	Combine	13, 15,	1.201	2.510		4.941	7.232	10.84	17.45	26.78	Post-Dev. Unt. to EBCC (Combined)

Proj. file: 1091-Hydra_B.gpw

PRE-DEVELOPMENT HYDROLOGY (EAST BRANCH CHESTER CREEK)

ELA SPORT ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET

(717) 626-72713 **LITITZ, PA 17543**

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township

COUNTY: Chester

			Tc Min	15	15	
		Composite	'CN' Value	09	59	
		Total	Area (ac.)	09.9	4.91	
мореэМ	Q	78		0.00	0.00	
wobeaM	В	28	(c)	6.17	4.68	
suoivragml to %04 Wreas as Meadow	В	58	Area (ac)	0.17	0.09	
Parking, Other Impervious (60% of total)	В	86		0.26	0.14	
IAND USE	HSG	"CN" Value			(Reduction Factor)	
			WATERSHED	Pre-Dev. EBCC	Pre-Dev. EBCC 'Onsite' (Reducti	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-**DEVELOPMENT CONDITIONS**

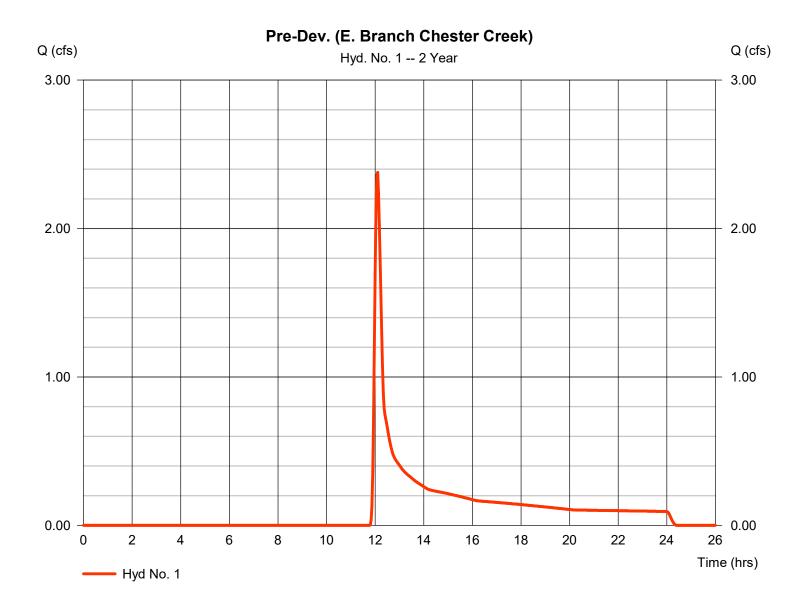
ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

PROJECT: The Westtown School - Oak Lane Project

LOCATION: Westtown Township COUNTY: Chester

	Total	oT α	Hrs.						0.25
	To	2T 7	Min.						15
		łΤ	Min.	0	0	0	0	0.0	0.0
		εη μβυθη Γ ³							
	ipe	n s'gninnsM							
(Tt)	Channel or Pipe	Slope S ₃							
πe	hanr	Pipe Diameter	in.						
el tiı	i)	Wetted Perimeter	ft.	0.00	0.00	0.00	0.00	0.00	
trav		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00	
or (Channel or Pipe							
(Tc	Shallow Concentrated	打	Min.	0.0	0.8	0	0	0	8.0
tion		Average Velocity	ft./s	0	8.4	0	0	0	
concentration (Tc) or travel time (Tt)		Slope S ₂	ft./ft.		0.090				
onc		²⊐ dìgnə⊐	ft.		234				
		Flow Path Cover	U/P		⊃				
Fime of		эΤ	Min.	14	0	0	0	0	13.7
L	pu	Lejnisı ıy S	in.	3.26					
	overland	n e'gninnsM	n	0.24					
	0	Slope S ₁	ft./ft.	0.017					
		Length L ₁ 100 ff. max.	ft.	88					
		Watershed		٧					

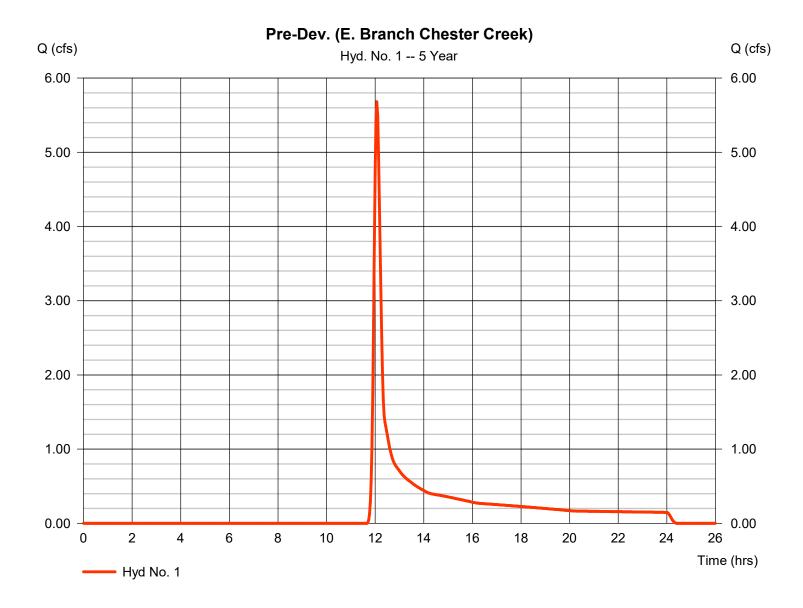

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

Hydrograph type = SCS Runoff Peak discharge = 2.379 cfsStorm frequency = 2 yrsTime to peak $= 12.10 \, hrs$ Time interval = 2 min Hyd. volume = 10,087 cuftCurve number = 60 Drainage area = 6.600 acBasin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

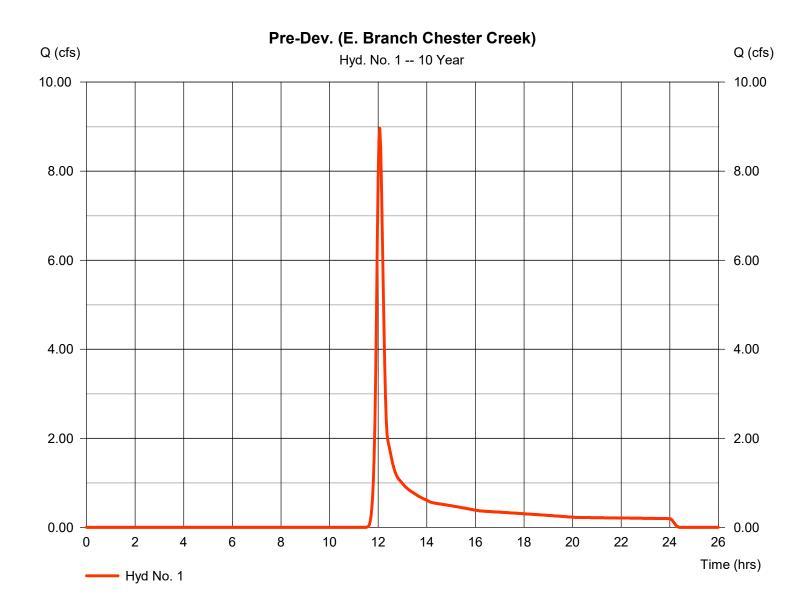

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

Hydrograph type = SCS Runoff Peak discharge = 5.681 cfsStorm frequency = 5 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 18,953 cuft Drainage area Curve number = 6.600 ac= 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 4.10 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

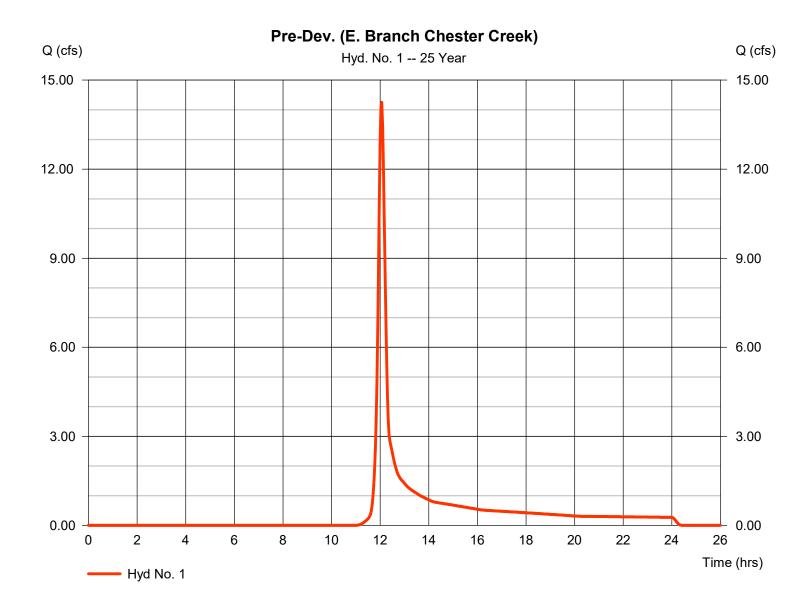

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

Hydrograph type = SCS Runoff Peak discharge = 8.961 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 27,703 cuftDrainage area = 6.600 acCurve number = 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

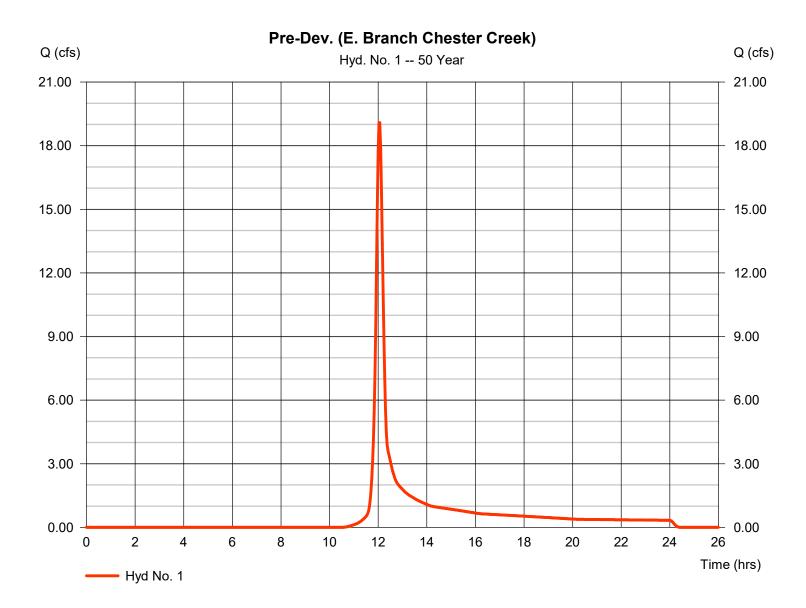

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

Hydrograph type = SCS Runoff Peak discharge = 14.25 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 42,010 cuftDrainage area Curve number = 6.600 ac= 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

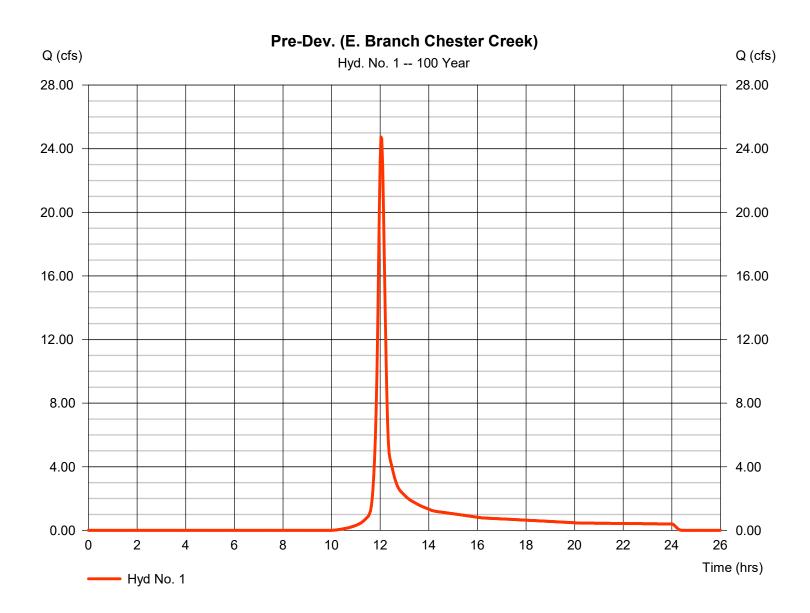

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

Hydrograph type = SCS Runoff Peak discharge = 19.09 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 55,262 cuft Drainage area Curve number = 6.600 ac= 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

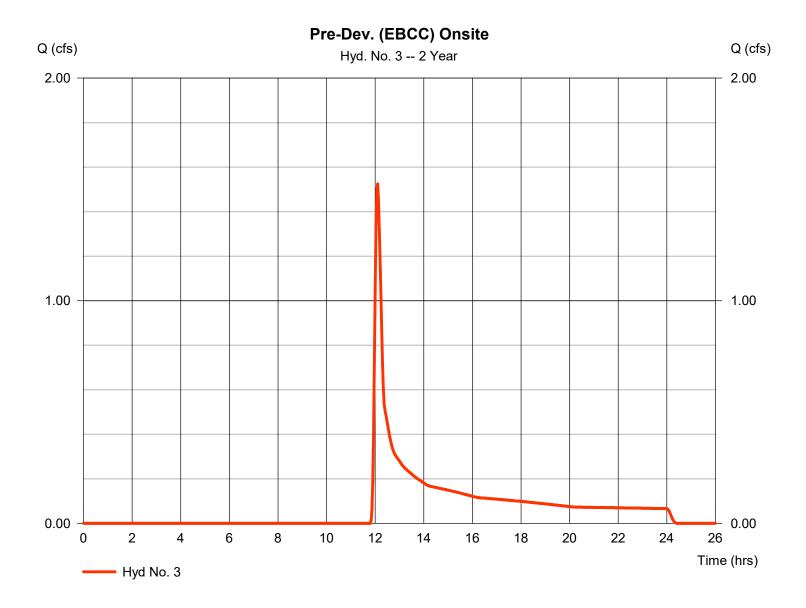

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 1

Pre-Dev. (E. Branch Chester Creek)

Hydrograph type = SCS Runoff Peak discharge = 24.73 cfsStorm frequency = 100 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 70,585 cuft Drainage area Curve number = 6.600 ac= 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

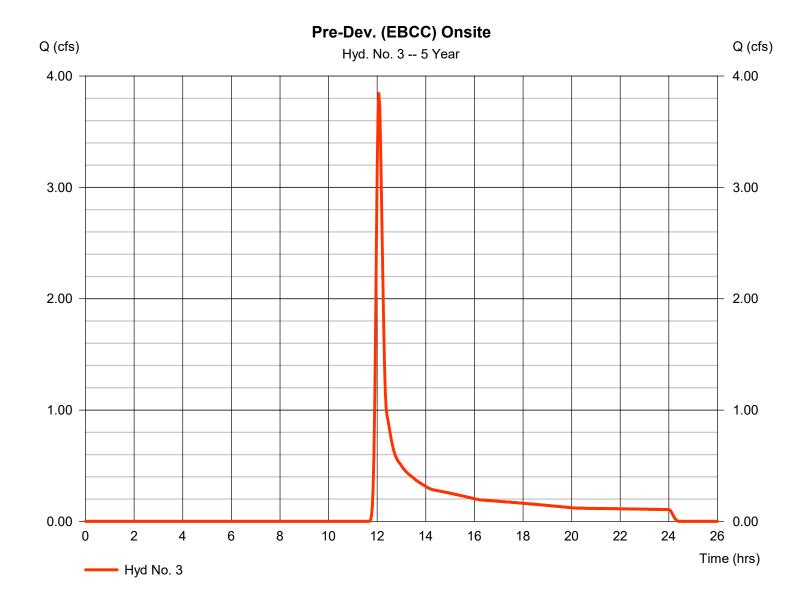

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type = SCS Runoff Peak discharge = 1.525 cfsStorm frequency = 2 yrsTime to peak = 12.10 hrsTime interval = 2 min Hyd. volume = 6.891 cuft Drainage area Curve number = 4.910 ac= 59 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

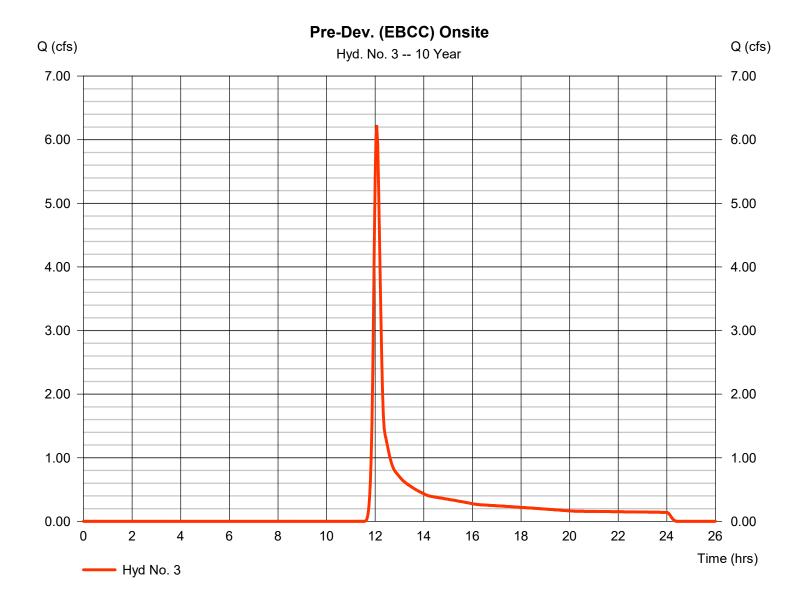

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type = SCS Runoff Peak discharge = 3.844 cfsStorm frequency = 5 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 13,214 cuft Drainage area Curve number = 4.910 ac= 59 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 4.10 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

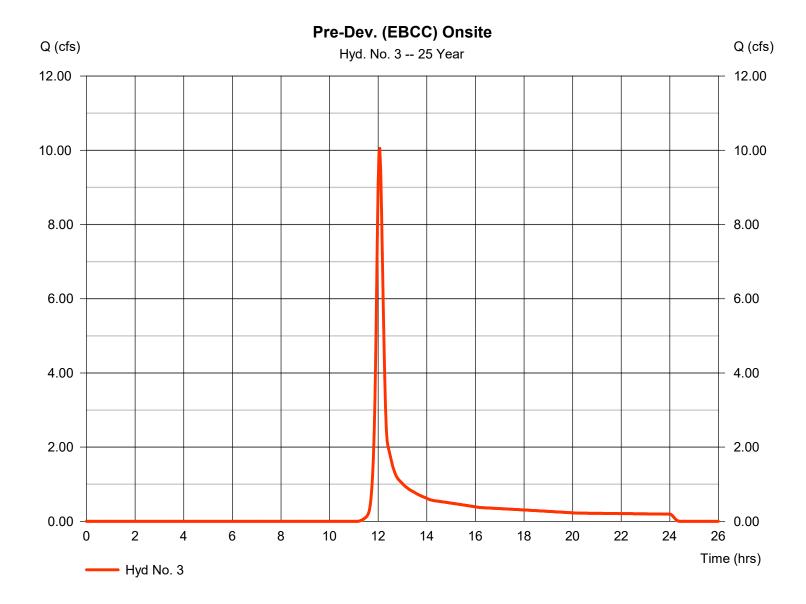

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type = SCS Runoff Peak discharge = 6.212 cfsStorm frequency = 10 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 19,508 cuft Drainage area Curve number = 4.910 ac= 59 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

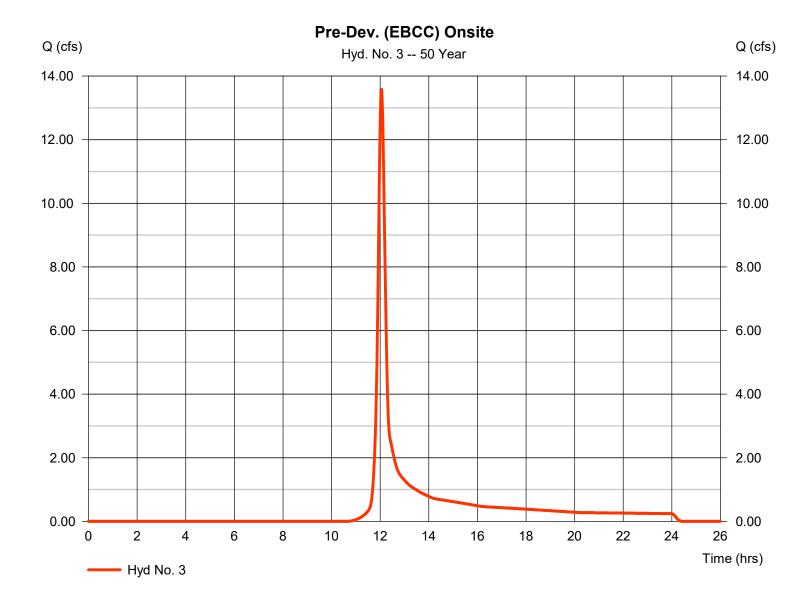

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type = SCS Runoff Peak discharge = 10.05 cfsStorm frequency = 25 yrs Time to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 29,863 cuft Drainage area Curve number = 4.910 ac= 59 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 5.81 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484

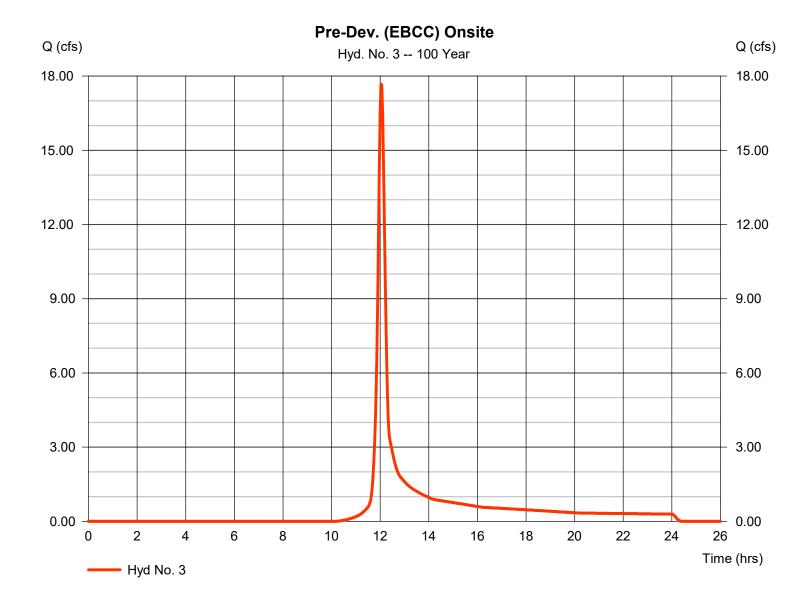

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type = SCS Runoff Peak discharge = 13.58 cfsStorm frequency = 50 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 39,500 cuftDrainage area Curve number = 4.910 ac= 59 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Sunday, 09 / 17 / 2023

Hyd. No. 3

Pre-Dev. (EBCC) Onsite

Hydrograph type = SCS Runoff Peak discharge = 17.68 cfsStorm frequency = 100 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 50,679 cuftDrainage area Curve number = 4.910 ac= 59 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 15.00 min = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

UNT. TO EAST BRANCH CHESTER CREEK

ELA SPORT ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET

LITITZ, PA 17543

(717) 626-72713

ROJECT: The Westtown School - Oak Lane Project CATION: Westtown Township COUNTY: Chester

			Tc Min	22	22	
		Composite	'CN' Value	09	09	
		Total	Area (ac.)	17.37	12.68	
Weadow	Q	78		2.11	1.14	
WobsaM	В	58	ac)	15.25	11.53	
40% of Impervious Areas as Meadow	В	58	Area (ac)	0.00	0.00	
Parking, Other Impervious (60% of total)	В	86		0.01	0.01	
EAND USE		"CN" Value		r Creek	on Factor)	
			WATERSHED	Unt. to East Branch Chester Creek	Unt. to EBCC Onsite (Reduction Factor)	

ELA SPORT

ATHLETIC FACILITIES DESIGN & CONSULTING

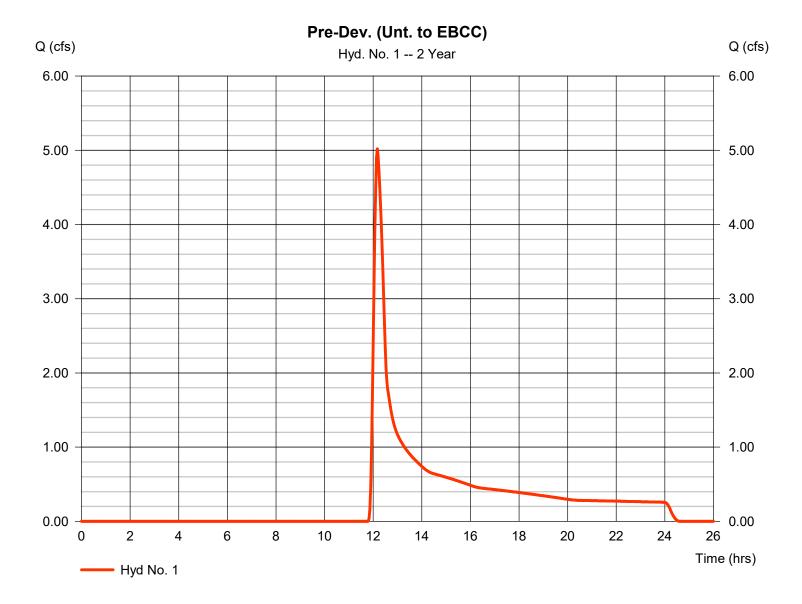
737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-**DEVELOPMENT CONDITIONS**

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township

COUNTY: Chester

Tin	Tin	Tin	<u> </u> =	Time of		ouce	concentration (Tc) or travel time (Tt)	tion	(<u>T</u> C	or (trav	el tin) au	Tt)					
		overland	pu		Sh	allow	Shallow Concentrated	ntrat	eq			ပ်	ann	Channel or Pipe	ipe			Total	tal
Slope S ₁		n e'gninnsM	Lefnish 1y S	οT	Flow Path Cover	^շ ⊐ կյնսə¬	Slope S ₂	Ауегаде Уеlосіту	łТ	Channel or Pipe	Flow Area	Wetted Perimeter	Pipe Diameter	Slope S ₃	n e'gninnsM	^ε ⊐ կֆնսթ¬	łТ	oT ∡	21.7
ft./ft.	1 7	u	in.	Min.	U/P	ft.	ft./ft.	ft./s	Min.	C/P	sq.ft.	ft.	in.	ft./ft.	n	ft.	Min.	Min.	Hrs.
0.010		0.24	3.26	18.7				0	0.0		0.00	0.00					0.0		
				0	⊃	293	0.010	9.1	3.1		0.00	0.00					0.0		
				0	⊃	108	0.140	9	0.3		0.00	0.00					0.0		
				0				0	0		0.00	0.00					0.0		
				0				0	0		0.00	0.00					0.0		
				0				0	0		0.00	0.00					0.0		
				0				0	0		0.00	0.00					0.0		
											0.00	0.00					0.0		
				0				0	0		0.00	0.00					0.0		
				18.7					3.4								0	22	0.37

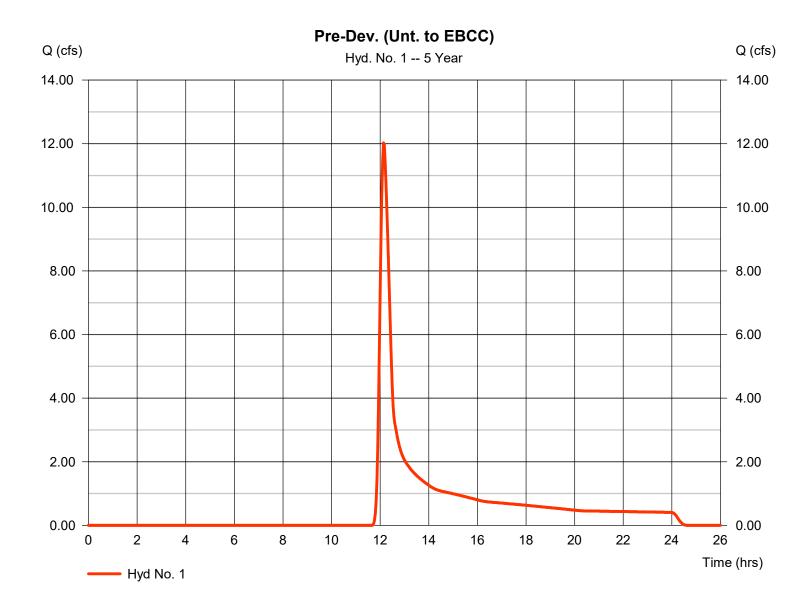

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type = SCS Runoff Peak discharge = 5.020 cfsStorm frequency = 2 yrsTime to peak $= 12.17 \, hrs$ Time interval = 2 min Hyd. volume = 27,714 cuft = 17.370 ac Curve number Drainage area = 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

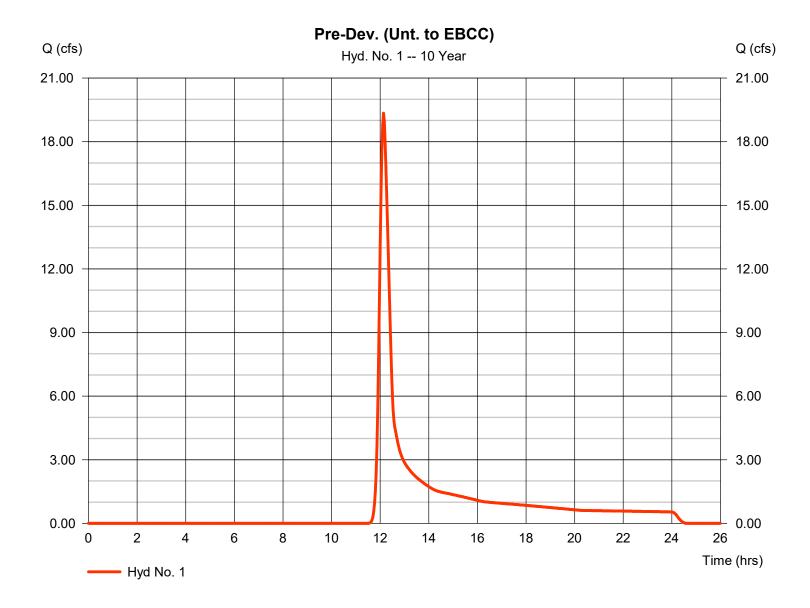

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type = SCS Runoff Peak discharge = 12.03 cfsStorm frequency = 5 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 52,072 cuft Drainage area = 17.370 ac Curve number = 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 4.10 inDistribution = Type II Storm duration Shape factor = 24 hrs = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

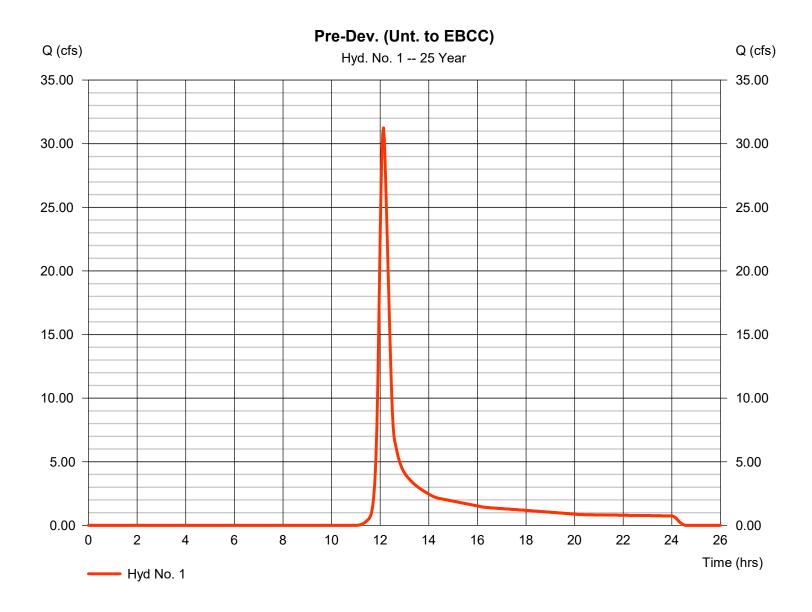
Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type = SCS Runoff Peak discharge = 19.34 cfsStorm frequency = 10 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 76,114 cuft Drainage area Curve number = 17.370 ac= 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023


Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

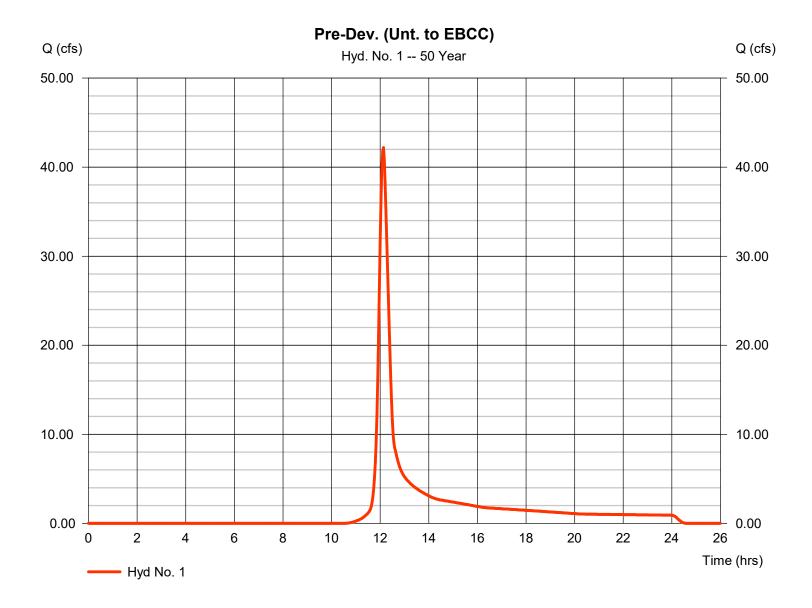
Hydrograph type= SCS RunoffPeak discharge= 31.25 cfsStorm frequency= 25 yrsTime to peak= 12.13 hrsTime interval= 2 minHyd. volume= 115,422 cuftDrainage area= 17.370 acCurve number= 60

Drainage area = 17.370 ac Curve number = 60 Basin Slope = 0.0 % Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 22.00 min
Total precip. = 5.81 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023


Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

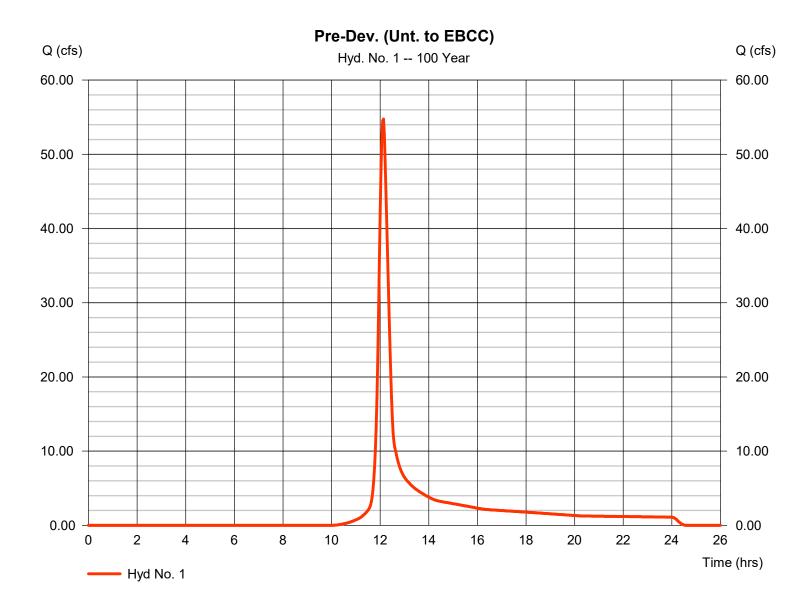
Hydrograph type= SCS RunoffPeak discharge= 42.19 cfsStorm frequency= 50 yrsTime to peak= 12.13 hrsTime interval= 2 minHyd. volume= 151,832 cuftDrainage area= 17,370 acCurve number= 60

Drainage area = 17.370 ac Curve number = 60 Basin Slope = 0.0 % Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 22.00 min
Total precip. = 6.66 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

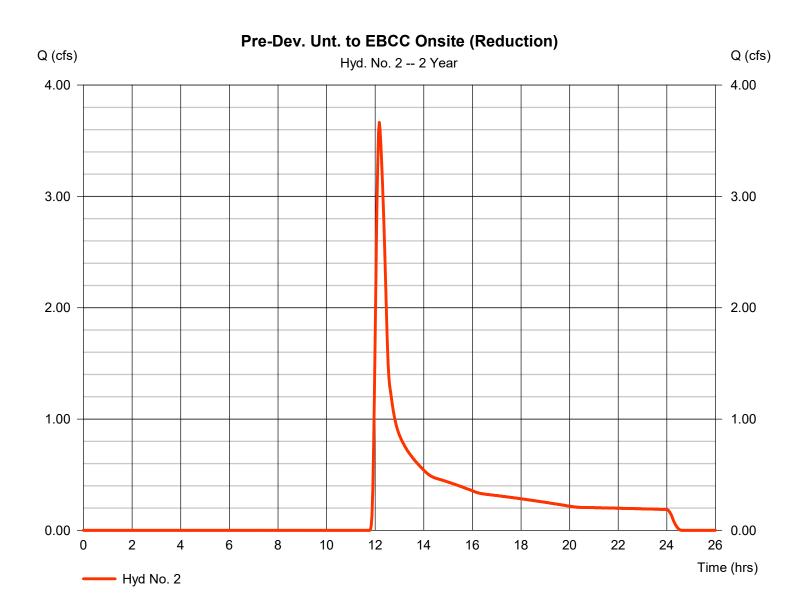

Hyd. No. 1

Pre-Dev. (Unt. to EBCC)

Hydrograph type = SCS Runoff Peak discharge = 54.74 cfsStorm frequency = 100 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 193,933 cuft Drainage area = 17.370 ac Curve number = 60

Basin Slope = 0.0 % Hydraulic length = 0 ft
Tc method = User Time of conc. (Tc) = 22.00 min
Total precip. = 7.58 in Distribution = Type II

Storm duration = 24 hrs Shape factor = 484

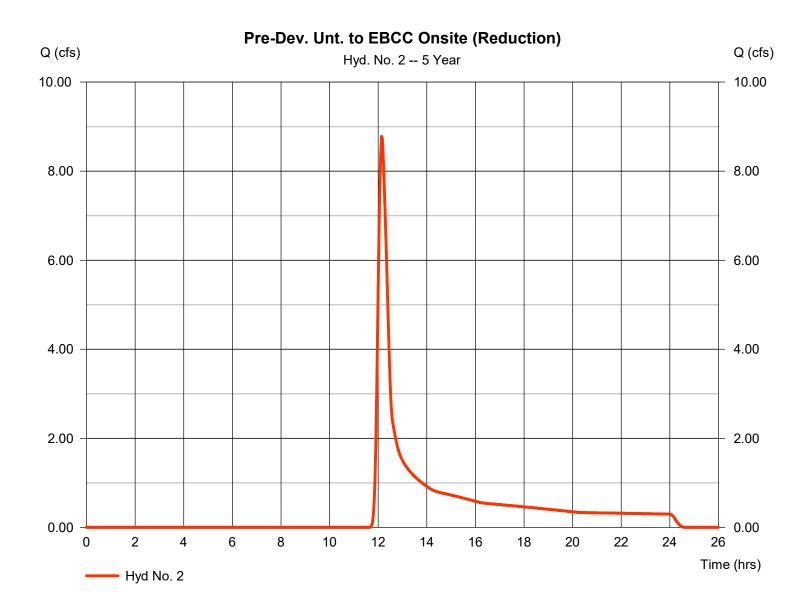

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 2

Pre-Dev. Unt. to EBCC Onsite (Reduction)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.664 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 20,231 cuft
Drainage area	= 12.680 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 3.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

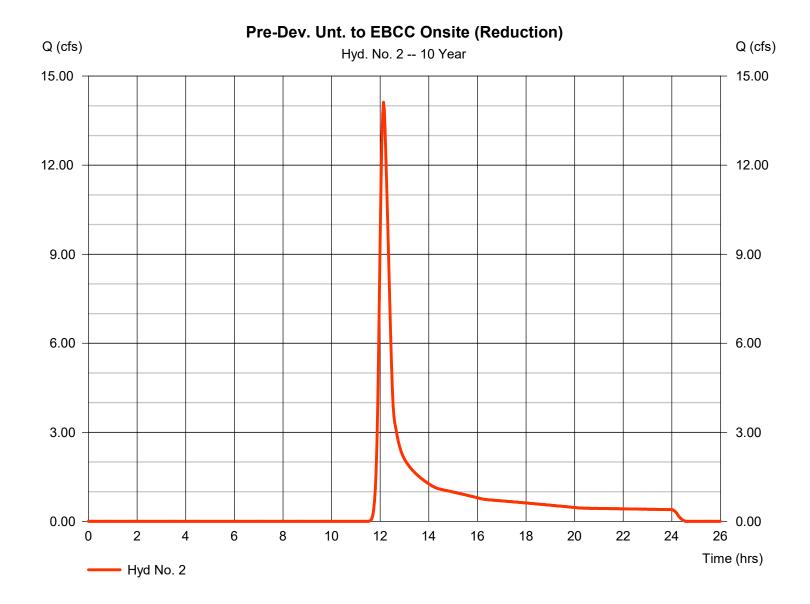

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 2

Pre-Dev. Unt. to EBCC Onsite (Reduction)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.779 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 38,012 cuft
Drainage area	= 12.680 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 4.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

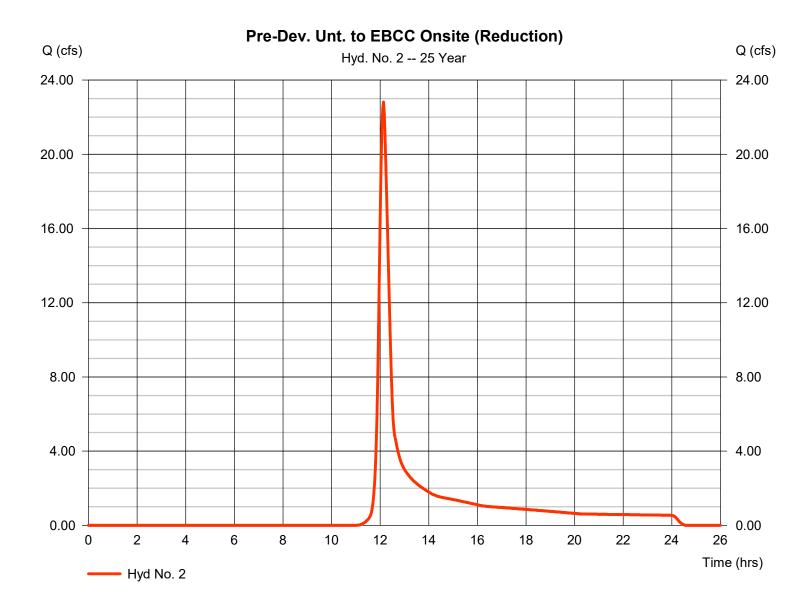

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 2

Pre-Dev. Unt. to EBCC Onsite (Reduction)

Hydrograph type = SCS Runoff Peak discharge = 14.12 cfsStorm frequency = 10 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 55,563 cuftDrainage area Curve number = 12.680 ac = 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

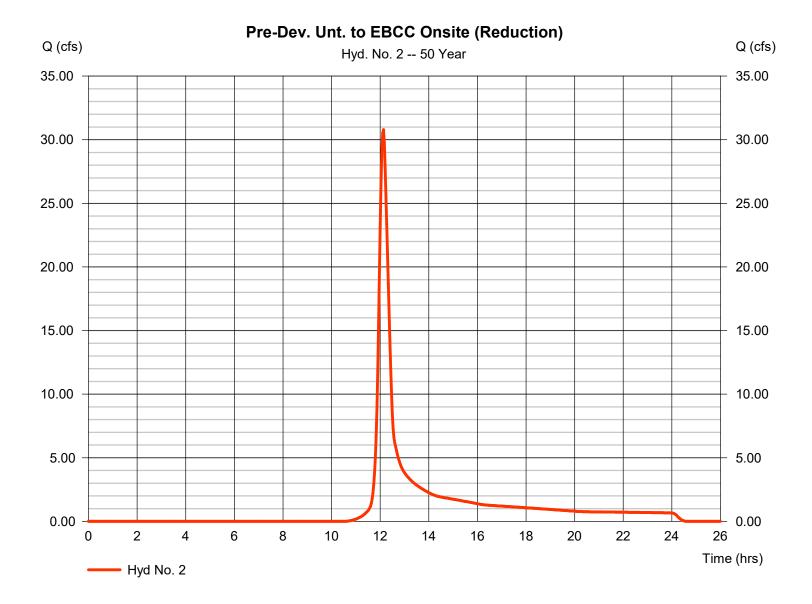

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 2

Pre-Dev. Unt. to EBCC Onsite (Reduction)

Hydrograph type	= SCS Runoff	Peak discharge	= 22.81 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 84,257 cuft
Drainage area	= 12.680 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 5.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

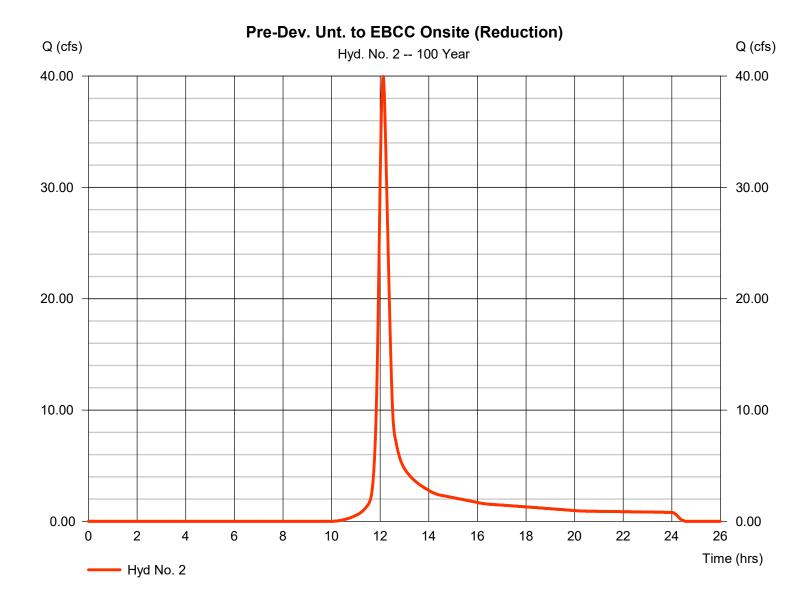

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 2

Pre-Dev. Unt. to EBCC Onsite (Reduction)

Hydrograph type = SCS Runoff Peak discharge = 30.80 cfsStorm frequency = 50 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 110,837 cuft Drainage area Curve number = 12.680 ac = 60 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 2

Pre-Dev. Unt. to EBCC Onsite (Reduction)

Hydrograph type = SCS Runoff Peak discharge = 39.96 cfsStorm frequency = 100 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 141,570 cuft Drainage area = 12.680 ac Curve number = 60 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

POST-DEVELOPMENT HYDROLOGY (EAST BRANCH CHESTER CREEK)

ELA SPORT

ATHLETIC FACILITIES DESIGN & CONSULTING

737 S. BROAD STREET **LITITZ, PA 17543**

(717) 626-72713

NRCS (SCS) TR-55- WATERSHED WEIGHTED POST-DEVELOPMENT SUMMARY CURVE NUMBER

PROJECT: The Westtown School - Oak Lane Project LOCATION: Westtown Township

COUNTY: Chester

	ŀ	Min		2	13	
	: :	Composite CN' Value		65	70	
	- + - +	lotal Area (ac.)	(20)	1.27	4.99	
956q2 n9qO (Sarabed Area)	D	80		0.00	0.00	
Open Space (Distributed)	Q	80		00.0	0.00	
Open Space (Area)	В	61	(0.03	1.47	
Open Space (Disturbed Area)	В	61	Area (ac	1.10	2.29	
Parking, Other Impervious (Undisturbed Area)	В	86		0.03	0.16	
Parking, Other Impervious (Disturbed Area)	8	86		0.12	1.07	
EAND USE	9SH	"CN" Value		detained		
			WATERSHED	East Branch Chester Creek Undetained	BMP 1	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-**DESIGN & CONSULTING** ATHLETIC FACILITIES

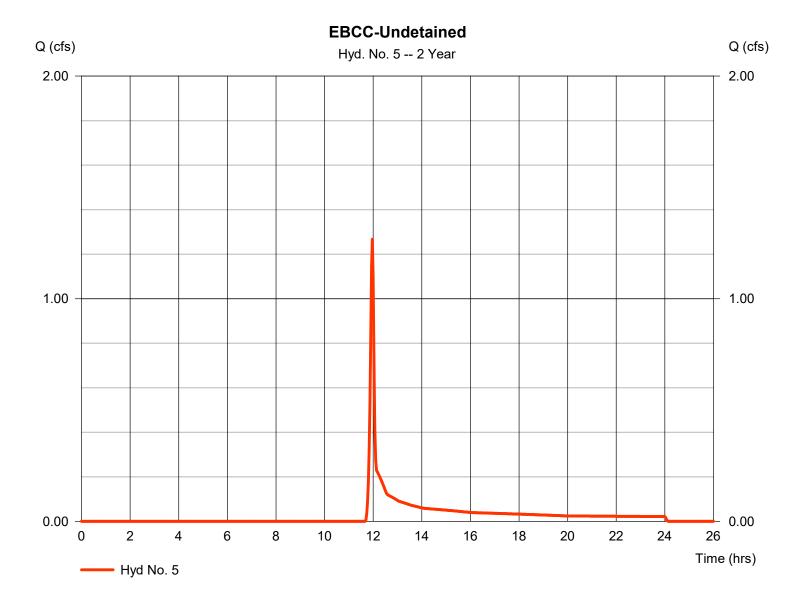
DEVELOPMENT CONDITIONS

737 S. BROAD STREET LITITZ, PA 17543 (717) 626-72713

The Westtown School - Oak Lane Project Westtown Township LOCATION: PROJECT:

Chester COUNTY:

		Total	الـength لـع TT 5T ع	ft. Min. Min. Hrs.	0	0	0	0	0.0	
		Channel or Pipe	Slope S ₃ n s'gninnsM	ft./ft. n						
ле <u>(Т</u>	þ	annel	Pipe Diameter	in. ft						
el tin	detho	ch	Wetted Perimeter	ff.	0.00	0.00	0.00	0.00	0.00	
trav	ital) N		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00	
;) or	lmen		Channel or Pipe	C/P						
<u>(Tc</u>	(Seç	ıted	łΤ	Min.	0.0	0.8	7.	0.1	0.5	
ıtion	ocity	entra	Average Velocity	ft./s	0	4	2.3	8.9	7	
concentration (Tc) or travel time (Tt	S Vel	NRCS Velocity(Segmental) Method Shallow Concentrated Char	Slope S ₂	ft./ft.		090.0	0.013	0.180	0.015	
onc	VRC		^z η ϥϳϐͷ϶ϯ	ft.		180	153	40	92	
J		us	Flow Path Cover	U/P		\supset	۵	⊃	⊃	
Fime o			эΤ	Min.	11	0	0	0	0	
		pu	Z yr rainfall	Ë	3.26	3.26	3.26			
		overland	n s'gninnsM	u	0.24					
		•	Slope S ₁	ft./ft.	0.040					
			Length L ₁ 100 ft. max.	ff.	100					
			Sub area		BMP 1					

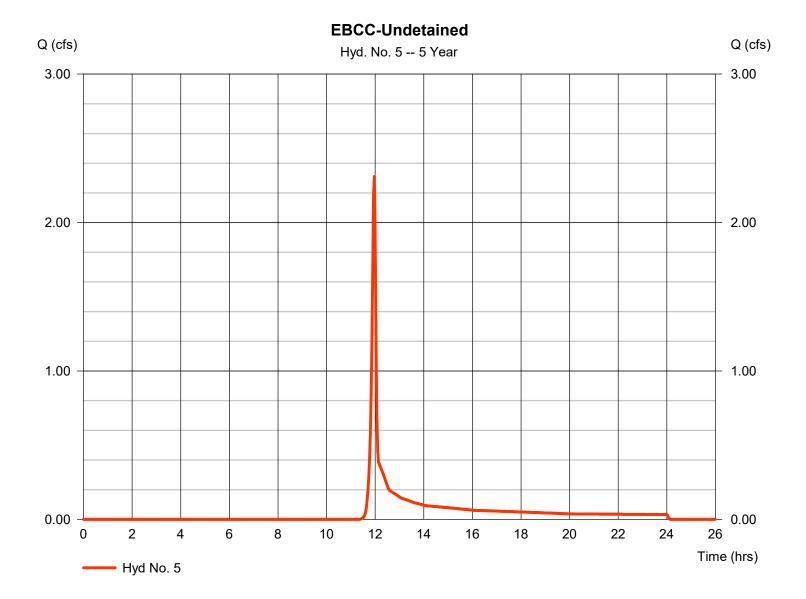

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

EBCC-Undetained

= 1.267 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 2,722 cuftDrainage area = 1.270 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

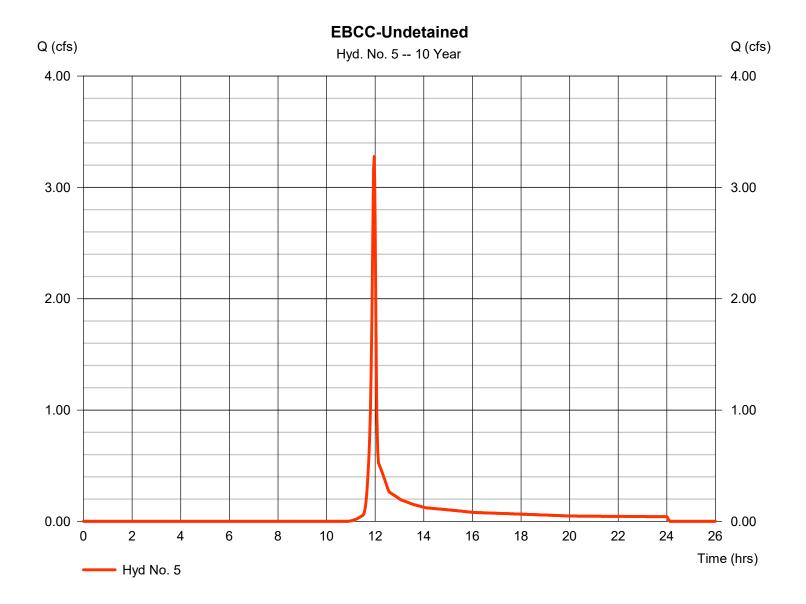

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

EBCC-Undetained

= SCS Runoff Hydrograph type Peak discharge = 2.311 cfsStorm frequency = 5 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 4,698 cuft Drainage area = 1.270 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

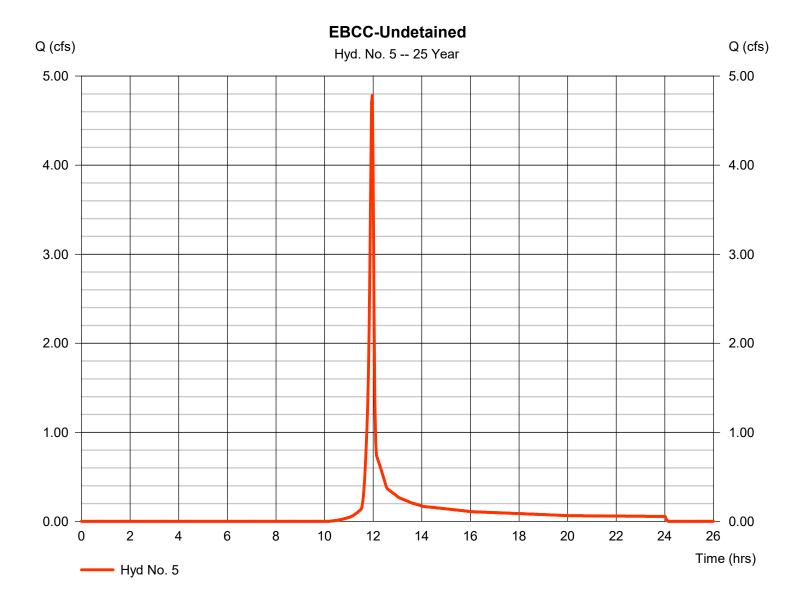

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

EBCC-Undetained

Hydrograph type = SCS Runoff Peak discharge = 3.279 cfsStorm frequency = 10 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 6,578 cuftDrainage area = 1.270 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

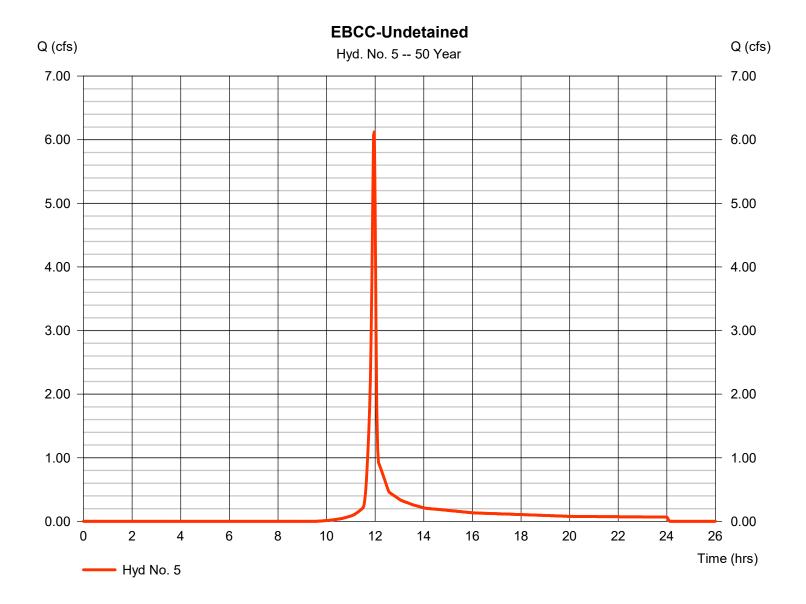

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

EBCC-Undetained

= SCS Runoff Hydrograph type Peak discharge = 4.785 cfsStorm frequency = 25 yrs Time to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 9,569 cuftDrainage area = 1.270 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

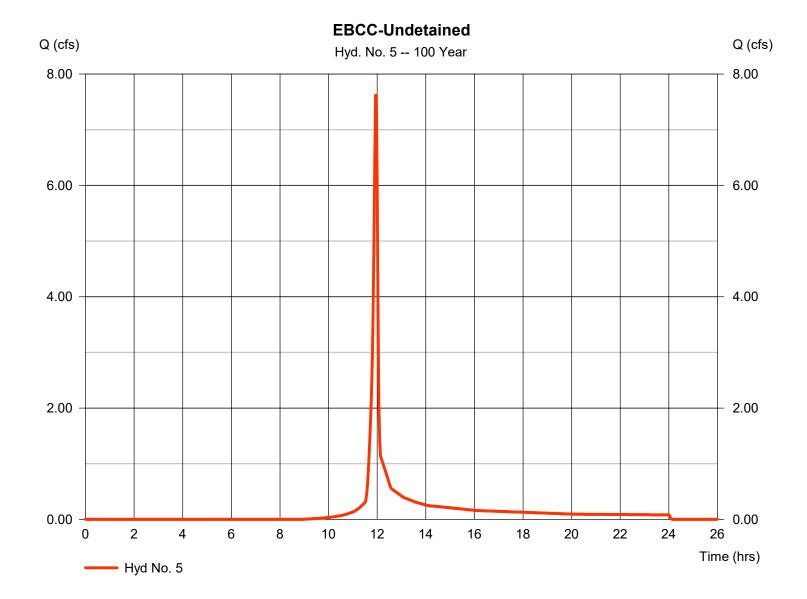

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

EBCC-Undetained

Hydrograph type = SCS Runoff Peak discharge = 6.123 cfsStorm frequency = 50 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 12.283 cuft Drainage area = 1.270 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

EBCC-Undetained

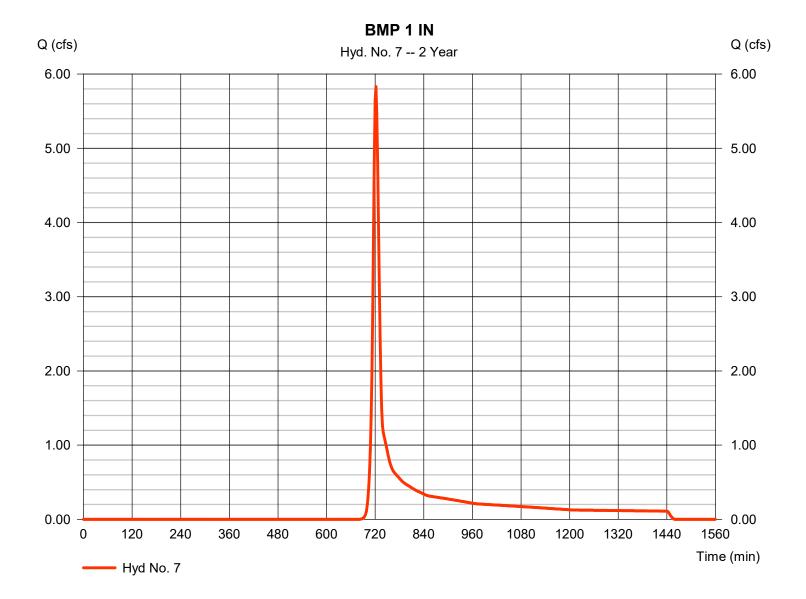
= SCS Runoff Hydrograph type Peak discharge = 7.622 cfsStorm frequency = 100 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 15,375 cuftDrainage area = 1.270 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs

Monday, 09 / 18 / 2023

= 484


Hyd. No. 7

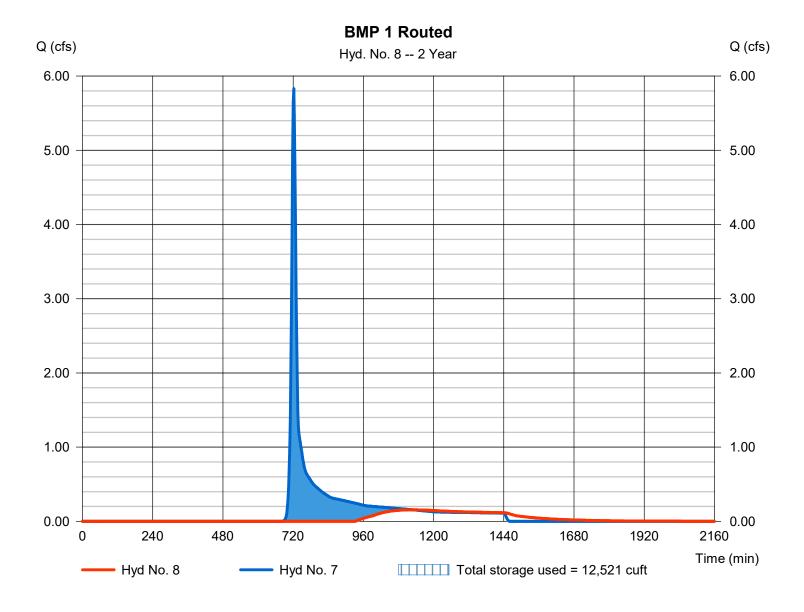
Storm duration

BMP 1 IN

Hydrograph type = SCS Runoff Peak discharge = 5.831 cfsStorm frequency = 2 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 16,125 cuft Drainage area = 70 Curve number = 4.990 ac= 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 13.00 min = User Total precip. = 3.26 inDistribution = Type II

Shape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 1 Routed

Hydrograph type Peak discharge = 0.155 cfs= Reservoir Storm frequency = 2 yrsTime to peak = 1128 min Time interval = 2 min Hyd. volume = 4,613 cuftInflow hyd. No. = 7 - BMP 1 IN Max. Elevation = 289.58 ft= BMP 1 Reservoir name Max. Storage = 12,521 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

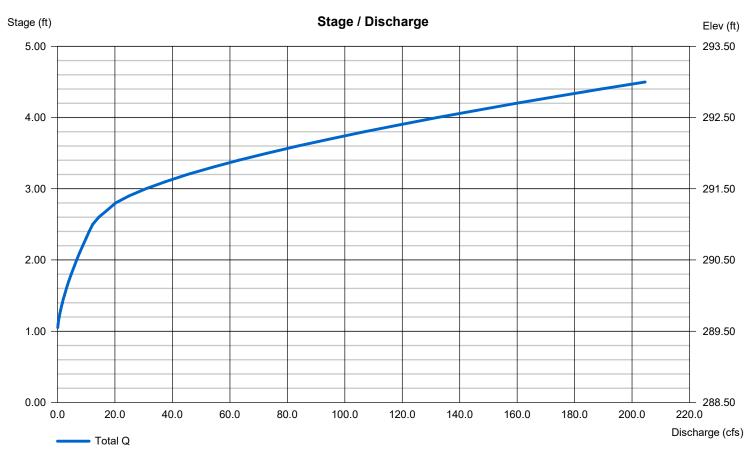
Monday, 09 / 18 / 2023

Pond No. 7 - BMP 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 288.50 ft

Stage / Storage Table

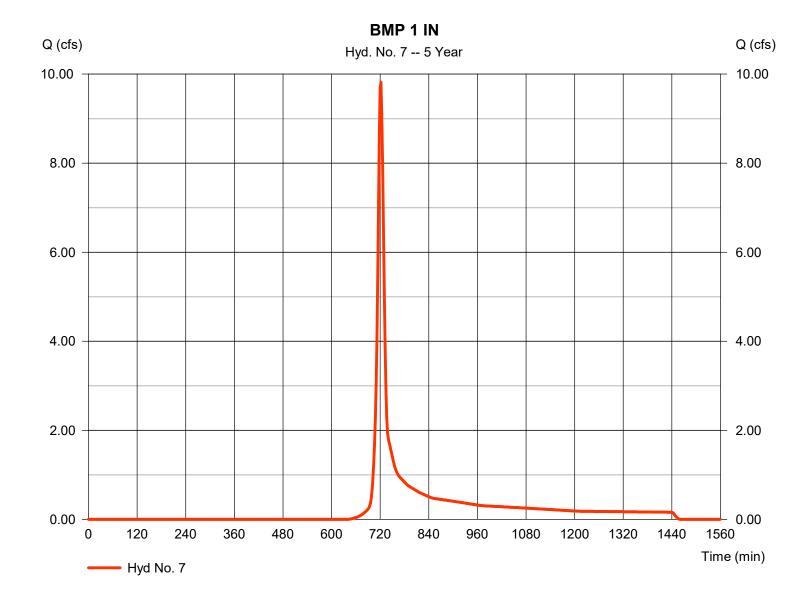

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	288.50	10,675	0	0
0.50	289.00	11,498	5,541	5,541
1.00	289.50	12,356	5,962	11,503
1.50	290.00	13,211	6,390	17,893
2.50	291.00	15,025	14,107	32,000
3.50	292.00	16,928	15,965	47,965
4.50	293.00	19,112	18,007	65,972

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	Inactive	0.00	0.00	Crest Len (ft)	= 8.50	2.00	30.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 291.00	289.50	291.25	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 284.25	0.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 28.47	0.10	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.53	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

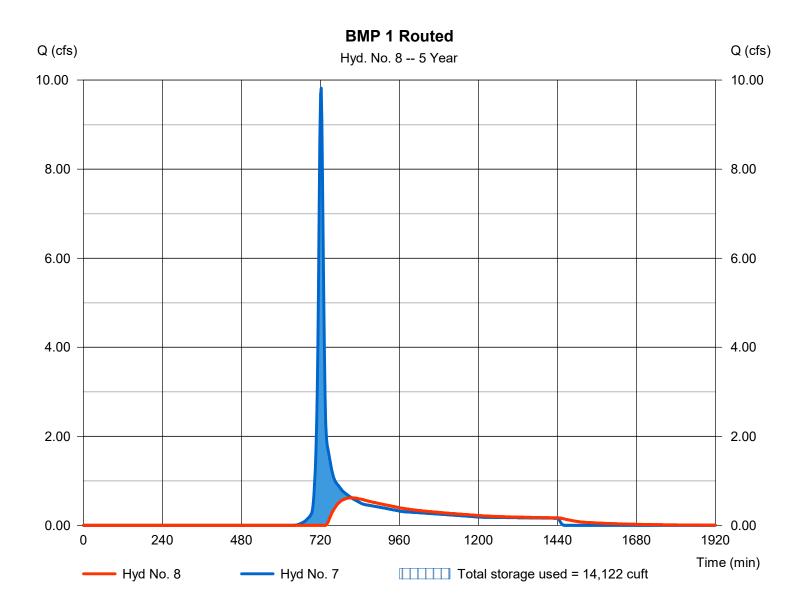
Monday, 09 / 18 / 2023

Hyd. No. 7

BMP 1 IN

Hydrograph type = SCS Runoff Peak discharge = 9.819 cfsStorm frequency = 5 yrsTime to peak = 722 min Time interval = 2 min Hyd. volume = 26,092 cuft Drainage area = 4.990 acCurve number = 70 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 13.00 min = User Total precip. = 4.10 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

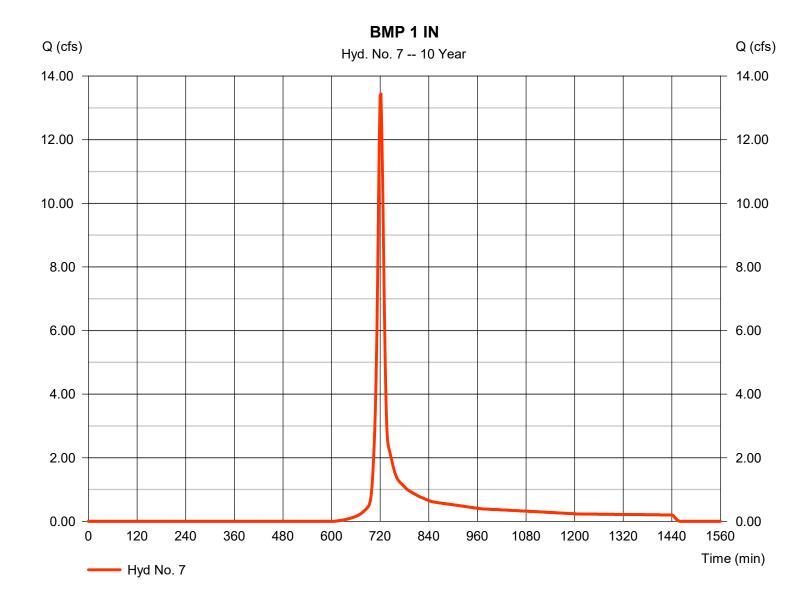

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 1 Routed

Hydrograph type = Reservoir Peak discharge = 0.619 cfsStorm frequency = 5 yrsTime to peak = 814 min Time interval = 2 min Hyd. volume = 14,581 cuft Inflow hyd. No. = 7 - BMP 1 IN Max. Elevation = 289.70 ft= BMP 1 = 14,122 cuft Reservoir name Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

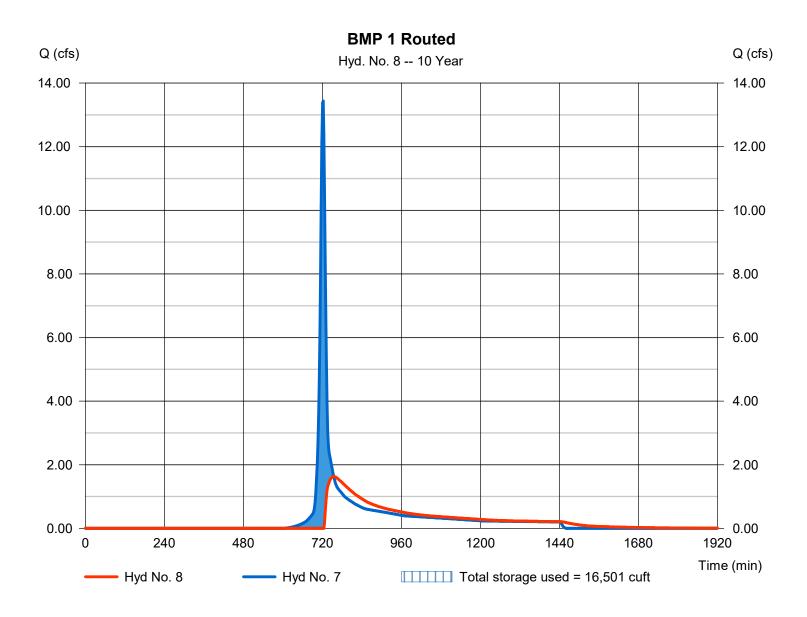
Monday, 09 / 18 / 2023

Hyd. No. 7

BMP 1 IN

Hydrograph type = SCS Runoff Peak discharge = 13.44 cfsStorm frequency = 10 yrsTime to peak = 722 min = 35,291 cuft Time interval = 2 min Hyd. volume Drainage area Curve number = 4.990 ac= 70 Hydraulic length = 0 ftBasin Slope = 0.0 %Tc method Time of conc. (Tc) = 13.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

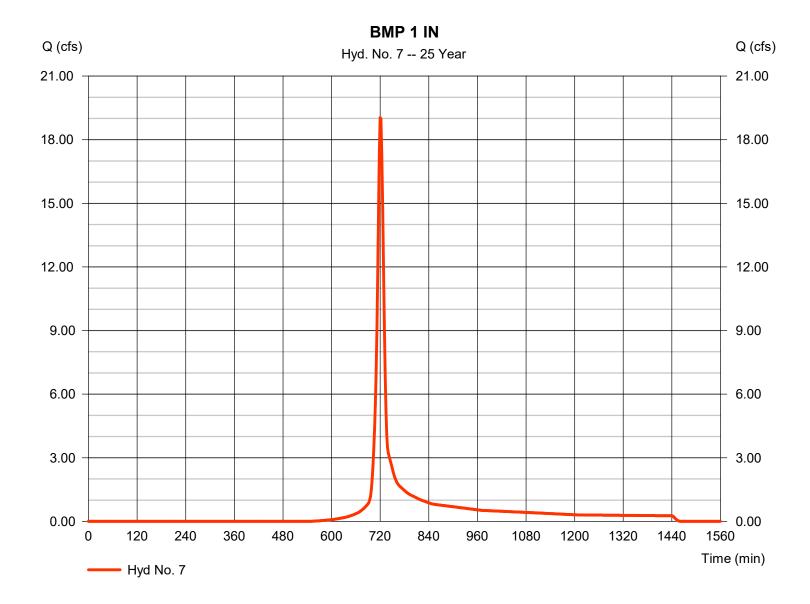

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 1 Routed

Hydrograph type Peak discharge = 1.630 cfs= Reservoir Storm frequency = 10 yrsTime to peak = 754 min Time interval = 2 min Hyd. volume = 23,780 cuftInflow hyd. No. = 7 - BMP 1 IN Max. Elevation = 289.89 ft= BMP 1 Reservoir name Max. Storage = 16,501 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

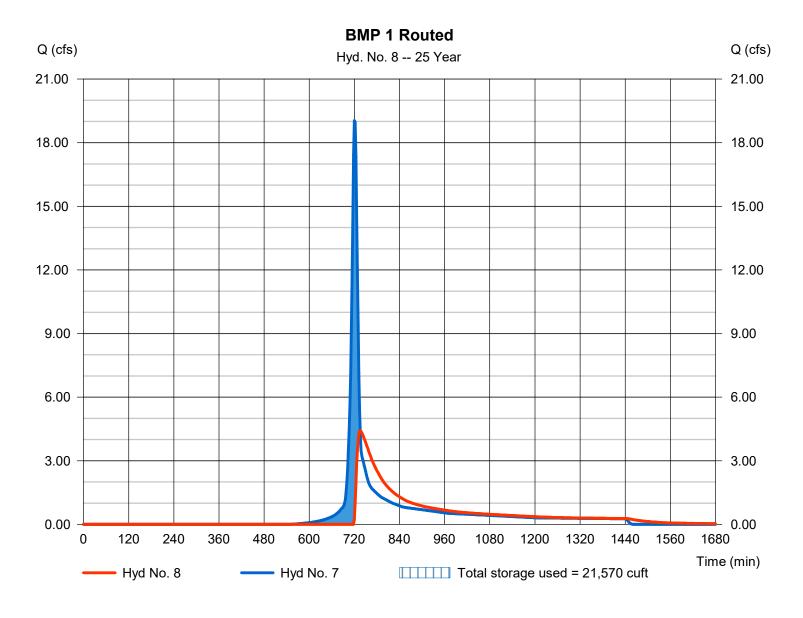
Monday, 09 / 18 / 2023

Hyd. No. 7

BMP 1 IN

Hydrograph type = SCS Runoff Peak discharge = 19.04 cfsStorm frequency = 25 yrs Time to peak = 720 min Time interval = 2 min Hyd. volume = 49,600 cuftDrainage area = 70 = 4.990 acCurve number Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 13.00 min = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

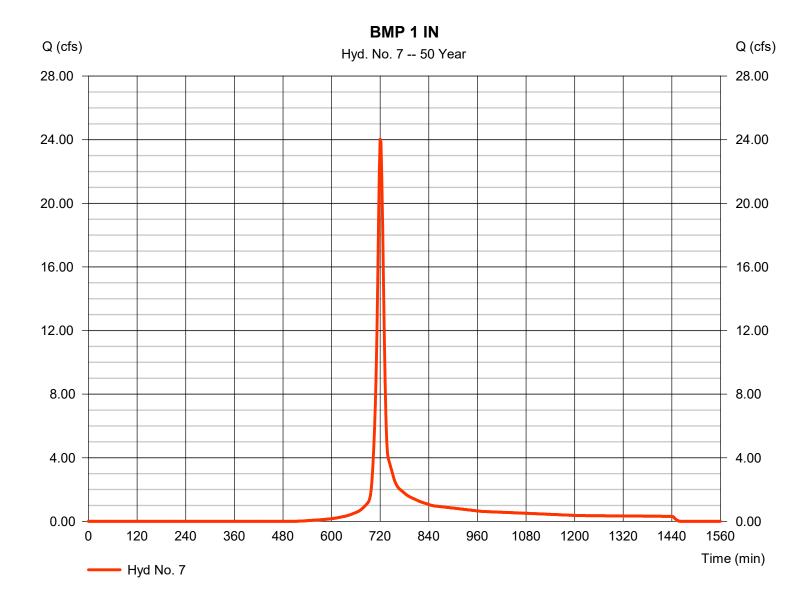

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 1 Routed

Hydrograph type Peak discharge $= 4.425 \, cfs$ = Reservoir Storm frequency = 25 yrsTime to peak = 736 min Time interval = 2 min Hyd. volume = 38,088 cuft Inflow hyd. No. = 7 - BMP 1 IN Max. Elevation = 290.26 ft= BMP 1 Reservoir name Max. Storage = 21,570 cuft

Storage Indication method used.

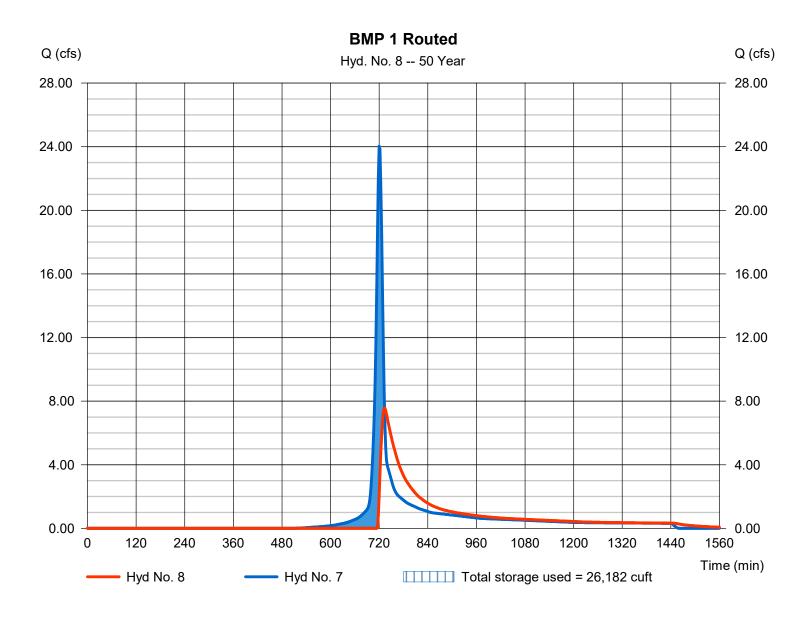

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 7

BMP 1 IN

Hydrograph type = SCS Runoff Peak discharge = 24.03 cfsStorm frequency = 50 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 62,348 cuft Drainage area Curve number = 4.990 ac= 70 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 13.00 min = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

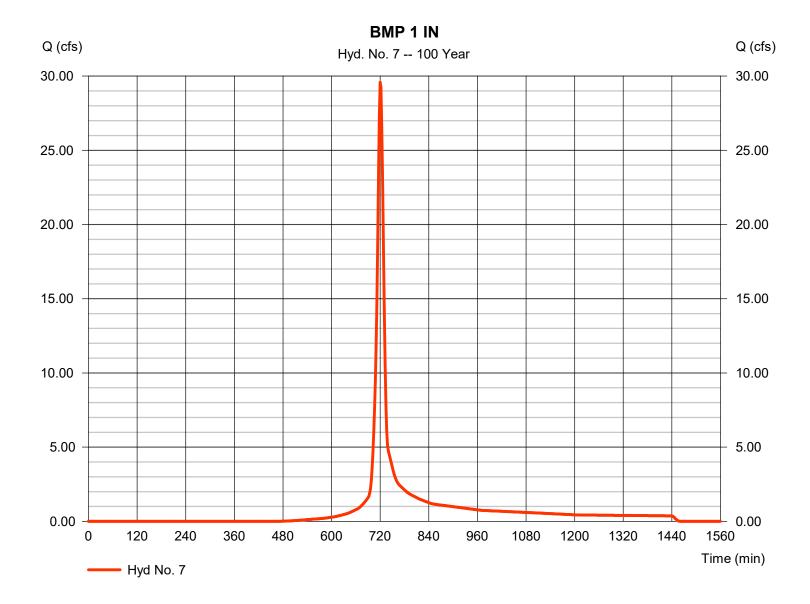

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 1 Routed

Hydrograph type Peak discharge = 7.557 cfs= Reservoir Storm frequency = 50 yrsTime to peak = 734 min Time interval = 2 min Hyd. volume = 50,837 cuftInflow hyd. No. Max. Elevation = 7 - BMP 1 IN $= 290.59 \, \text{ft}$ = BMP 1 Reservoir name Max. Storage = 26,182 cuft

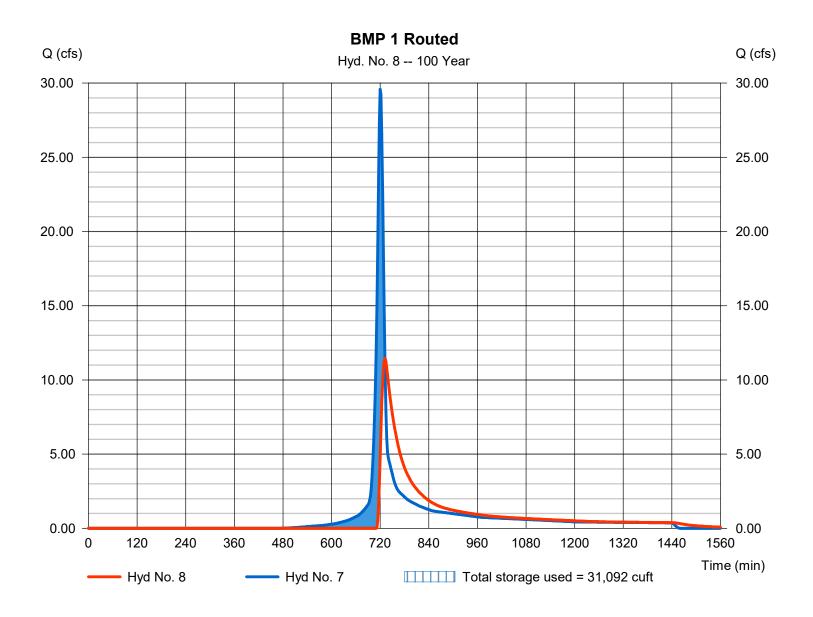

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 7

BMP 1 IN

Hydrograph type = SCS Runoff Peak discharge = 29.58 cfsStorm frequency = 100 yrsTime to peak = 720 min Time interval = 2 min Hyd. volume = 76,692 cuft Drainage area = 4.990 acCurve number = 70 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 13.00 min = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

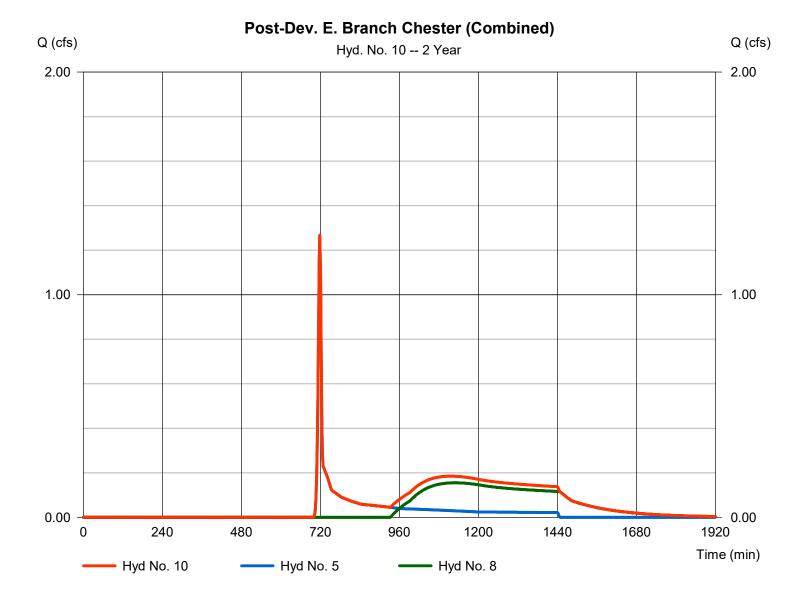

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 1 Routed

Hydrograph type Peak discharge = 11.46 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 732 min Time interval = 2 min Hyd. volume = 65,180 cuftInflow hyd. No. = 7 - BMP 1 IN Max. Elevation = 290.94 ft= BMP 1 Reservoir name Max. Storage = 31,092 cuft

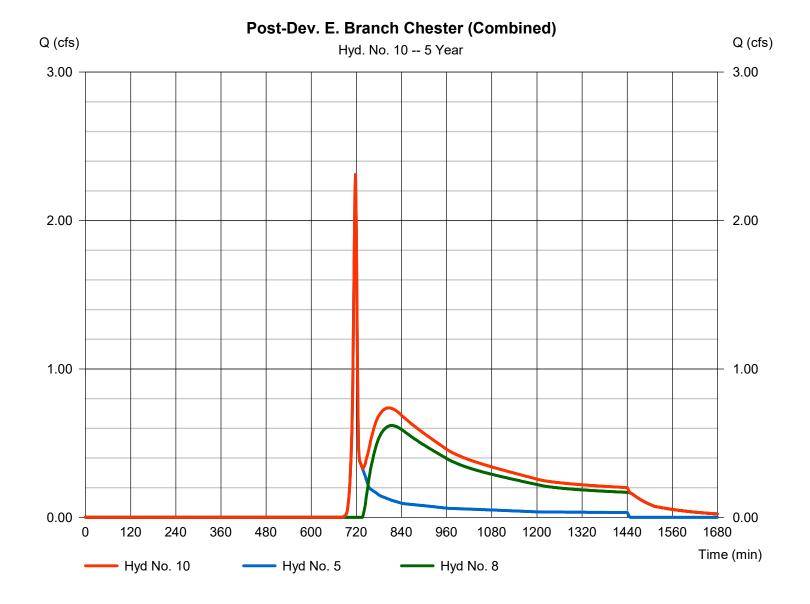

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type = Combine Peak discharge = 1.267 cfsStorm frequency = 2 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 7,335 cuftInflow hyds. = 5, 8Contrib. drain. area = 1.270 ac

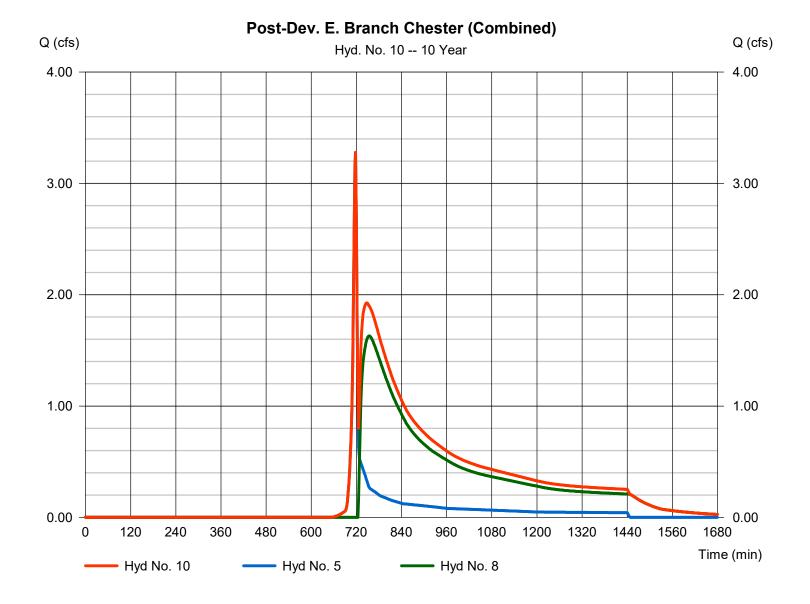

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type = Combine Peak discharge = 2.311 cfsStorm frequency = 5 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 19.279 cuft Inflow hyds. = 5, 8Contrib. drain. area = 1.270 ac

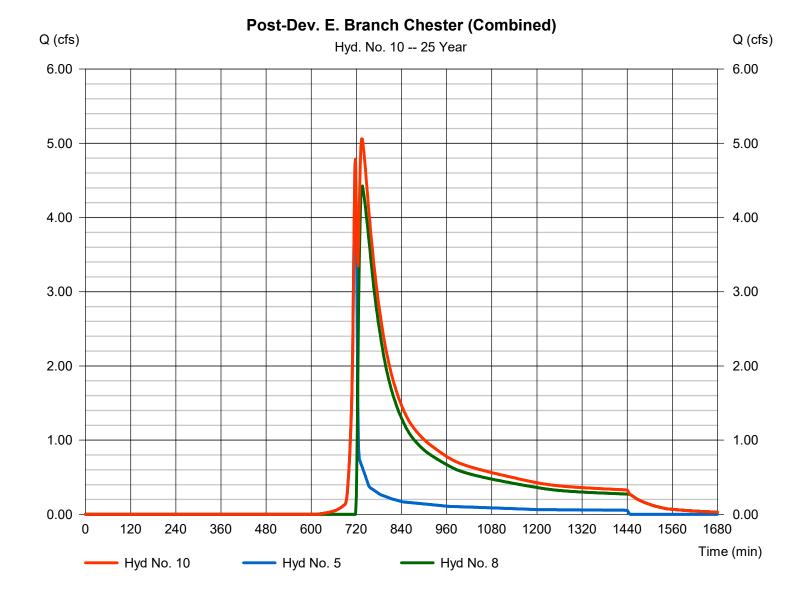

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type = Combine Peak discharge = 3.279 cfsStorm frequency = 10 yrsTime to peak = 718 min Time interval = 2 min Hyd. volume = 30,358 cuft Inflow hyds. = 5, 8Contrib. drain. area = 1.270 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type = Combine Peak discharge = 5.061 cfsStorm frequency = 25 yrsTime to peak = 734 min Time interval = 2 min Hyd. volume = 47,657 cuftInflow hyds. = 5, 8Contrib. drain. area = 1.270 ac

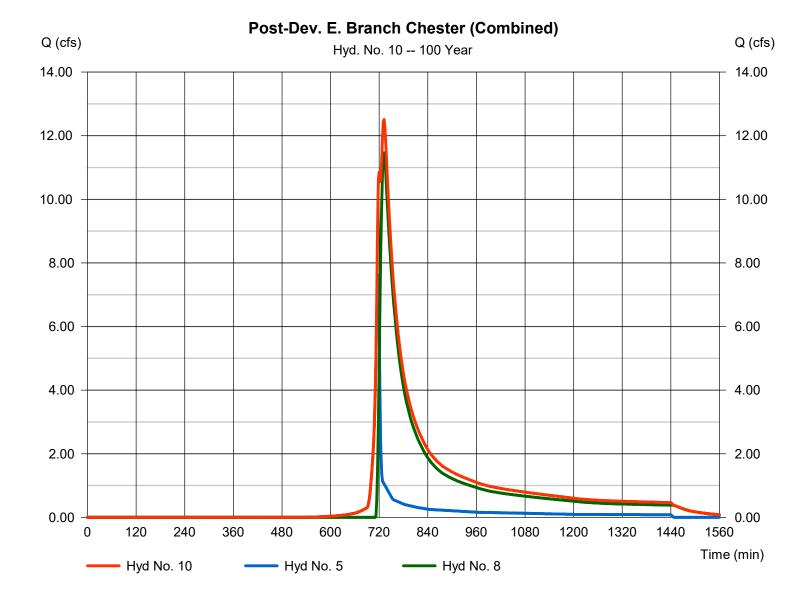

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type = Combine Peak discharge = 8.403 cfsStorm frequency Time to peak = 50 yrs= 732 min Time interval = 2 min Hyd. volume = 63,120 cuftInflow hyds. = 5, 8Contrib. drain. area = 1.270 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 10

Post-Dev. E. Branch Chester (Combined)

Hydrograph type = Combine Peak discharge = 12.51 cfsStorm frequency Time to peak = 100 yrs= 732 min Time interval = 2 min Hyd. volume = 80,555 cuft Inflow hyds. = 5, 8Contrib. drain. area = 1.270 ac

UNT. TO EAST BRANCH CHESTER CREEK

ELA SPORT

DESIGN & CONSULTING ATHLETIC FACILITIES

737 S. BROAD STREET (717) 626-72713 LITITZ, PA 17543

PROJECT: The Westtown School - Oak Lane Project

POST-DEVELOPMENT SUMMARY

WEIGHTED CURVE NUMBER

NRCS (SCS) TR-55- WATERSHED

COUNTY: Chester

LOCATION: Westtown Township

		Tc	Min.	22	5	5	12	
	Composite	'CN' Value	65	98	86	64		
		Total	Area (ac.)	6.67	2.22	2.22	3.59	
epseq2 neqQ (senA bedrutebnU)	D	80		0.92	0.00	0.00	0.04	
epsed SnedO (Disturbed Area)	D	80		0.54	0.00	0.00	09.0	
936q2 nəqO (SərA bədrutzbnU)	В	61	c)	2.79	0.00	0.00	0.93	
936q2 nəqO (Disturbed Area)	В	61	Area (ac	5.12	0.00	0.00	2.01	
Parking, Other Impervious (Undisturbed Area)	В	86		0.00	0.00	0.00	0.00	
Parking, Other Impervious (Disturbed Area)	В	86		0:30	2.22	2.22	0.00	
TAND USE	HSG	"CN" Value		4	2	3		
			WATERSHED	Infiltration Basin - BMP 4	Infiltration Bed - BMP 2	Infiltration Bed - BMP 3	Undetained	

ELA SPORT

SUMMARY - SUBAREAS TIME OF CONCENTRATION PRE-**DESIGN & CONSULTING** ATHLETIC FACILITIES

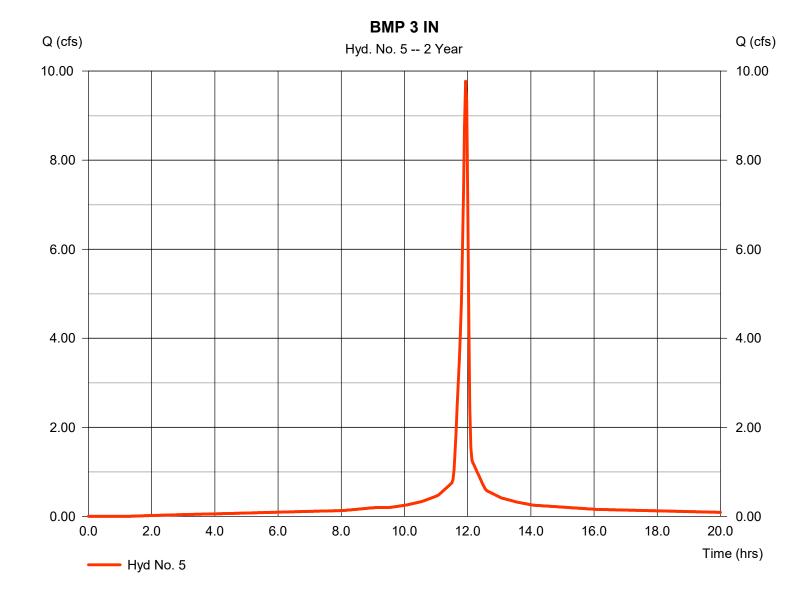
737 S. BROAD STREET **LITITZ, PA 17543** (717) 626-72713

The Westtown School - Oak Lane Project PROJECT:

DEVELOPMENT CONDITIONS

Westtown Township Chester LOCATION: COUNTY:

	al	oT Δ	Hrs.						0.37										0.20	
	Total		Min.						22										12	
			łТ	Min.	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
			^ε ႕ փքնոծվ	ft.																
		ipe	n e'gninnsM	u																
(Tt)		Channel or Pipe	Slope S ₃	ft./ft.																
μe	pc	hann	Pipe Diameter	in.																
el til	Metho	S	Wetted Perimeter	ft.	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
trav	ıtal) I		Flow Area	sq.ft.	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
concentration (Tc) or travel time (Tt)	mer		Channel or Pipe	C/P																
	Seg	ed	打	Min.	0.0	3.4	0.2	0	0	3.6	0.0	1.5	0	0	0	0	0		0	1.5
tion	city(entraf	Average Velocity	ft./s	0	1.7	9.9	0	0		0	3.5	0	0	0	0	0		0	
•ntra	NRCS Velocity(Segmental) Method	Conce	Slope S ₂	ft./ft.		0.011	0.167					0.048								
Suc	IRC	Shallow Concentrated	^z η ϥֈβuəη	ft.		350	62					313								
	_		Flow Path Cover	U/P		\supset	\supset					\supset								
Time of			эΤ	Min.	18	0	0	0	0	18	10.7	0	0	0	0	0	0		0	10.7
		nd	Ustriei 17 S	in.	3.26	3.26	3.26				3.26									
		overland	n e'gninnsM	n	0.24						0.24									
		0	Slope S ₁	ft./ft.	0.011						0.040									
			Length L ₁ .xsm .ft. max.	ft.	100						100									
			Sub area		BMP 1						Unt. to EBCC	Undetained								

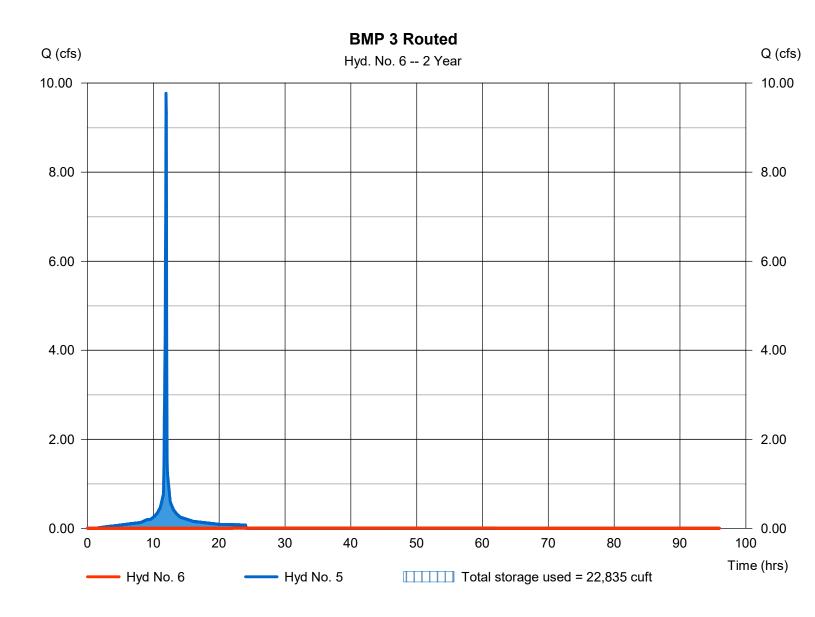

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

BMP 3 IN

Hydrograph type = SCS Runoff Peak discharge = 9.771 cfsStorm frequency = 2 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 22,871 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 6

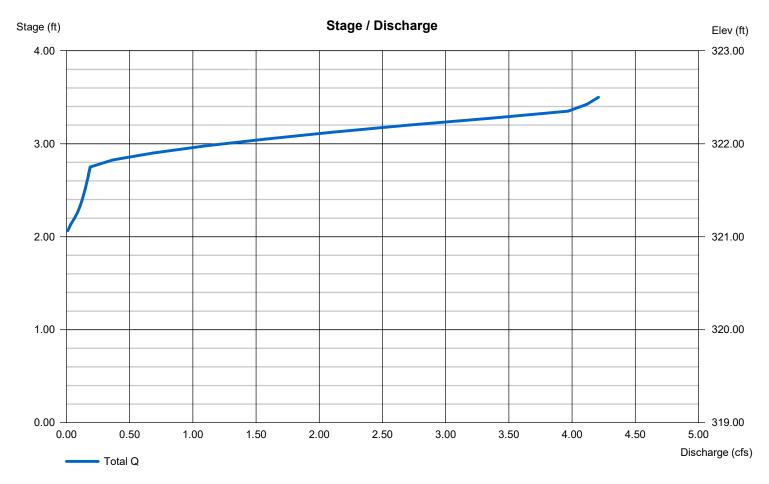
BMP 3 Routed

= Reservoir Hydrograph type Peak discharge = 0.006 cfsStorm frequency = 2 yrsTime to peak $= 24.10 \, hrs$ Time interval = 2 min Hyd. volume = 772 cuft Inflow hyd. No. = 5 - BMP 3 IN Max. Elevation = 321.04 ft= BMP 3 Reservoir name Max. Storage = 22,835 cuft

Monday, 09 / 18 / 2023

Pond No. 7 - BMP 3

Pond Data

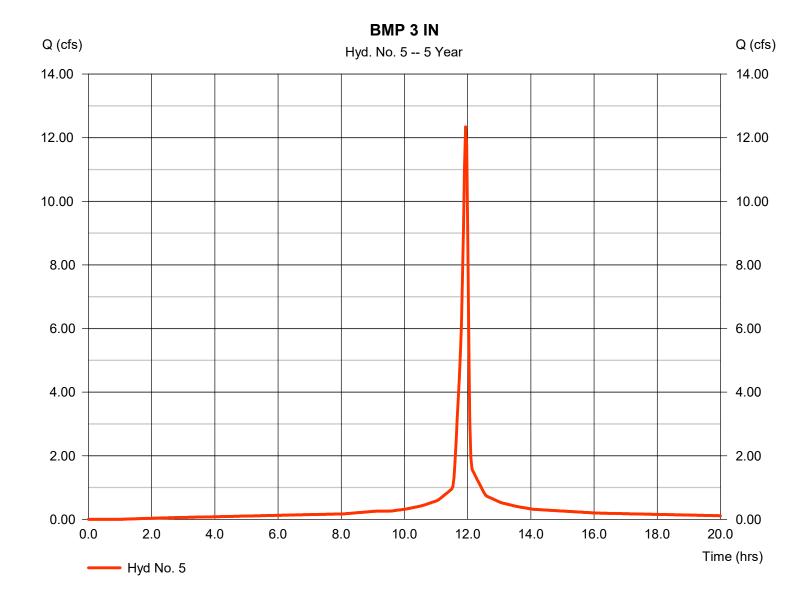

Pond storage is based on user-defined values.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)				
0.00	319.00	n/a	0	0				
1.00	320.00	n/a	10,878	10,878				
2.00	321.00	n/a	11,038	21,916				
2.65	321.65	n/a	14,567	36,483				
2.75	321.75	n/a	3,600	40,083				
3.50	322.50	n/a	28,665	68,748				

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 12.003.00 0.00 0.00 Crest Len (ft) = 3.14 0.00 0.00 0.00 = 12.00 3.00 0.00 0.00 Crest El. (ft) = 321.75 0.00 0.00 0.00 Span (in) = 2.60 3.33 No. Barrels = 1 0 Weir Coeff. 3.33 3.33 Invert El. (ft) = 319.00321.00 0.00 0.00 Weir Type = Broad = 245.00 0.10 0.00 0.00 Multi-Stage = Yes No Length (ft) No No 0.00 n/a = 0.750.00 Slope (%) N-Value = .013 .013 .013 n/a 0.60 0.60 0.60 = 0.000 (by Wet area) Orifice Coeff. = 0.60Exfil.(in/hr) TW Elev. (ft) Multi-Stage = n/aYes No No = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

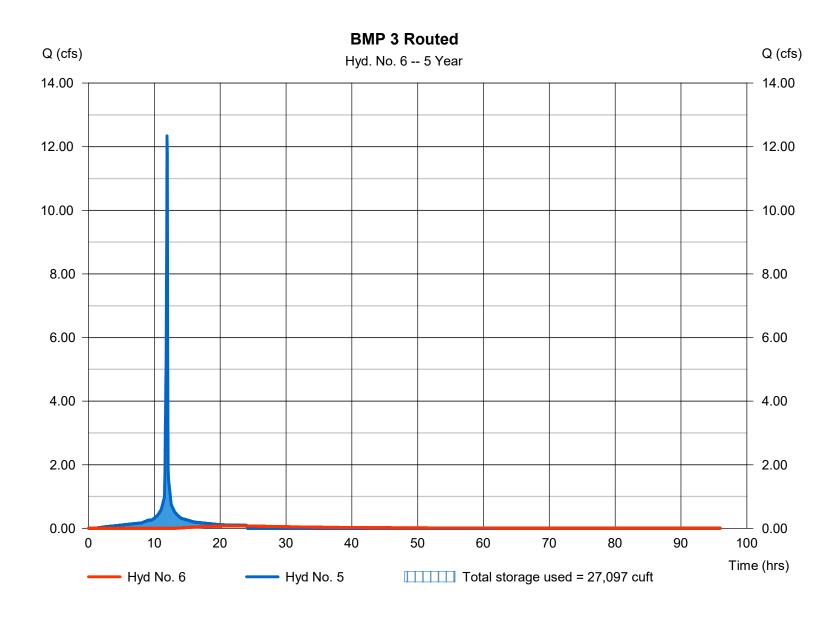

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

BMP 3 IN

= 12.34 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency = 5 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 29,199 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

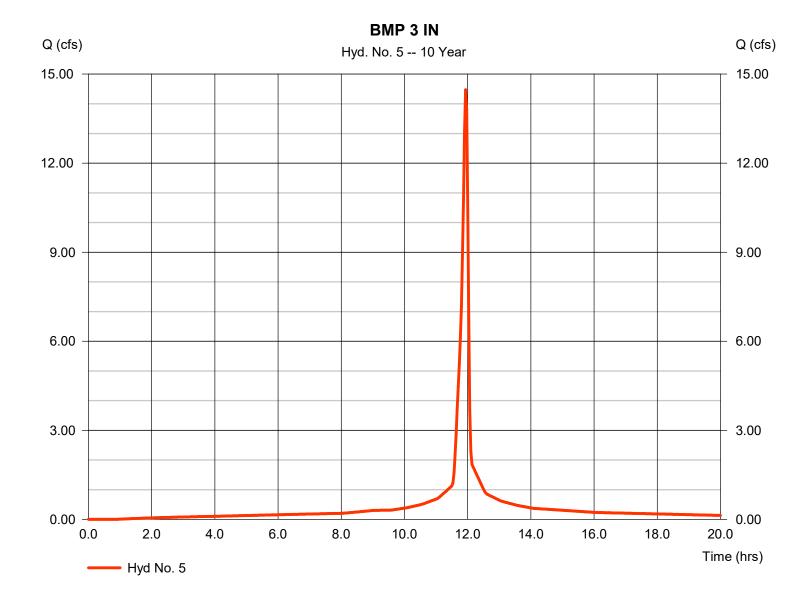

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 6

BMP 3 Routed

Hydrograph type Peak discharge = 0.076 cfs= Reservoir Storm frequency = 5 yrsTime to peak $= 24.03 \, hrs$ Time interval = 2 min Hyd. volume = 6,655 cuftInflow hyd. No. = 5 - BMP 3 IN Max. Elevation = 321.23 ft= BMP 3 = 27,097 cuft Reservoir name Max. Storage

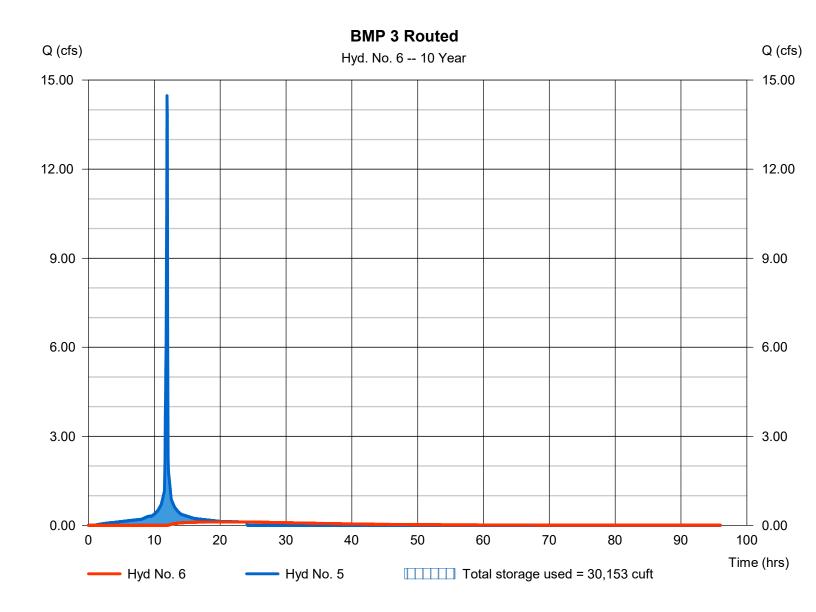

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

BMP 3 IN

Hydrograph type = SCS Runoff Peak discharge = 14.48 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ = 34,477 cuft Time interval = 2 min Hyd. volume Drainage area = 2.220 acCurve number = 98 = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

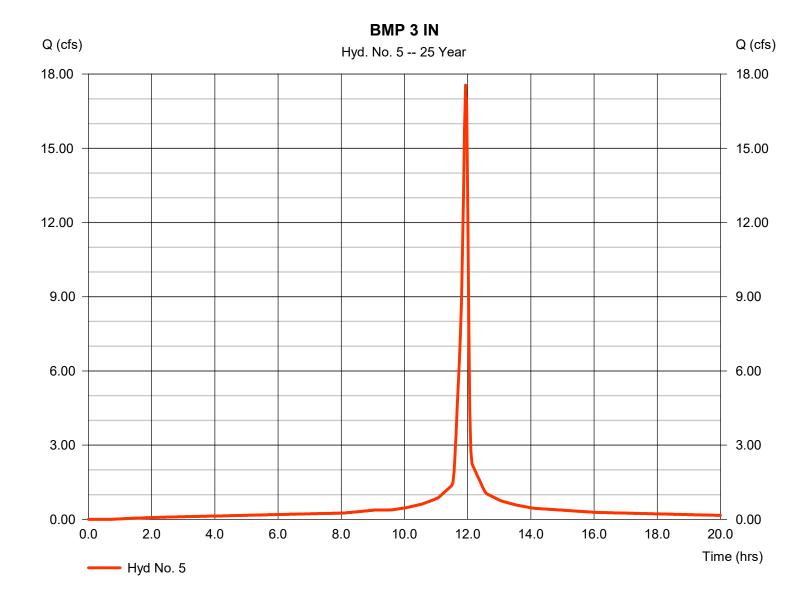

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 6

BMP 3 Routed

Hydrograph type Peak discharge = 0.116 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 22.97 \, hrs$ Time interval = 2 min Hyd. volume = 11,796 cuft Inflow hyd. No. = 5 - BMP 3 IN Max. Elevation = 321.37 ft= BMP 3 = 30,153 cuft Reservoir name Max. Storage

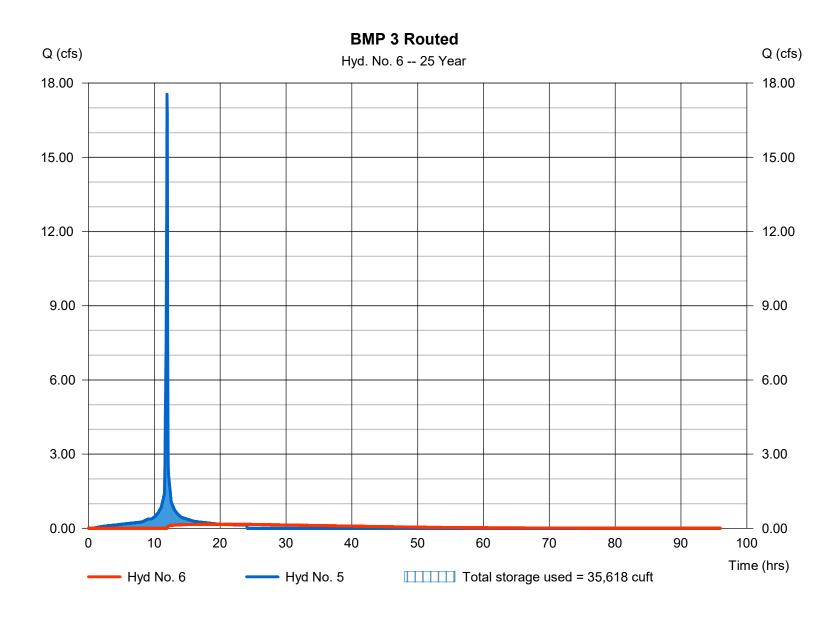

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

BMP 3 IN

Hydrograph type = SCS Runoff Peak discharge = 17.55 cfsStorm frequency = 25 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 42,097 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length Basin Slope = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

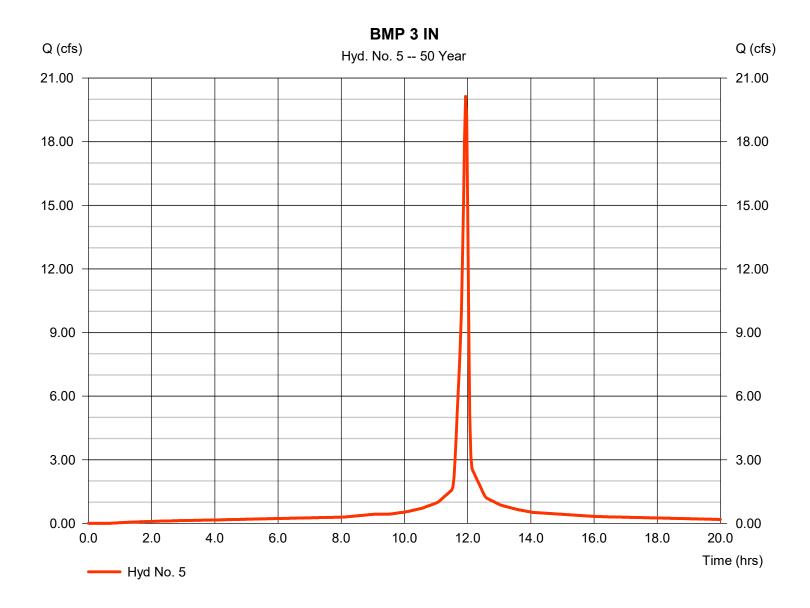

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 6

BMP 3 Routed

Hydrograph type = Reservoir Peak discharge = 0.165 cfsStorm frequency = 25 yrsTime to peak $= 19.83 \, hrs$ Time interval = 2 min Hyd. volume = 19,215 cuft Inflow hyd. No. = 5 - BMP 3 IN Max. Elevation $= 321.61 \, \text{ft}$ = BMP 3 Reservoir name Max. Storage = 35,618 cuft

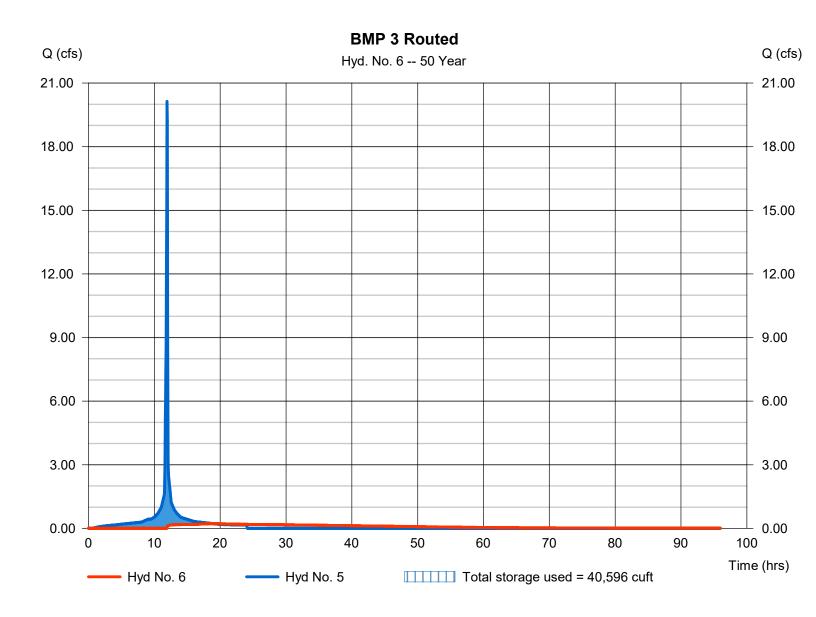

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

BMP 3 IN

Hydrograph type = SCS Runoff Peak discharge = 20.14 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 48,512 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length Basin Slope = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

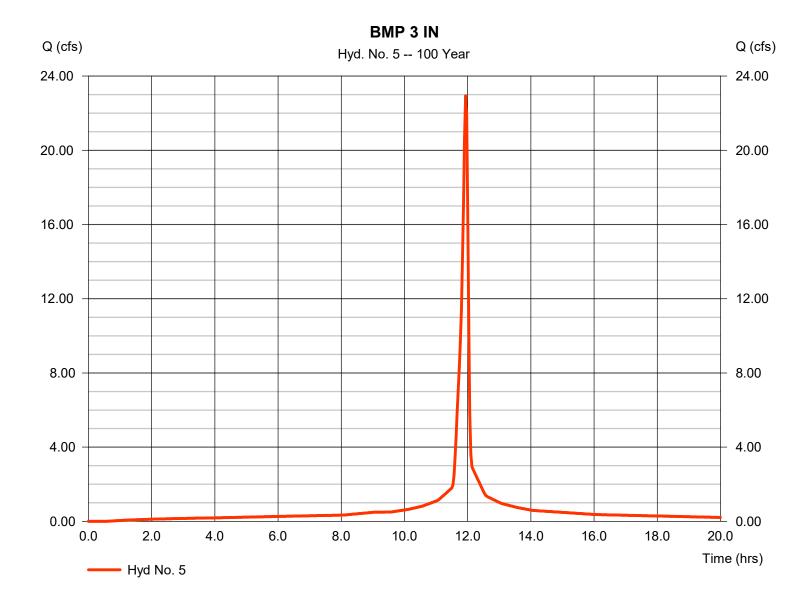

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 6

BMP 3 Routed

Hydrograph type = Reservoir Peak discharge = 0.219 cfsStorm frequency = 50 yrsTime to peak $= 19.00 \, hrs$ Time interval = 2 min Hyd. volume = 25,455 cuft Inflow hyd. No. = 5 - BMP 3 IN Max. Elevation = 321.76 ft= BMP 3 = 40,596 cuft Reservoir name Max. Storage

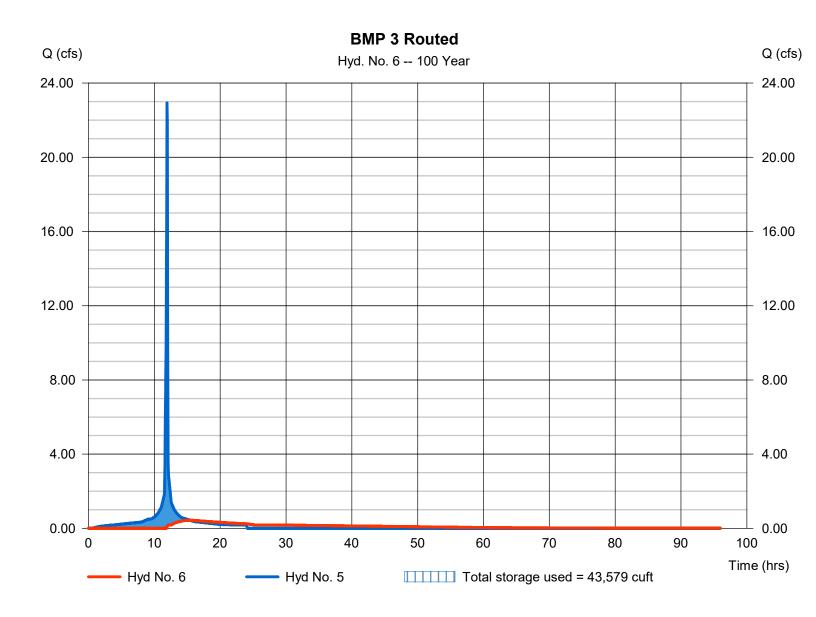

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 5

BMP 3 IN

Hydrograph type = SCS Runoff Peak discharge = 22.94 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 55,457 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

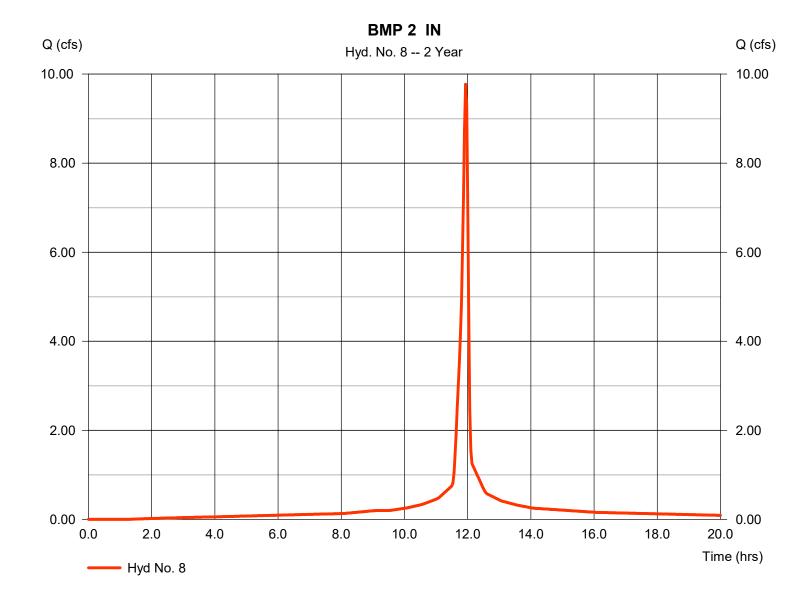

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 6

BMP 3 Routed

Hydrograph type Peak discharge = 0.435 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 15.43 \, hrs$ Time interval = 2 min Hyd. volume = 32,369 cuftInflow hyd. No. = 5 - BMP 3 IN Max. Elevation = 321.84 ft= BMP 3 Reservoir name Max. Storage = 43,579 cuft

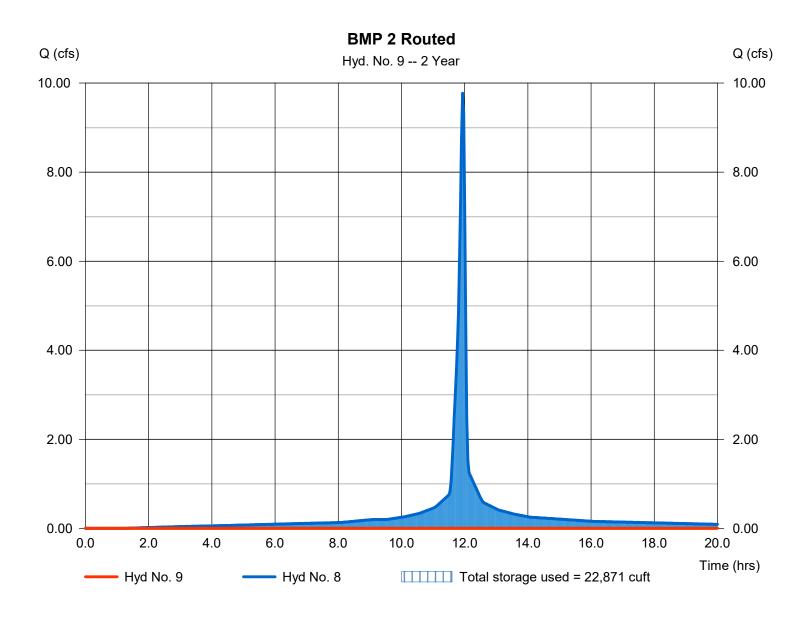

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 2 IN

Hydrograph type = SCS Runoff Peak discharge = 9.771 cfsStorm frequency = 2 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 22,871 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length = 0 ftBasin Slope Tc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 9

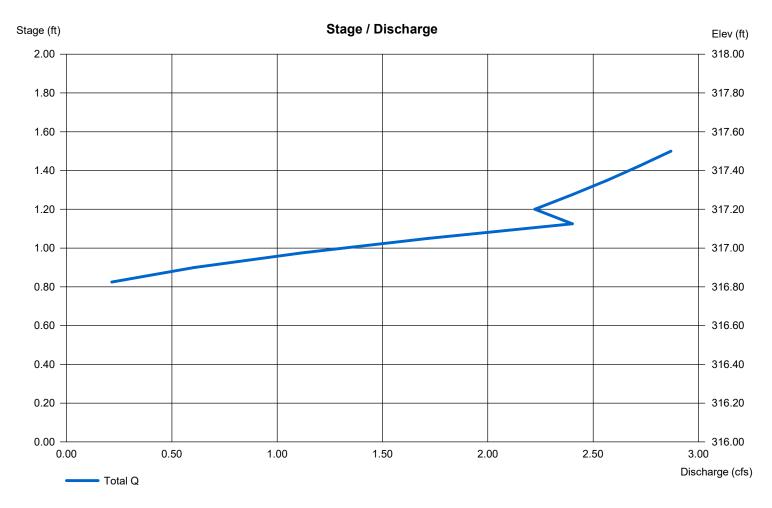
BMP 2 Routed

= Reservoir Hydrograph type Peak discharge = 0.000 cfsStorm frequency = 2 yrsTime to peak = n/aTime interval = 2 min Hyd. volume = 0 cuft Inflow hyd. No. = 8 - BMP 2 IN Max. Elevation $= 316.75 \, \text{ft}$ = BMP 2 Reservoir name Max. Storage = 22,871 cuft

Monday, 09 / 18 / 2023

Pond No. 6 - BMP 2

Pond Data

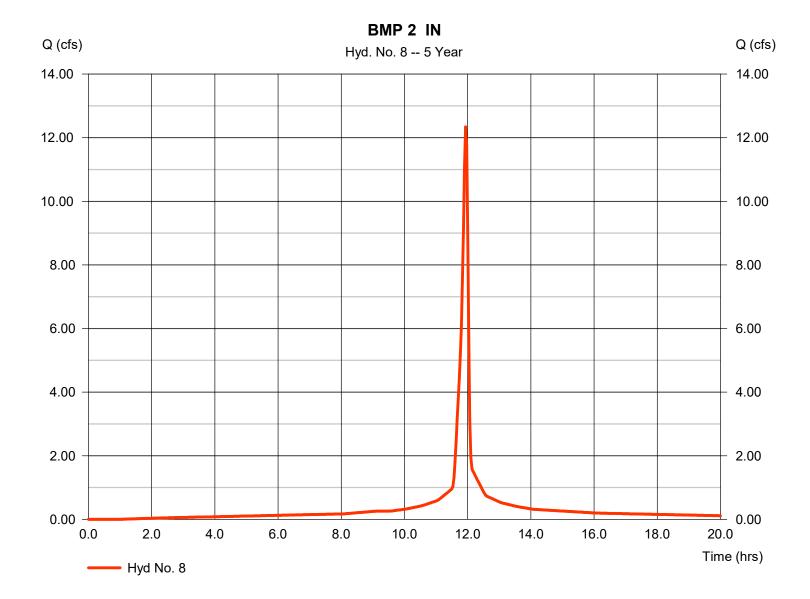

Pond storage is based on user-defined values.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)			
0.00	316.00	n/a	0	0			
0.67	316.67	n/a	20,294	20,294			
0.75	316.75	n/a	2,741	23,035			
1.50	317.50	n/a	28,665	51,700			

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 15.00 0.00 0.00 0.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) = 3.14 Span (in) = 15.00 0.00 0.00 0.00 Crest El. (ft) 0.00 0.00 0.00 = 316.75 0 = 1 0 0 Weir Coeff. = 3.333.33 3.33 No. Barrels 3.33 Invert El. (ft) = 312.500.00 0.00 0.00 Weir Type = 1 = 84.00 0.00 0.00 0.00 = Yes No No Length (ft) Multi-Stage No = 0.530.00 0.00 n/a Slope (%) N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

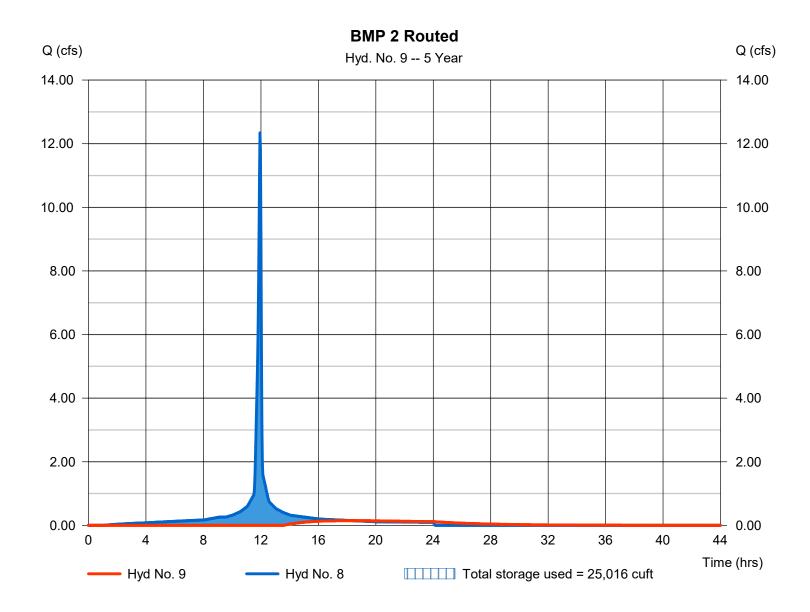

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 2 IN

Hydrograph type = SCS Runoff Peak discharge = 12.34 cfsStorm frequency = 5 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 29,199 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.10 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

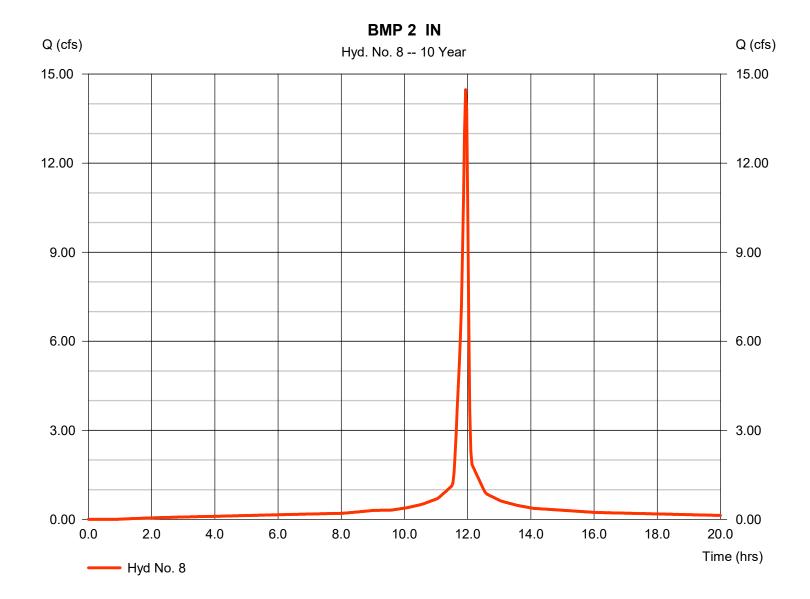

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 9

BMP 2 Routed

Hydrograph type Peak discharge = 0.148 cfs= Reservoir Storm frequency = 5 yrsTime to peak $= 18.33 \, hrs$ Time interval = 2 min Hyd. volume = 6,151 cuft= 8 - BMP 2 IN Inflow hyd. No. Max. Elevation = 316.80 ft= BMP 2 = 25,016 cuft Reservoir name Max. Storage

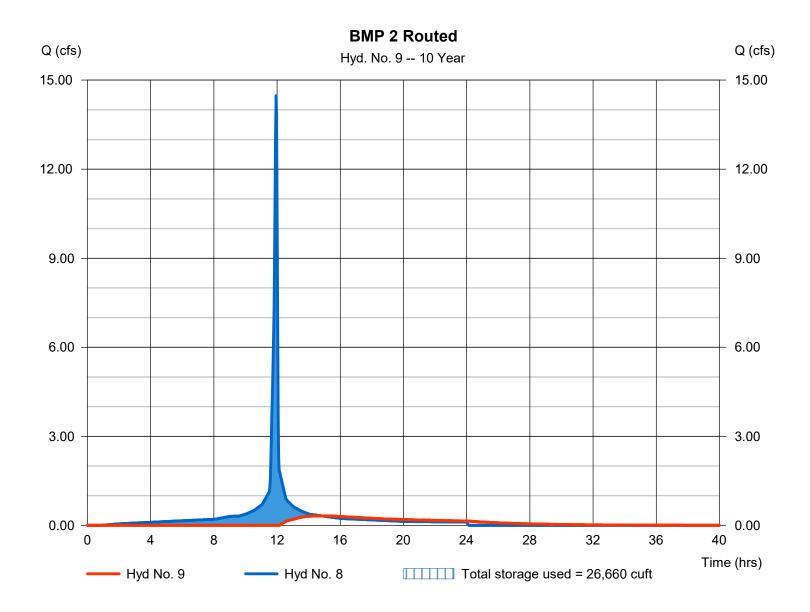

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 2 IN

Hydrograph type = SCS Runoff Peak discharge = 14.48 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ = 34,477 cuft Time interval = 2 min Hyd. volume Drainage area = 2.220 acCurve number = 98 = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

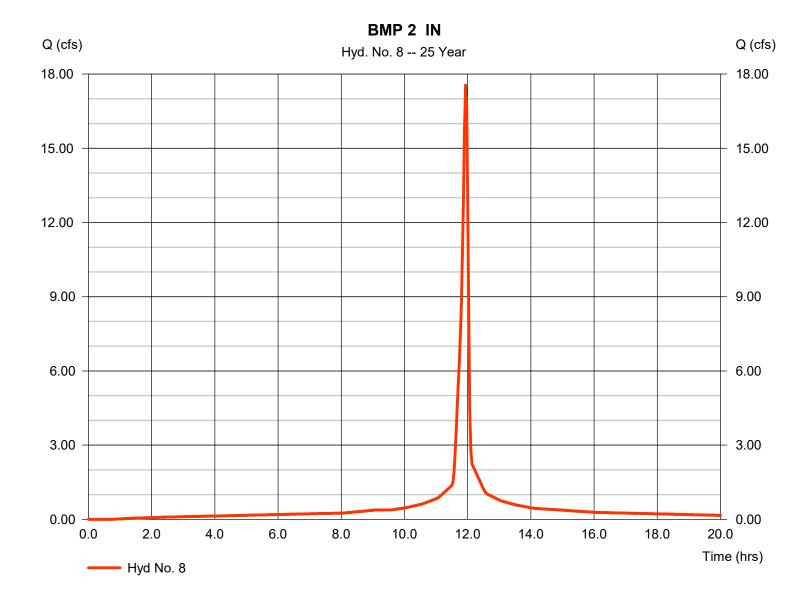

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 9

BMP 2 Routed

Hydrograph type = Reservoir Peak discharge = 0.319 cfsStorm frequency = 10 yrsTime to peak $= 14.80 \, hrs$ Time interval = 2 min Hyd. volume = 11,429 cuft Inflow hyd. No. = 8 - BMP 2 IN Max. Elevation = 316.84 ft= BMP 2 = 26,660 cuft Reservoir name Max. Storage

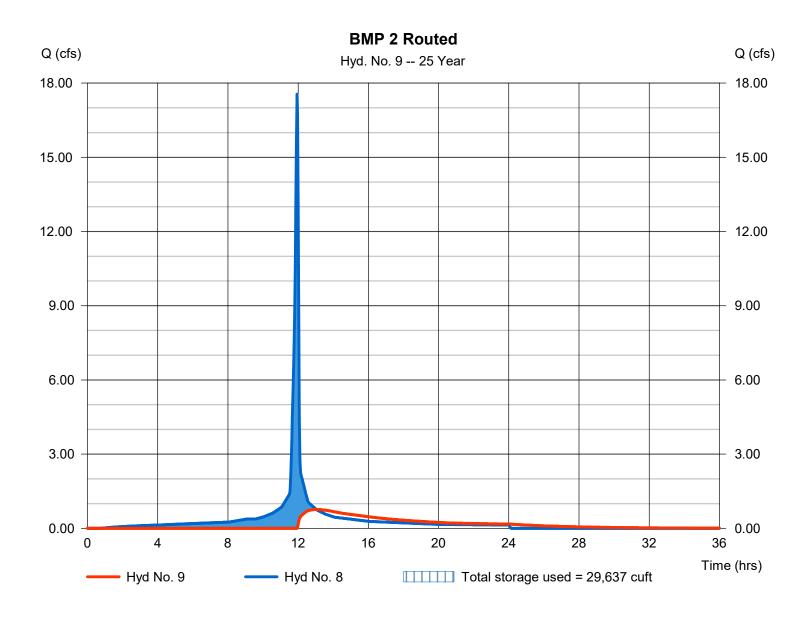

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 2 IN

Hydrograph type = SCS Runoff Peak discharge = 17.55 cfsStorm frequency = 25 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 42,097 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length Basin Slope = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

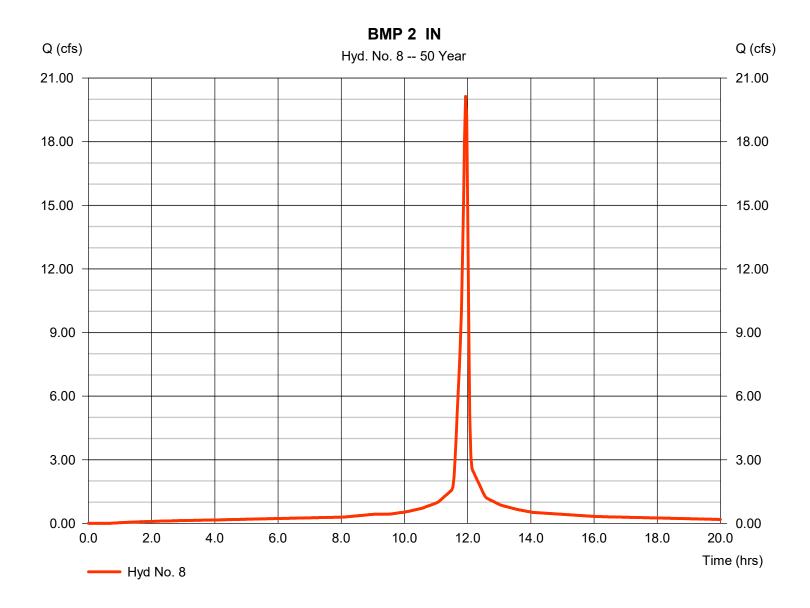

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 9

BMP 2 Routed

Hydrograph type = Reservoir Peak discharge = 0.762 cfsStorm frequency = 25 yrsTime to peak $= 13.03 \, hrs$ Time interval = 2 min Hyd. volume = 19,048 cuft Inflow hyd. No. = 8 - BMP 2 IN Max. Elevation = 316.92 ft= BMP 2 = 29,637 cuft Reservoir name Max. Storage

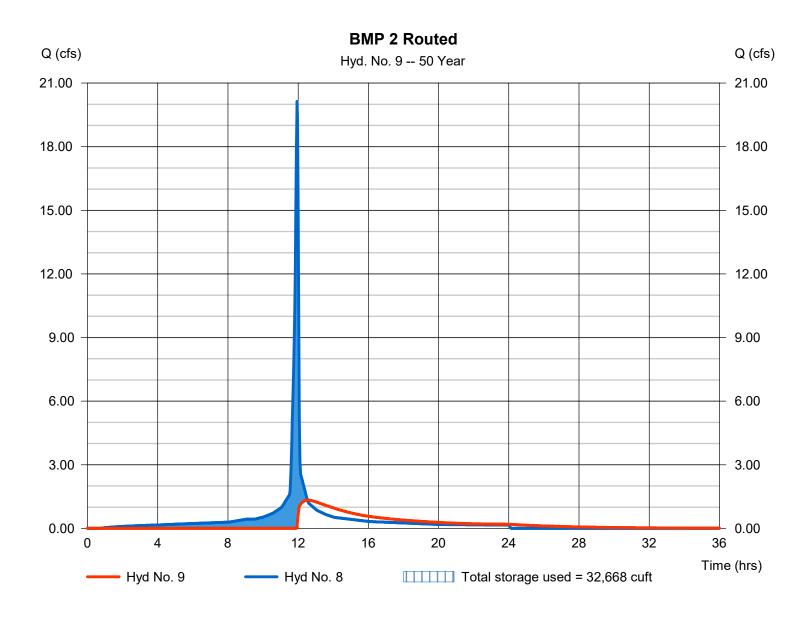

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 2 IN

Hydrograph type = SCS Runoff Peak discharge = 20.14 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 48,512 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Hydraulic length Basin Slope = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

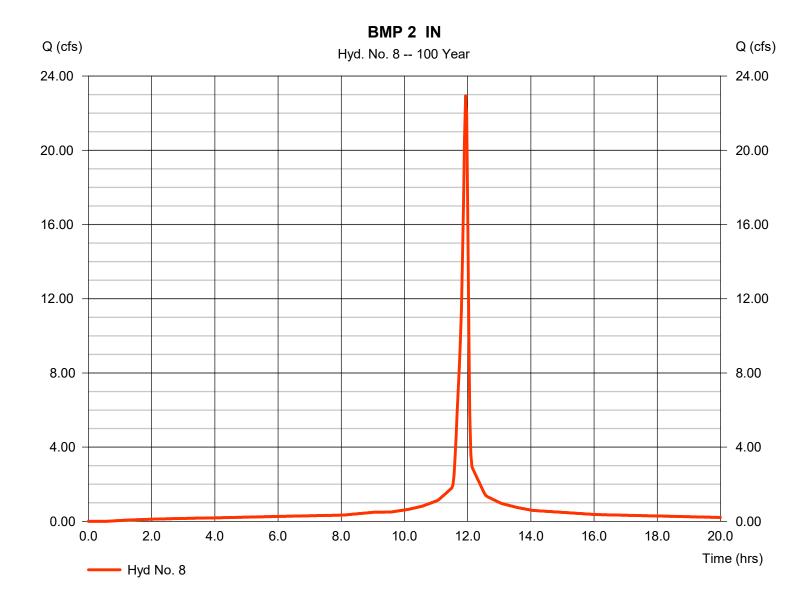

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 9

BMP 2 Routed

Hydrograph type = Reservoir Peak discharge = 1.333 cfsStorm frequency = 50 yrsTime to peak $= 12.53 \, hrs$ Time interval = 2 min Hyd. volume = 25,463 cuft Inflow hyd. No. = 8 - BMP 2 IN Max. Elevation = 317.00 ft= BMP 2 Reservoir name Max. Storage = 32,668 cuft

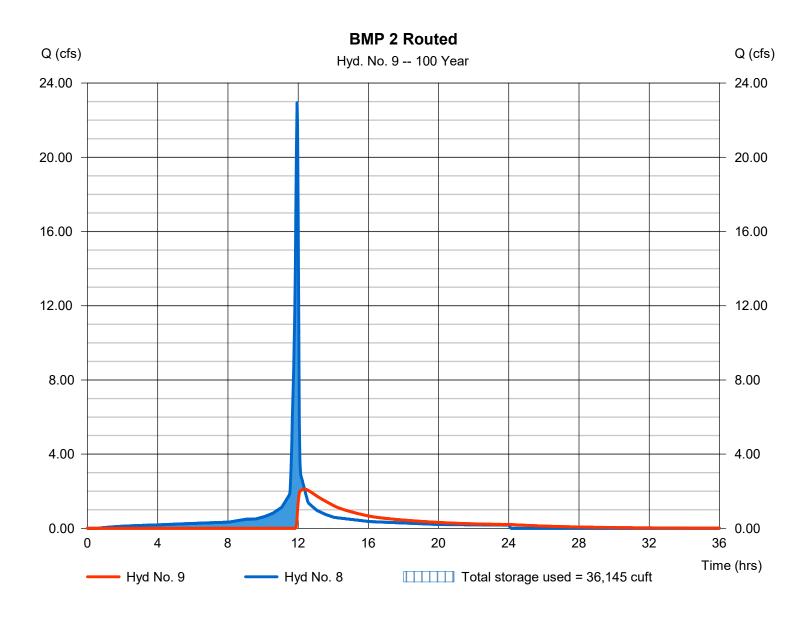

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 8

BMP 2 IN

Hydrograph type = SCS Runoff Peak discharge = 22.94 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 55,457 cuft Drainage area = 2.220 acCurve number = 98 = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

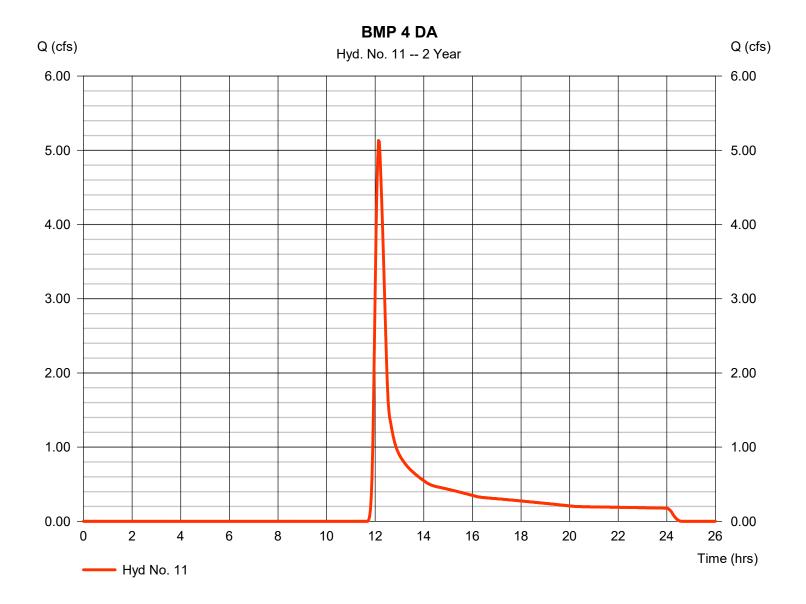

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 9

BMP 2 Routed

Hydrograph type Peak discharge = 2.110 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 32,409 cuftInflow hyd. No. Max. Elevation = 8 - BMP 2 IN = 317.09 ft= BMP 2 Reservoir name Max. Storage = 36,145 cuft

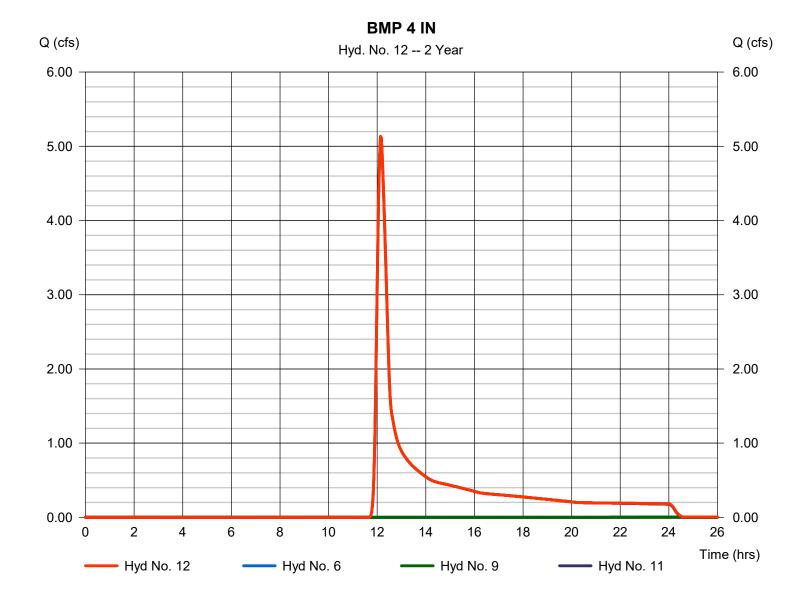

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 11

BMP 4 DA

Hydrograph type = SCS Runoff Peak discharge = 5.132 cfsStorm frequency = 2 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 22.498 cuft Drainage area Curve number = 9.670 ac= 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

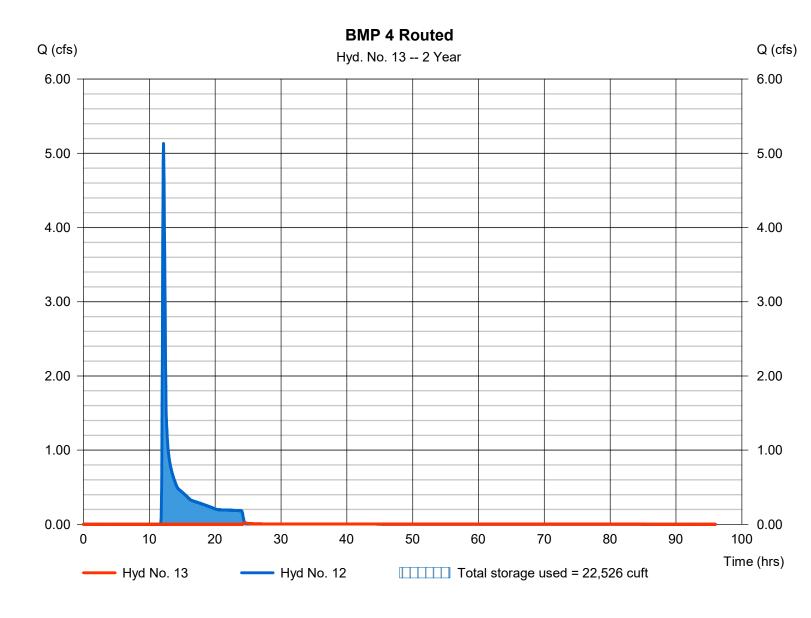

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type = Combine Peak discharge = 5.132 cfsStorm frequency = 2 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 23,271 cuft Inflow hyds. = 6, 9, 11Contrib. drain. area = 9.670 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 13

BMP 4 Routed

Hydrograph type Peak discharge = 0.019 cfs= Reservoir Storm frequency = 2 yrsTime to peak $= 24.47 \, hrs$ Time interval = 2 min Hyd. volume = 790 cuft Inflow hyd. No. Max. Elevation = 12 - BMP 4 IN = 311.00 ft= BMP 4 Reservoir name Max. Storage = 22,526 cuft

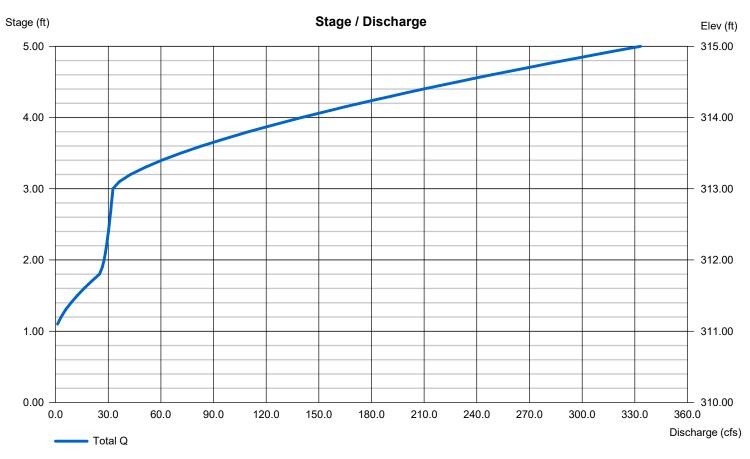
Monday, 09 / 18 / 2023

Pond No. 5 - BMP 4

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 310.00 ft

Stage / Storage Table

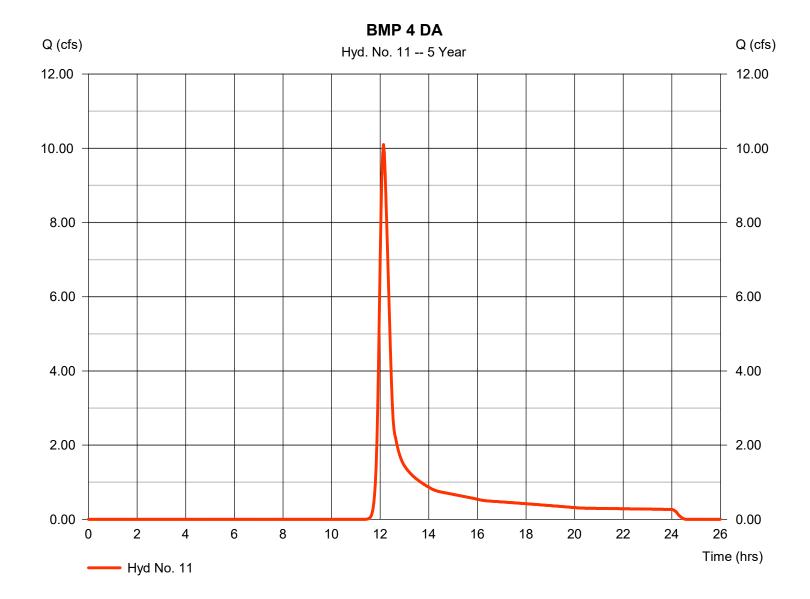

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	310.00	19,809	0	0
1.00	311.00	25,262	22,478	22,478
2.00	312.00	31,631	28,384	50,862
3.00	313.00	39,183	35,336	86,198
4.00	314.00	46,661	42,863	129,062
4.50	314.50	49,481	24,030	153,091
5.00	315.00	52,258	25,429	178,520

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 10.50	Inactive	40.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 311.00	311.00	313.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 307.25	0.00	0.00	0.00	Weir Type	= 1	Rect	Broad	
Length (ft)	= 36.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.69	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

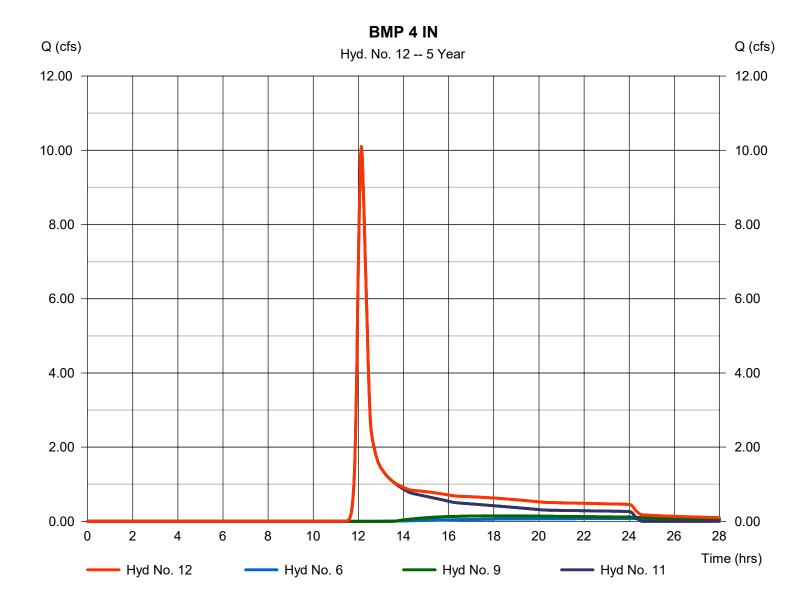

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 11

BMP 4 DA

Hydrograph type = SCS Runoff Peak discharge = 10.10 cfsStorm frequency = 5 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 38.836 cuft Drainage area = 9.670 ac Curve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 4.10 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

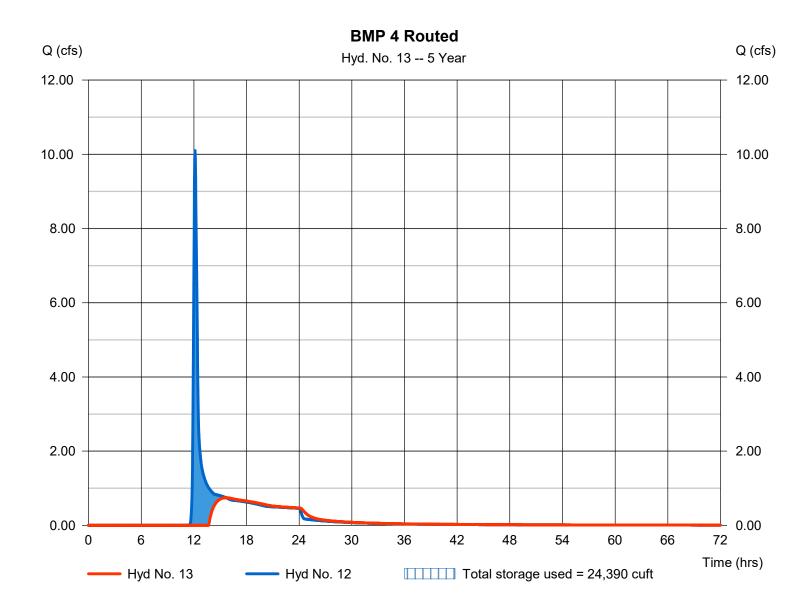

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type = Combine Peak discharge = 10.10 cfsTime to peak Storm frequency = 5 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 51,642 cuft Inflow hyds. = 6, 9, 11Contrib. drain. area = 9.670 ac

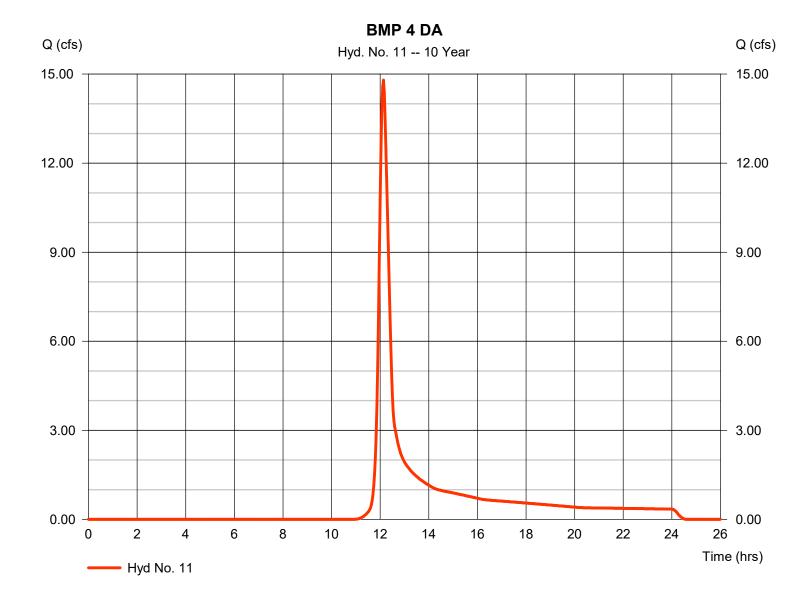

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 13

BMP 4 Routed

Hydrograph type Peak discharge = 0.745 cfs= Reservoir Storm frequency = 5 yrsTime to peak $= 15.67 \, hrs$ Time interval = 2 min Hyd. volume = 29,154 cuft Inflow hyd. No. Max. Elevation = 12 - BMP 4 IN = 311.07 ft= BMP 4 Reservoir name Max. Storage = 24,390 cuft

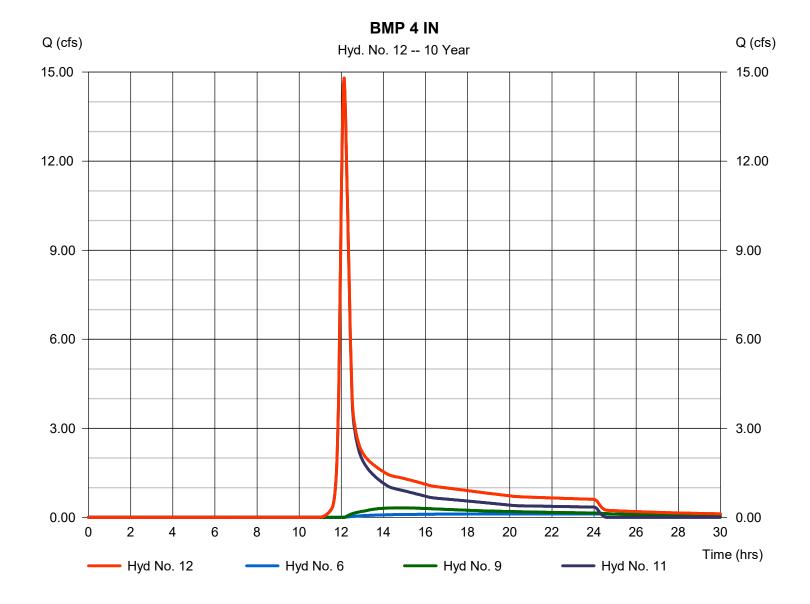

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 11

BMP 4 DA

Hydrograph type = SCS Runoff Peak discharge = 14.80 cfsStorm frequency = 10 yrsTime to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 54,377 cuftDrainage area Curve number = 9.670 ac= 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

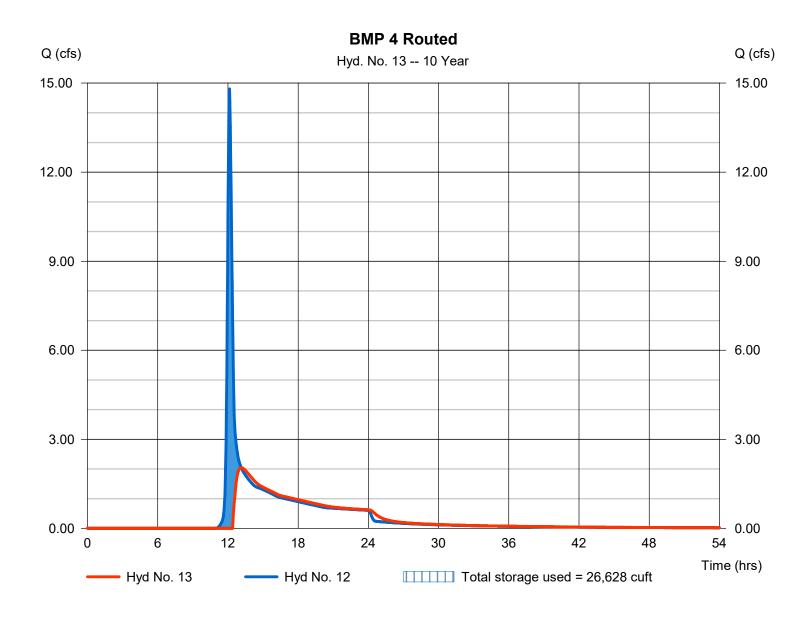

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type = Combine Peak discharge = 14.80 cfsTime to peak Storm frequency = 10 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 77,602 cuft Inflow hyds. = 6, 9, 11Contrib. drain. area = 9.670 ac

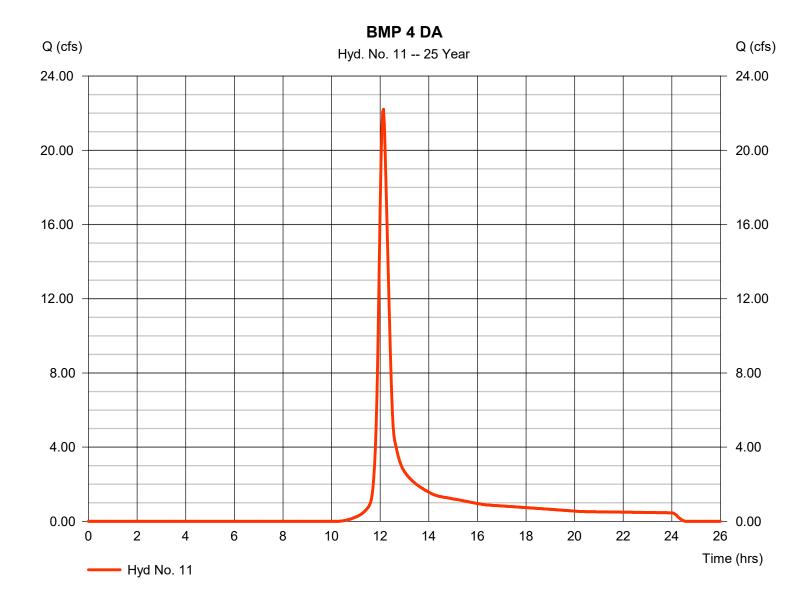

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 13

BMP 4 Routed

Hydrograph type Peak discharge = 2.040 cfs= Reservoir Storm frequency = 10 yrsTime to peak $= 13.13 \, hrs$ Time interval = 2 min Hyd. volume = 55,111 cuft Inflow hyd. No. Max. Elevation = 311.15 ft = 12 - BMP 4 IN = BMP 4 = 26,628 cuft Reservoir name Max. Storage

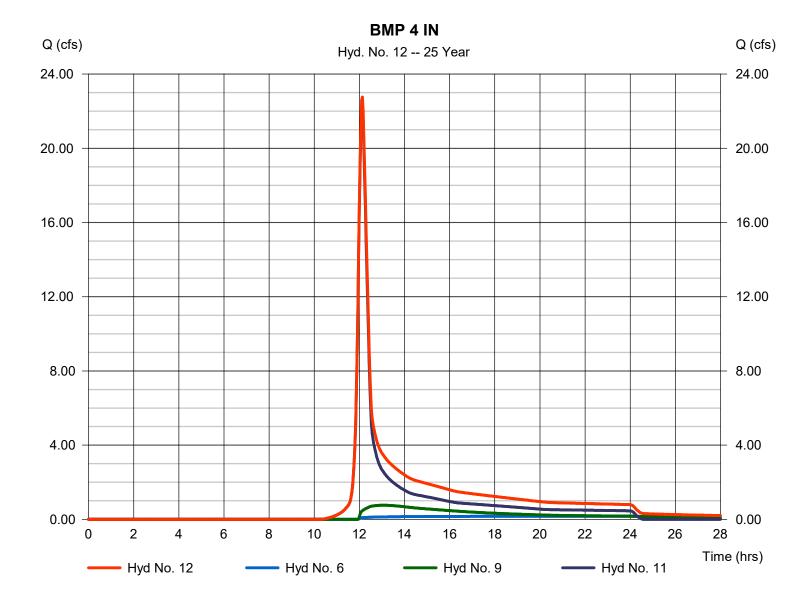

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 11

BMP 4 DA

Hydrograph type = SCS Runoff Peak discharge = 22.21 cfsStorm frequency = 25 yrs Time to peak $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 79,109 cuft Drainage area = 9.670 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 22.00 min = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

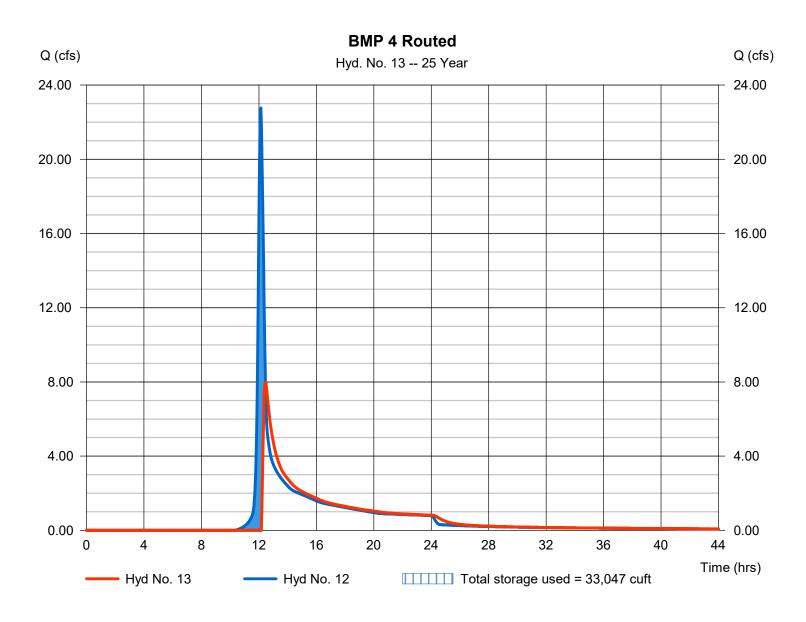

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 12

BMP 4 IN

= 22.76 cfsHydrograph type = Combine Peak discharge Time to peak Storm frequency = 25 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 117,372 cuft Inflow hyds. = 6, 9, 11Contrib. drain. area = 9.670 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

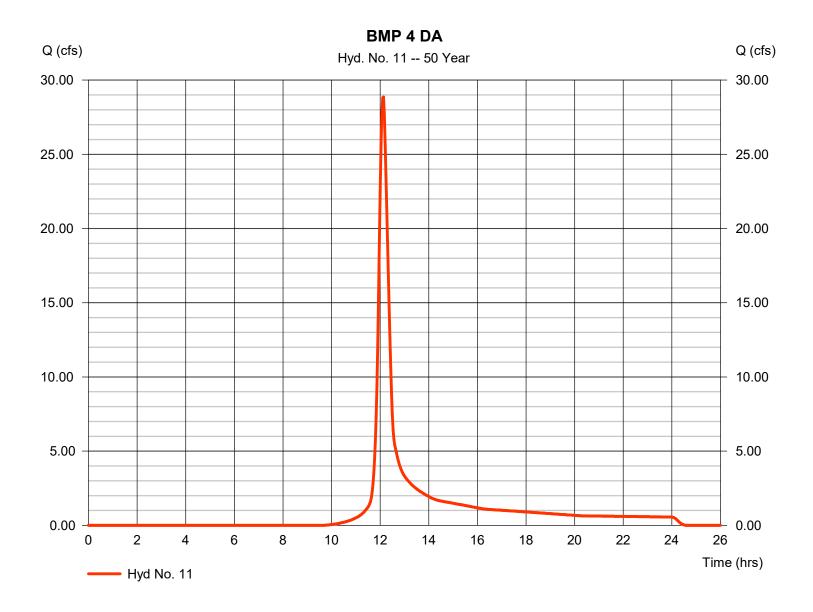
Monday, 09 / 18 / 2023

Hyd. No. 13

BMP 4 Routed

Hydrograph type Peak discharge = 7.989 cfs= Reservoir Storm frequency = 25 yrsTime to peak $= 12.47 \, hrs$ Time interval = 2 min Hyd. volume = 94,878 cuft Inflow hyd. No. Max. Elevation = 311.37 ft= 12 - BMP 4 IN = BMP 4 Reservoir name Max. Storage = 33,047 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

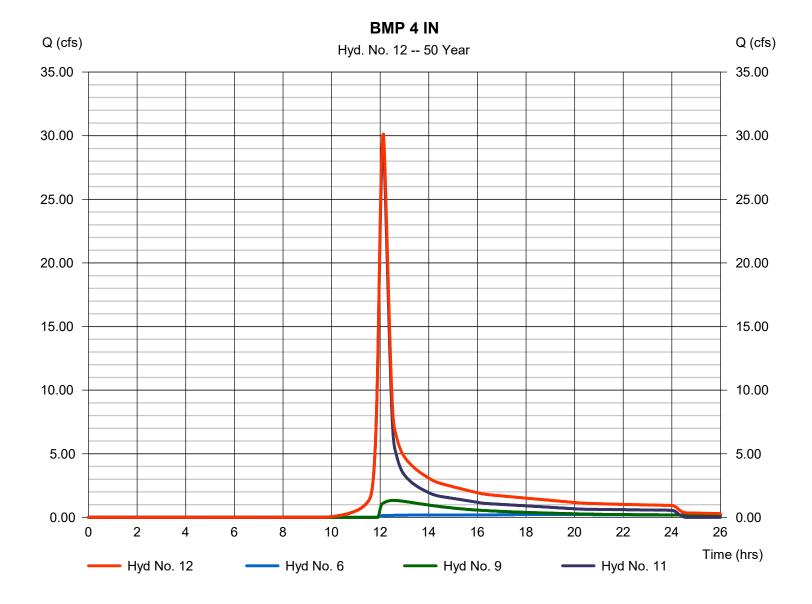

Monday, 09 / 18 / 2023

Hyd. No. 11

BMP 4 DA

Hydrograph type= SCS RunoffPeak discharge= 28.86 cfsStorm frequency= 50 yrsTime to peak= 12.13 hrsTime interval= 2 minHyd. volume= 101,543 cuft

Tc method = User Time of conc. (Tc) = 22.00 min
Total precip. = 6.66 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

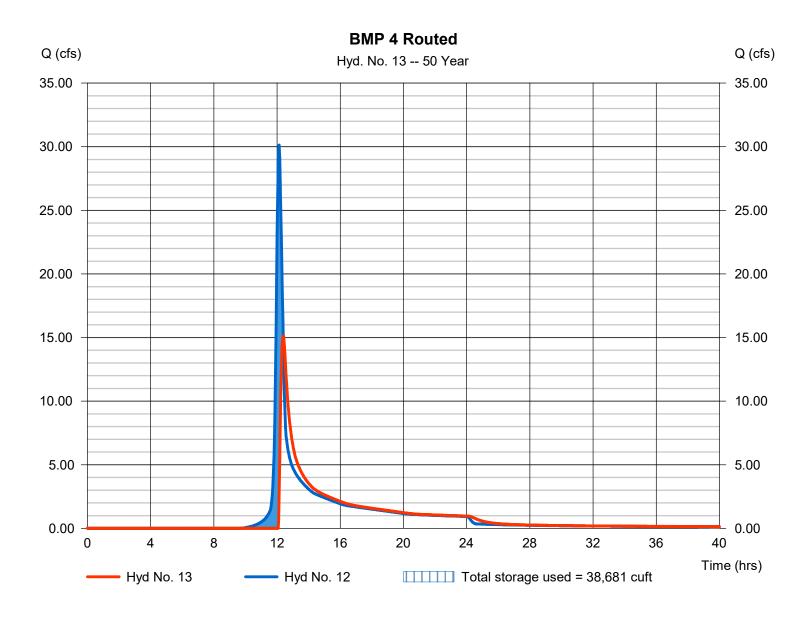

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type = Combine Peak discharge = 30.13 cfsTime to peak Storm frequency = 50 yrs $= 12.13 \, hrs$ Time interval = 2 min Hyd. volume = 152,462 cuft Inflow hyds. = 6, 9, 11Contrib. drain. area = 9.670 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

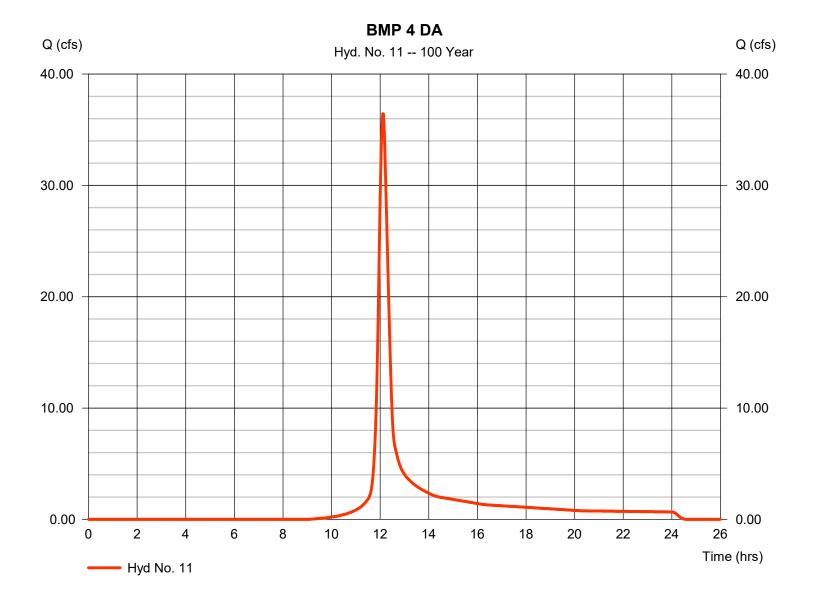
Monday, 09 / 18 / 2023

Hyd. No. 13

BMP 4 Routed

Hydrograph type Peak discharge = 15.12 cfs= Reservoir Storm frequency = 50 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 129,965 cuft Inflow hyd. No. Max. Elevation = 311.57 ft= 12 - BMP 4 IN = BMP 4 Reservoir name Max. Storage = 38,681 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

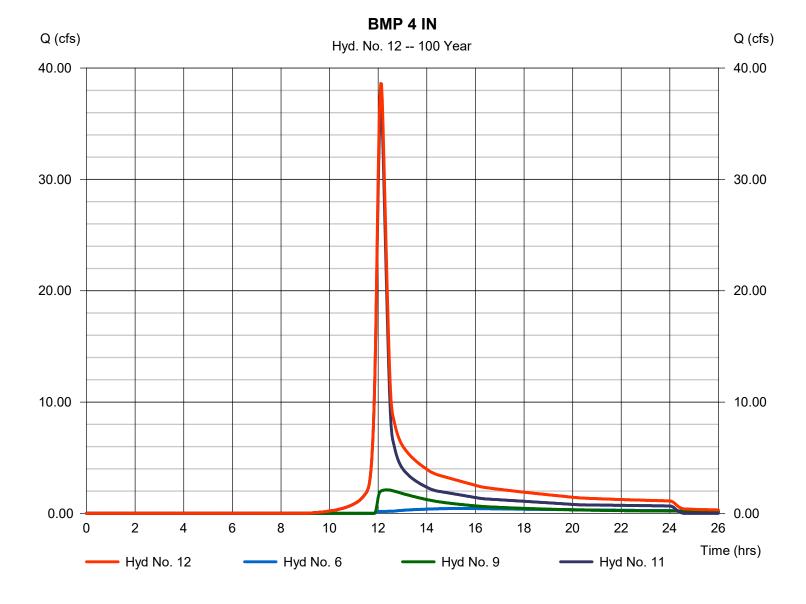

Monday, 09 / 18 / 2023

Hyd. No. 11

BMP 4 DA

Hydrograph type = SCS Runoff Peak discharge = 36.45 cfsStorm frequency = 100 yrsTime to peak $= 12.10 \, hrs$ Time interval = 2 min Hyd. volume = 127,104 cuft Drainage area = 9.670 acCurve number = 65 Basin Slope = 0.0 %Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 22.00 min
Total precip. = 7.58 in Distribution = Type II
Storm duration = 24 hrs Shape factor = 484

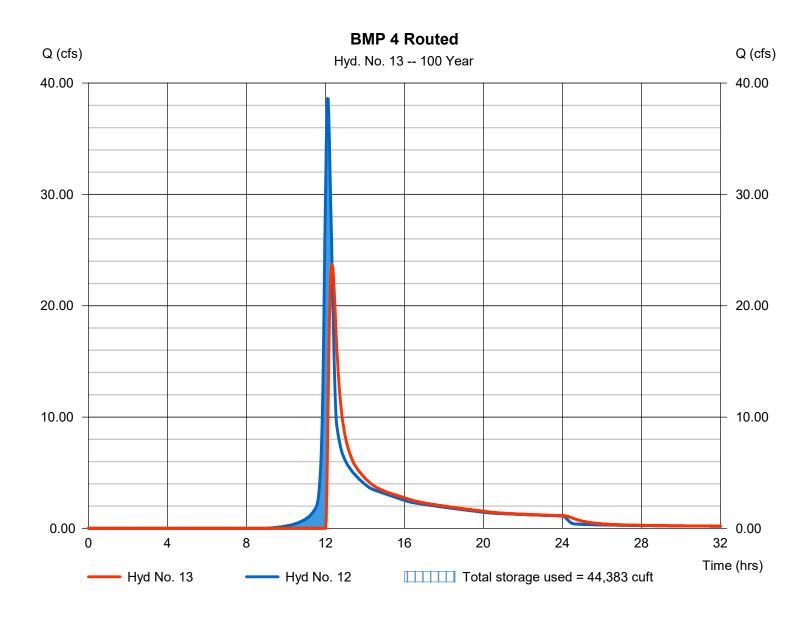

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 12

BMP 4 IN

Hydrograph type = Combine Peak discharge = 38.61 cfsTime to peak Storm frequency = 100 yrs $= 12.10 \, hrs$ Time interval = 2 min Hyd. volume = 191,882 cuft Inflow hyds. = 6, 9, 11Contrib. drain. area = 9.670 ac

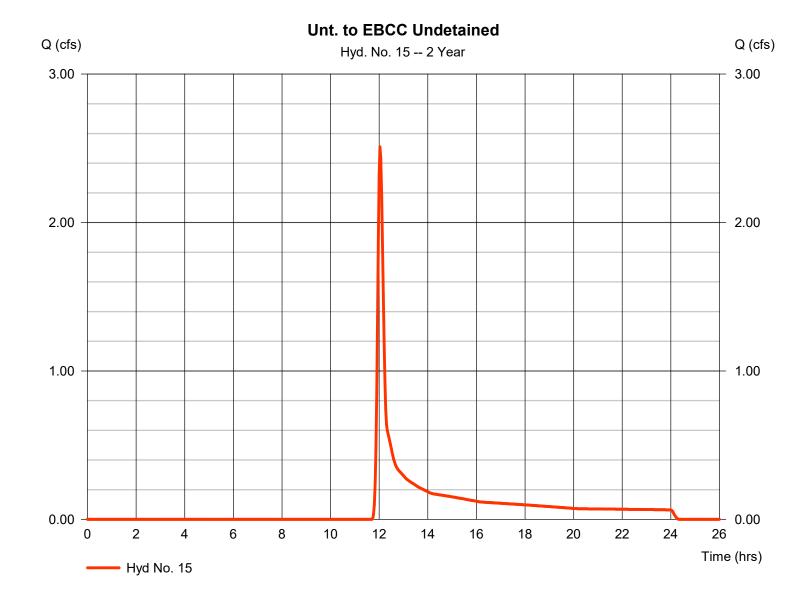

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 13

BMP 4 Routed

Hydrograph type Peak discharge = 23.74 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 169,384 cuft Inflow hyd. No. Max. Elevation = 12 - BMP 4 IN = 311.77 ft= BMP 4 Reservoir name Max. Storage = 44,383 cuft


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type = SCS Runoff Peak discharge = 2.510 cfsStorm frequency = 2 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 7,892 cuft Drainage area Curve number = 3.590 ac= 64 = 0 ftBasin Slope = 0.0 %Hydraulic length Tc method Time of conc. (Tc) = 12.00 min = User Total precip. = 3.26 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

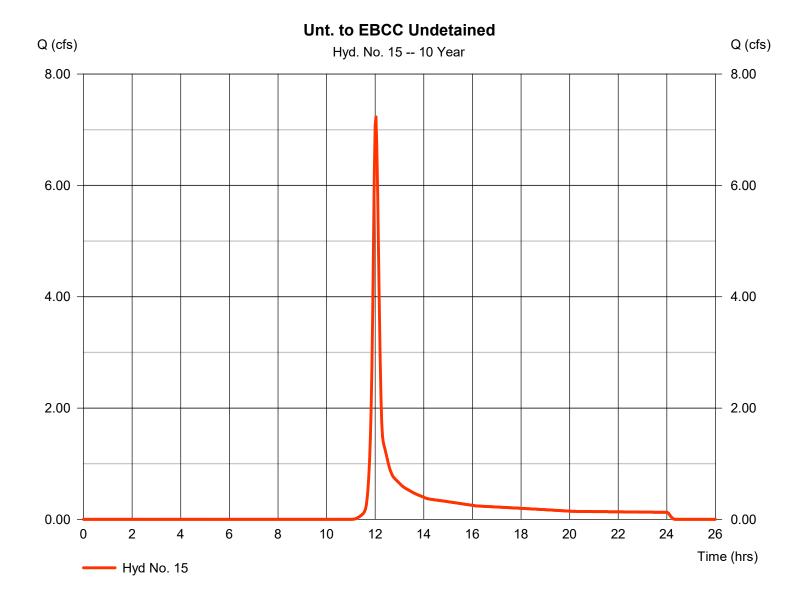

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type = SCS Runoff Peak discharge = 4.941 cfsStorm frequency = 5 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 13,831 cuft Drainage area Curve number = 3.590 ac= 64 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.00 min = User Total precip. = 4.10 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

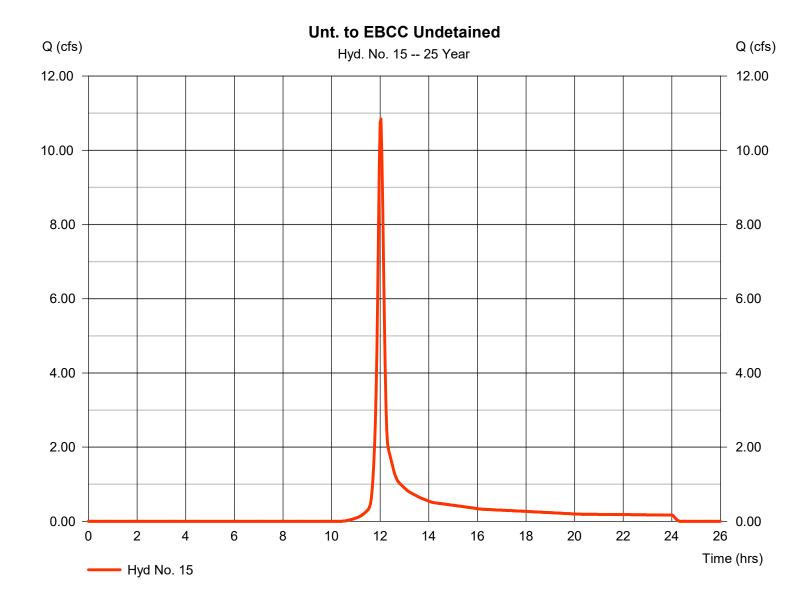

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type = SCS Runoff Peak discharge = 7.232 cfsStorm frequency = 10 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 19,516 cuft Drainage area Curve number = 3.590 ac= 64 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.00 min = User Total precip. = 4.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

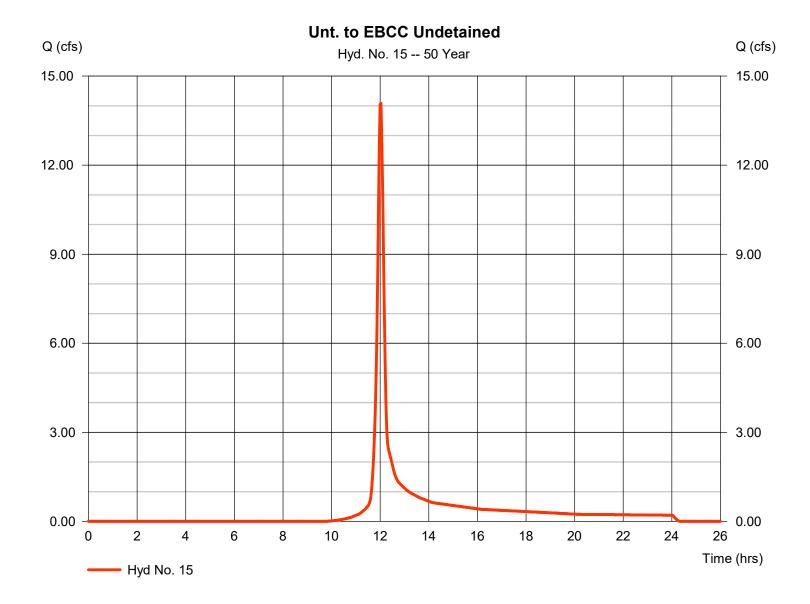

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type = SCS Runoff Peak discharge = 10.84 cfsStorm frequency = 25 yrs Time to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 28,610 cuftDrainage area Curve number = 3.590 ac= 64 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.00 min = User Total precip. = 5.81 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

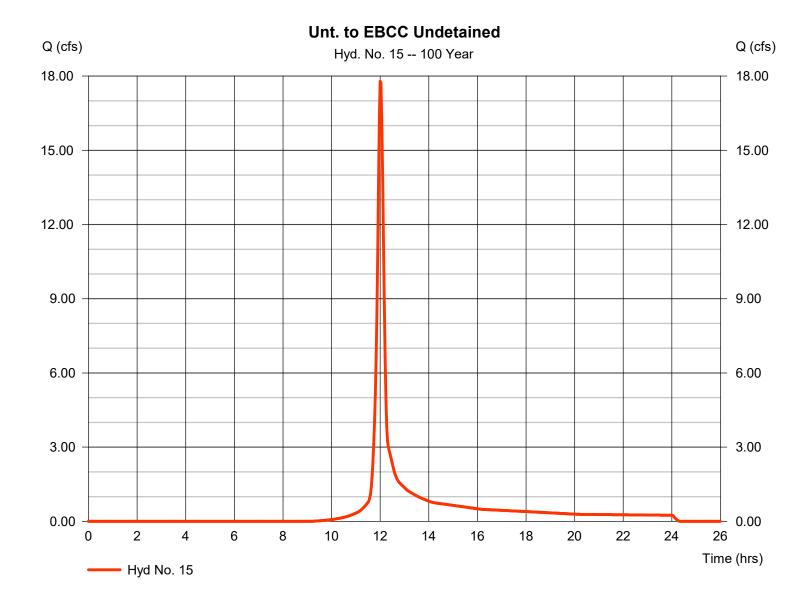

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type = SCS Runoff Peak discharge = 14.08 cfsStorm frequency = 50 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 36.892 cuft Drainage area Curve number = 3.590 ac= 64 Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 12.00 min = User Total precip. = 6.66 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

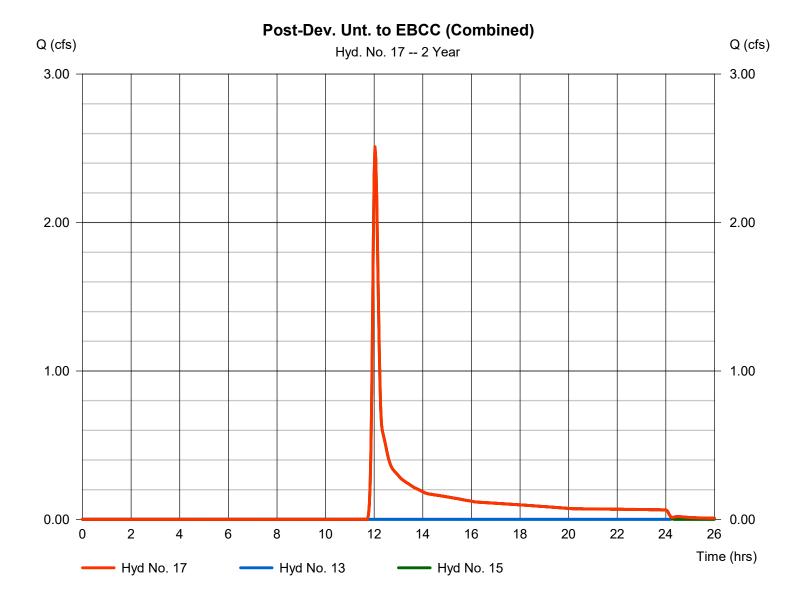

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 15

Unt. to EBCC Undetained

Hydrograph type = SCS Runoff Peak discharge = 17.79 cfsStorm frequency = 100 yrsTime to peak $= 12.00 \, hrs$ Time interval = 2 min Hyd. volume = 46,354 cuft Drainage area = 3.590 acCurve number = 64 Hydraulic length Basin Slope = 0.0 %= 0 ftTc method Time of conc. (Tc) = 12.00 min = User Total precip. = 7.58 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

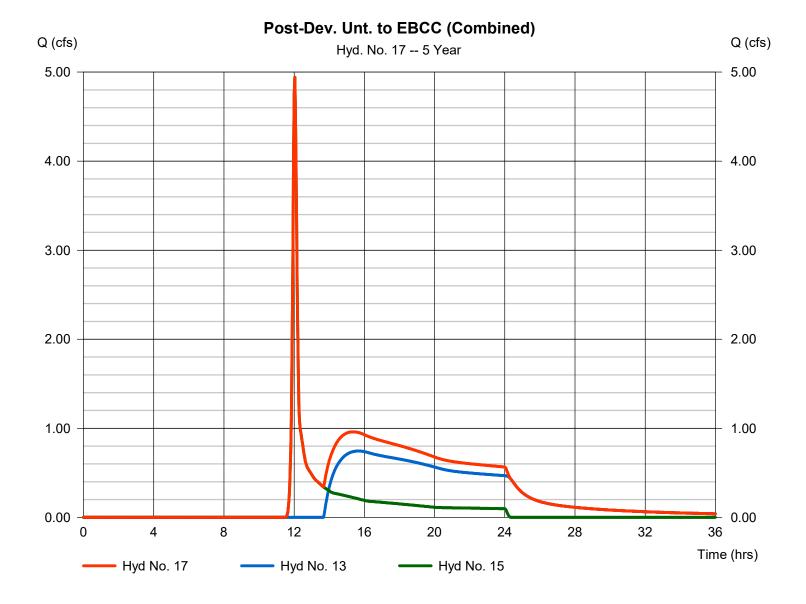

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

Hydrograph type = Combine Peak discharge = 2.510 cfsStorm frequency = 2 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 8,681 cuft Inflow hyds. = 13, 15 = 3.590 acContrib. drain. area

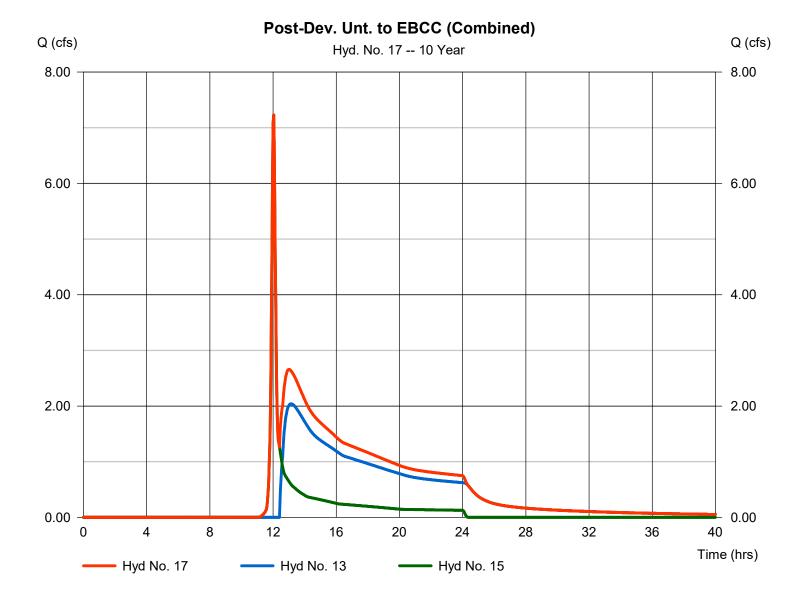

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

Hydrograph type = Combine Peak discharge = 4.941 cfsStorm frequency = 5 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 42,984 cuft Inflow hyds. = 13, 15 Contrib. drain. area = 3.590 ac

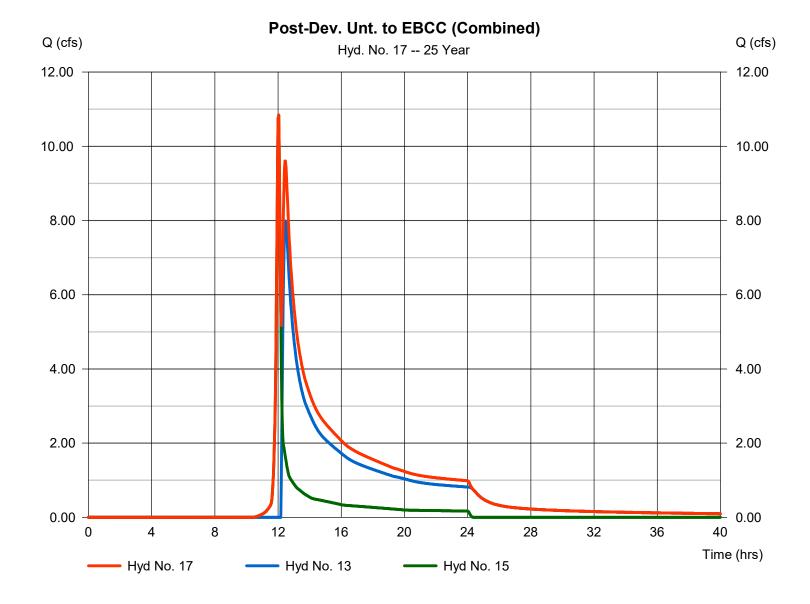

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

Hydrograph type = Combine Peak discharge = 7.232 cfsStorm frequency = 10 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 74,628 cuft Inflow hyds. = 13, 15 Contrib. drain. area = 3.590 ac

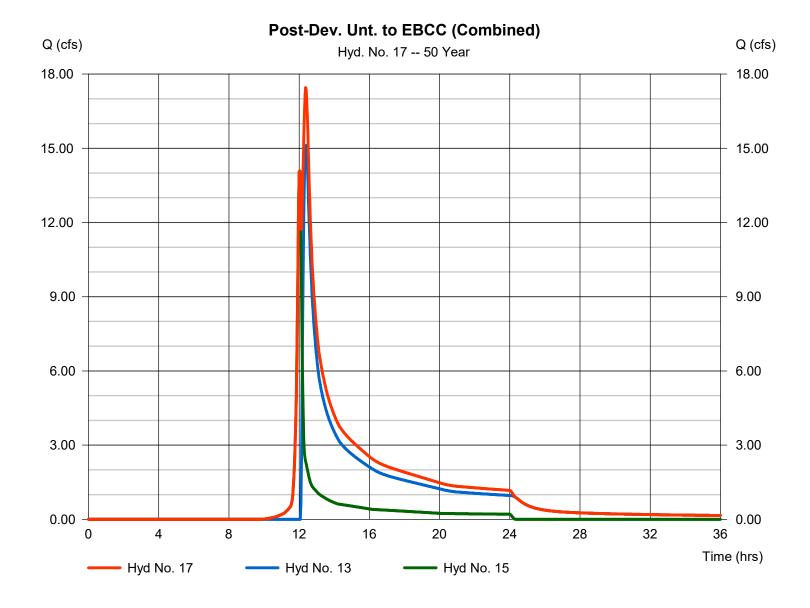

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

Hydrograph type = Combine Peak discharge = 10.84 cfsStorm frequency = 25 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 123,489 cuft Inflow hyds. = 13, 15 Contrib. drain. area = 3.590 ac

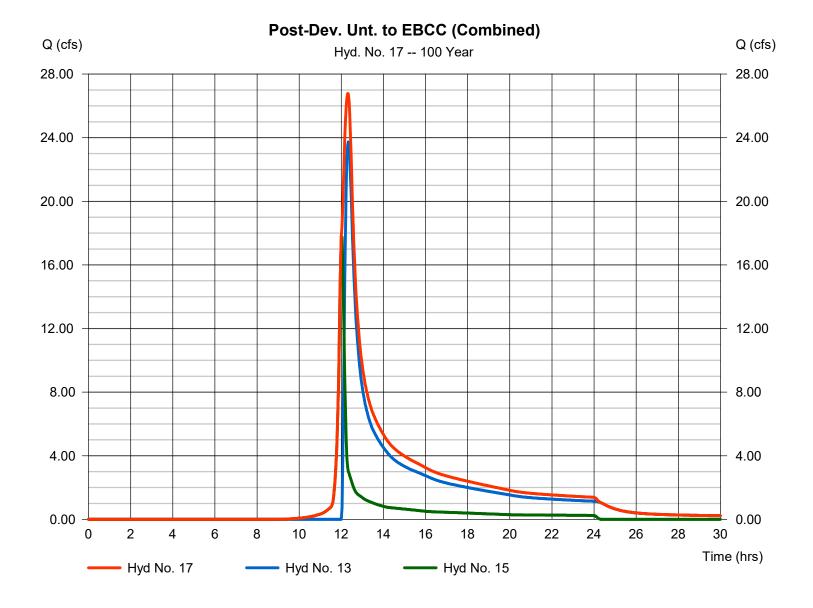

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

Hydrograph type = Combine Peak discharge = 17.45 cfsStorm frequency = 50 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 166,857 cuft Inflow hyds. = 13, 15 Contrib. drain. area = 3.590 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 09 / 18 / 2023

Hyd. No. 17

Post-Dev. Unt. to EBCC (Combined)

Hydrograph type = Combine Peak discharge = 26.78 cfsStorm frequency Time to peak = 100 yrs $= 12.30 \, hrs$ Time interval = 2 min Hyd. volume = 215,739 cuftInflow hyds. = 13, 15 Contrib. drain. area = 3.590 ac

APPENDIX F STORM SEWER CALCULATIONS

INLET AREA COEFFICIENTS AND **SURFACE FLOWS**

The Westtown School - Oak Lane Project PROJECT:

LOCATION: Westtown Township

Chester COUNTY:

COMMENTS											
TC	(min)		2	2	2	2	2	2	2	5	
COMP.	Э		0.28	0.40	08'0	96'0	0.72	0.85	59'0	0.45	
AREA	(ac.)		1.79	0.73	0.35	90.0	0.48	0.15	0.11	0.37	
)IL	WOODS	0.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
D SOIL	LAWN	0.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	WOODS	0.34	00.0	00.0	00.0	0.00	00.0	00.0	00.0	00.0	
B SOIL	LAWN	0.25	1.72	0.58	60:0	0.00	0.18	0.03	0.05	0.27	
	IMP	0.99	90.0	0.15	0.26	90.0	0.31	0.12	90.0	0.10	
INLET	COVER TYPE	C COEFFICIENTS	I-A3	I-A5	I-A6	I-A7	I-A8	I-A9	I-A10	I-A11	

Storm Sewer Tabulation

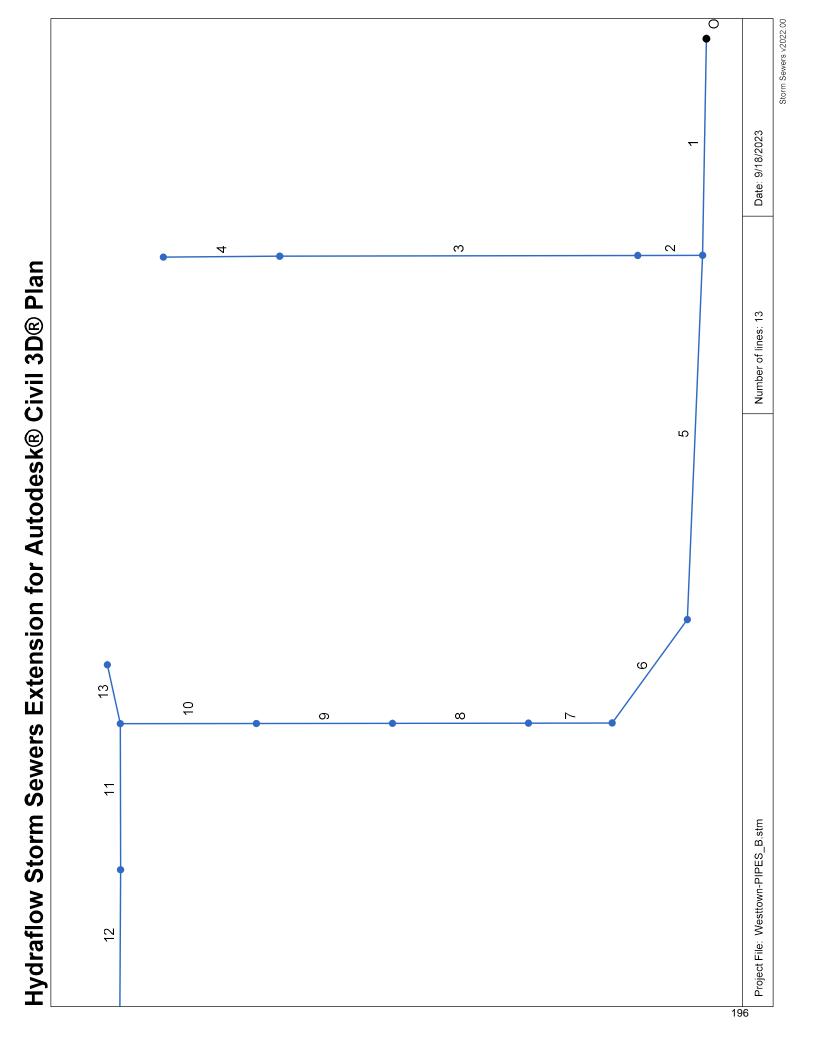
				5																			
Station	ou	Len	Drng Area	rea	Rnoff	Area x C	O	Jc		Rain	Total	Cap	Vel	Pipe		Invert Elev	>6	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID	
Line	0 <u>2</u>	_	Incr	Total		Incr	Total	Inlet	Syst					Size	Slope	Du	dη	Du	dn	n O	dn		
	<u> </u>	(#)	(ac)	(ac)	<u>(</u>)			(min)	(min)	(in/hr) (cfs)		(cfs)	(ft/s)	(in)	(%)	(#)	(#)	(#)	(#)	(#)	(#)		
_	End	68.720	1.79	4.04	0.28	0.50	1.84	5.0	7.4	9.9	12.07	10.52	6.83	2	1.00	288.50	289.19	290.82	291.73	00:00	292.80	A3 to A2	
7	_	23.270	0.00	2.25	0.00	00.00	1.34	0.0	7.3	9.9	8.81	18.21	4.99	8	3.01	290.05	290.75	292.09	292.25	292.80	296.20	A4 to A3	
က	7	89.010	0.73	2.25	0.40	0.29	1.34	5.0	7.1	9.9	8.91	9.57	5.70	8	0.83	291.00	291.74	292.36	292.89	296.20	295.71	A5 to A4	
4	ო	46.880	0.35	1.52	0.80	0.28	1.05	5.0	7.0	6.7	7.01	11.63	6.33	15	3.24	291.84	293.36	292.89	294.42	295.71	296.86	A6 to A5	
2	4	184.000 0.06	90.0	1.17	96:0	90.0	0.77	5.0	6.4	6.9	5.27	13.16	5.07	15	4.15	293.36	301.00	294.42	301.93	296.86	305.00	A7 to A6	
9	5	103.890	0.48	1.	0.72	0.35	0.71	5.0	6.0	7.0	4.95	6.40	5.47	15	96.0	301.10	302.12	301.93	303.02	305.00	306.00	A8 to A7	
7	9	71.110	0.15	0.63	0.85	0.13	0.37	5.0	5.8	7.1	2.58	4.65	4.15	12	1.70	302.22	303.43	303.02	304.12	306.00	307.01	A9 to A8	
∞	7	136.000 0.11	0.11	0.48	0.65	0.07	0.24	5.0	5.1	7.3	1.73	3.44	3.72	12	0.93	303.53	304.80	304.12	305.36	307.01	308.37	A10 to A9	
6	ω	29.850	0.37	0.37	0.45	0.17	0.17	5.0	5.0	7.3	1.22	3.51	3.43	12	76.0	304.90	305.19	305.36	305.65	308.37	308.73	A11 to A10	
_ <u>~</u> L19	ject File	Project File: Westtown-PIPES_A.stm	vn-PIPE	S_A.stn	_											Number	Number of lines: 9			Run Dat	Run Date: 9/18/2023	123	1

NOTES:Intensity = 50.00 / (Inlet time + 9.70) ^ 0.72; Return period = Yrs. 100 ; c = cir e = ellip b = box

Storm Sewers v2022.00

ELA GROUP

LANDSCAPE ARCHITECTS ENGINEERS &


INLET AREA COEFFICIENTS AND SURFACE FLOWS

737 S. BROAD STREET LITITZ, PA 17543

PROJECT:

The Westtown School - Oak Lane Project LOCATION: Westtown Township COUNTY: Chester

INLET	TYPE		B SOIL		D	D SOIL	AREA	COMP.	Tc	COMMENTS
COVER TYPE	TYPE	IMP	LAWN	CULTIVATED	LAWN	CULTIVATED	(ac.)	Э	(min)	
C COEFFICIENTS	CIENTS	66.0	0.25	0.43	0.65	29.0				
I-B4		0.00	0.00	00.00	0.00	0.00	00.00		5	0.25 CFS FROM B-3
I-B5		0.00	0.04	00.00	0.00	00:0	0.04	0.25	2	
I-B6		0.00	0.04	00.00	0.00	0.00	0.04	0.25	5	
I-B8		0.00	0.08	0.00	0.00	0.00	0.08	0.25	5	0.92 CFS FROM B-2
I-B9		0.00	0.12	0.00	0.00	0.00	0.12	0.25	5	
I-B10		90.0	0.05	00.00	0.00	0.00	0.11	0.65	5	
I-B11		0.01	60.0	0.00	0.00	0.00	0.11	0.33	2	
I-B12		0.08	0.13	00.00	0.00	0.00	0.21	0.54	2	
I-B12A		0.01	0.02	0.00	0.00	0.00	0.03	0.57	5	
I-B13		0.01	0.04	00'0	0.00	00:0	0.05	0.45	2	
I-B14		0.05	0.02	0.00	0.00	0.00	0.03	0.61	5	
I-B18		0.15	98.0	0.35	0.00	0.00	1.35	0.38	5	

Storm Sewer Tabulation

:				3			H					-	i	-	į		i		-	i	<u>:</u>
Station	Len	Drng Area	Area	Knott	Area x	ر	<u>ပ</u>	Ì	Kain ()	lotal flow	Cab LII D	<u>-</u>	P eq	=	Invert Elev	<u> </u>	HGL Elev	2	Grnd / Rim Elev	Im Elev	Line ID
Line	To agi	Incr	Total	5	Incr	Total	Inlet	Syst				<u> </u>	Size	Slope D	Du	Up	uQ	ηD	D	ηD	
<u>.</u>	# <u></u>	(ac)	(ac)	<u>(C</u>			(min)	(min)	(in/hr)	(cfs)	(cfs) (f	(ft/s) (i	(ii)	(%)	(#)	(#)	(L)	(#)	(#)	(#)	
		0	0	0	0	L C	C	((1				, , , , , , , , , , , , , , , , , , ,	2.0	2.2	0	0	C
<u>-</u>	End 148.240	0.00	0.82	0.00	0.00	0.35	O.	<u>.</u>	0 0	- - -	90.4 90.	ر د/د	<u>.</u>		310.00	310.75	311.25	ა _ 	0.00	316.00	MH-63 10 EW-62
7	1 44.610	10 0.00	0.08	00.00	0.00	0.02	5.0	7.2	9.9	0.57	11.74	1.72	12	10.87	311.15	316.00	312.13	316.31	316.00	322.25	I-B4 TO MH-B3
m	2 246.000	000 0.04	0.08	0.25	0.01	0.02	5.0	0.9	7.0	0.58	1.28	3.30	∞	1.12	316.25	319.00	316.57	319.36	322.25	322.25	OCS-3 TO I-B4
4	3 80.000	00 0.04	0.04	0.25	0.01	0.01	5.0	5.0	7.3	0.07	1.22	1.36	∞	1.01	319.19	320.00	319.36	320.12	322.25	322.00	I-B6 TO OCS-3
rv ,	1 249.540	00.0 049	0.74	00.00	00:00	0.33	5.0	10.4	5.8	4.03	4.57	3.48	15	0.50	310.75	312.00	312.13	313.05	316.00	321.00	MH-B7 TO MH-B3
9	5 87.620	20 0.08	0.74	0.25	0.02	0.33	5.0	10.0	5.9	4.06	4.88	3.73	15	0.57	312.00	312.50	313.17	313.45	321.00	317.00	OCS-2 TO MH-B7
	6 57.500	00 0.12	99.0	0.25	0.03	0.31	5.0	9.6	0.9	1.86	2.66	2.37	12	0.56	312.50	312.82	313.77	313.93	317.00	317.00	I-B9 TO OCS-2
∞	7 93.500	00 0.11	0.54	0.65	0.07	0.28	5.0	6.8	6.2	1.72	2.52	2.28	12	0.50	312.82	313.29	313.97	314.17	317.00	317.00	I-B10 TO I-B9
<u>ა</u>	8 93.500	00 0.11	0.43	0.33	0.04	0.21	5.0	8.3	6.3	1.31	1.55	2.47	0	0.50	313.29	313.76	314.21	314.52	317.00	317.00	I-B11 TO I-B10
0	9 93.500	00 0.21	0.32	0.54	0.11	0.17	5.0	7.7	6.5	1.1	1.55	2.43	0	0.50	313.76	314.23	314.57	314.80	317.00	317.00	I-B12 TO I-B11
=	10 100.000	90.0 000	0.08	0.45	0.02	0.04	5.0	6.3	6.9	0.28	0.85	1.17	ω	0.50	314.23	314.73	314.98	315.08	317.00	317.00	I-B13 TO I-B12
12	11 100.000	000 0.03	0.03	0.61	0.02	0.02	5.0	5.0	7.3	0.13	0.87	1.31	ω	0.52	314.73	315.25	315.10	315.42	317.00	317.00	I-B14 TO I-B13
£	10 41.260	60 0.03	0.03	0.57	0.02	0.02	5.0	5.0	7.3	0.12	98.0	0.38	ω	0.51	314.23	314.44	314.98	314.99	317.00	318.65	I-B12A TO I-B12
Project	Project File: Westtown-PIPES_	town-PIP	ES_B.stm												Number	Number of lines: 13	e .		Run Date:	te: 9/18/2023	123
97																					

NOTES:Intensity = $50.00 / (Inlet time + 9.70) ^{0.72}$; Return period =Yrs. 100; c = cir e = ellip b = box

Storm Sewers v2022.00

APPENDIX G SPILLWAY/ANTI-SEEP COLLAR DESIGN CALCULATIONS

BMP 1 EMERGENCY SPILLWAY

PROJECT: The Westtown School - Oak Lane Project

LOCATION: Westtown Township

COUNTY: Chester

JOB # 1091-001

DATE: 1/12/2023 REVISED: 9/17/2023

Flow into basin for 100-year storm frequency:

Q = 29.58 cfs (From Post-Development analysis)

Capacity of the Emergency Spillway:

$$Q = CLH^1.5$$

C = 2.8 L = 30 ft. H = 1.00

Q = 84.00 cfs

> 30 cfs cfs

OK

Check actual depth and velocity:

293.00

Spillway Elevation =

291.25

 $H = [Q/C*L]^2/3$

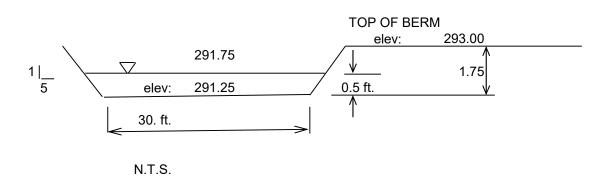
= 0.5 ft.

at elevation

291.75

Freeboard:

293.00 - 291.75


1.25 ft.

V = Q/A

Side Slope (H:V) =

4.5

= 1.8 fps

BMP 4 EMERGENCY SPILLWAY

PROJECT: The Westtown School - Oak Lane Project

LOCATION: Westtown Township

COUNTY: Chester

JOB # 1091-001

DATE: 1/12/2023 REVISED: 9/17/2023

Flow into basin for 100-year storm frequency:

Q = 38.87 cfs (From Post-Development analysis)

Capacity of the Emergency Spillway:

$$Q = CLH^1.5$$

OK

Check actual depth and velocity:

313.00

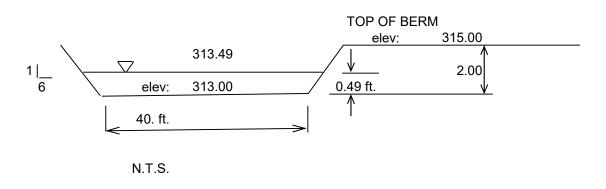
$$H = [Q/C*L]^2/3$$

$$= 0.49 \text{ ft.}$$

at elevation

313.49

Freeboard:


315.00 - 313.49

1.51 ft.

$$V = Q/A$$

6

= 1.8 fps

COUNTY: Chester

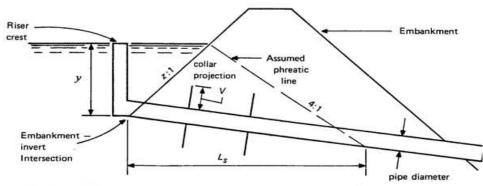
MODIFIED WORK SHEET #11 SPILLWAY STABILITY CALCULATIONS

PROJECT: The Westtown School - Oak Lane Project

LOCATION: Westtown Township

Date 9/18/23

Revised


х	BASIN SPILLWAY ID		BMP 1	BMP 4	
	TEMPORARY OR PERMANENT?	(T OR P)	Р	Р	
	DESIGN STORM		100	100	
	Qr (REQUIRED CAPACITY)*	(CFS)	29.58	38.61	
	Q (CALCULATED AT FLOW DEPTH d)	(CFS)	29.59	38.62	
х	PROTECTIVE LINING ²		Flexamat	Flexamat	
	n (MANNING'S COEFFICIENT) ²		0.058	0.059	
	Va (ALLOWABLE VELOCITY)	(FPS)	19	19	
	V (CALCULATED AT FLOW DEPTH d)	(FPS)	4.05	4.69	
	ta (MAX ALLOWABLE SHEAR STRESS)	(LB/FT ²)	24.00	24.00	
	td (CALC'D SHEAR STRESS AT FLOW DEPTH d)	(LB/FT ²)	2.49	3.62	
	SPILLWAY BOTTOM WIDTH	(FT)	30.0	40.0	
	SIDE SLOPES	(H:V)	4.5:1	6:1	
	D (TOTAL DEPTH)	(FT)	1.75	2.00	
	d (CALCULATED FLOW DEPTH)	(FT)	0.24	0.20	
х	d ₅₀ STONE SIZE (IN)	(IN)	N/A	N/A	
x	A (CROSS-SECTIONAL AREA)	(SQ. FT.)	7.30	8.23	
x	R (HYDRAULIC RADIUS)		0.24	0.20	
x	S (BED SLOPE) ³	(FT/FT)	0.167	0.286	
x	FREEBOARD PROVIDED	(FT)	1.51	1.80	
x	DESIGN METHOD FOR PROTECTIVE LINING **** PERMISSIB VELOCITY (V) OR SHEAR STRESS (S)	BLE	S	S	

ANTI-SEEP COLLAR DESIGN

Infiltration BMP 1/Sediment Trap 1

PA DEP

FIGURE 7.6 Anti-seep Collar Design

EPA - 625/3-76-006

1. Determine length of pipe in saturated zone (Ls)

$$L_s = y(z+4) \left[1 + \frac{S}{(0.25-S)} \right]$$

y = 6.25 z = 3 s= 0.005

Where

y = Distance from upstream invert of spillway riser to top of dewatering volume (ft)

z = Horizontal component of upstream embankment slope (ft)

S = Pipe slope ft/ft

2. Determine the required increase in flow path

$$L_F$$
= 1.15* L_S = 51.34 ft

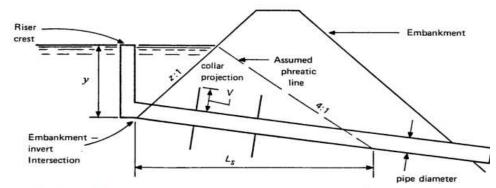
3. The minimum collar projection (V) is equal to 1/2 the increase in flow length (for one collary). If more than one collar is used, it is the increase divided by twice the number of collars

Number of collars: 2

4. The maximum spacing between collars should be 14 x V or Ls ÷ (number of collars minus 1)

Minimum spacing should be 5 X V

Max = 22 ft


Min = 8.4 ft

ANTI-SEEP COLLAR DESIGN

Infiltration BMP 4/Sediment Basin 4

PA DEP

FIGURE 7.6 Anti-seep Collar Design

EPA - 625/3-76-006

1. Determine length of pipe in saturated zone (Ls)

$$L_s = y(z+4) \left[1 + \frac{S}{(0.25-S)} \right]$$

y = 3.75 z = 3 s= 0.0069

Where

y = Distance from upstream invert of spillway riser to top of dewatering volume (ft)

z = Horizontal component of upstream embankment slope (ft)

S = Pipe slope ft/ft

2. Determine the required increase in flow path

$$L_F = 1.15 * L_S = 31.04$$
 ft

3. The minimum collar projection (V) is equal to 1/2 the increase in flow length (for one collary). If more than one collar is used, it is the increase divided by twice the number of collars

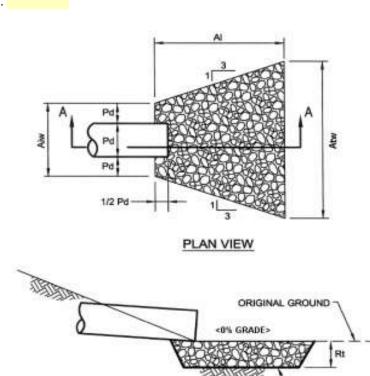
Number of collars:

4. The maximum spacing between collars should be 14 x V or Ls ÷ (number of collars minus 1)

Minimum spacing should be 5 X V

$$Max = 14 ft$$

$$Min = 5 ft$$



APPENDX H RIP-RAP DESIGN CALCULATIONS

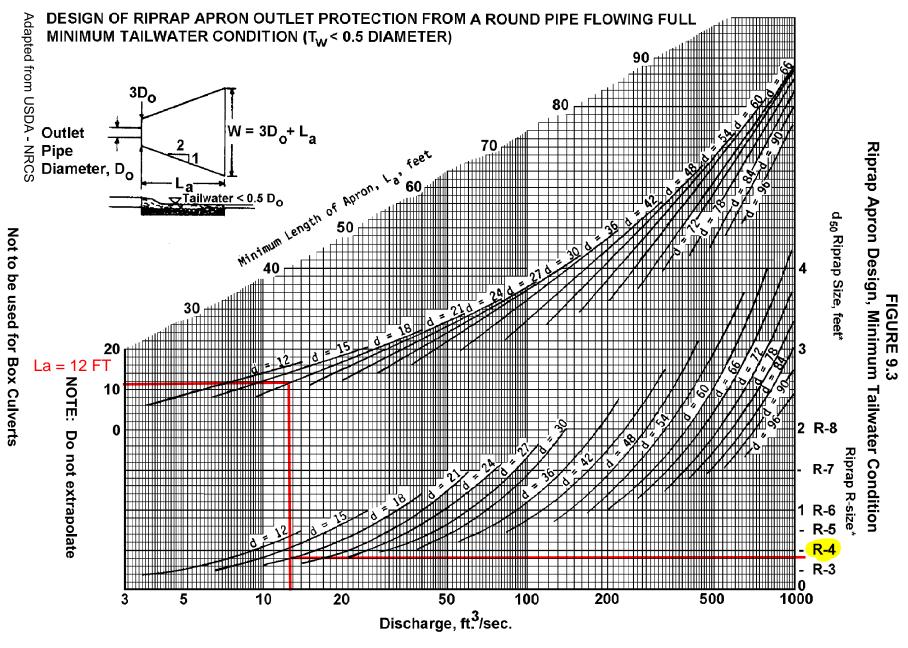
STANDARD E&S WORKSHEET #20 Riprap Apron Outlet Protection

PROJECT: The Westtown School - Oak Lane Project	JOB#	1091-001
LOCATION: Westtown Township	DATE:	1/16/2023
COUNTY: Chester	REVISED:	9/19/2023

CHECKED BY:

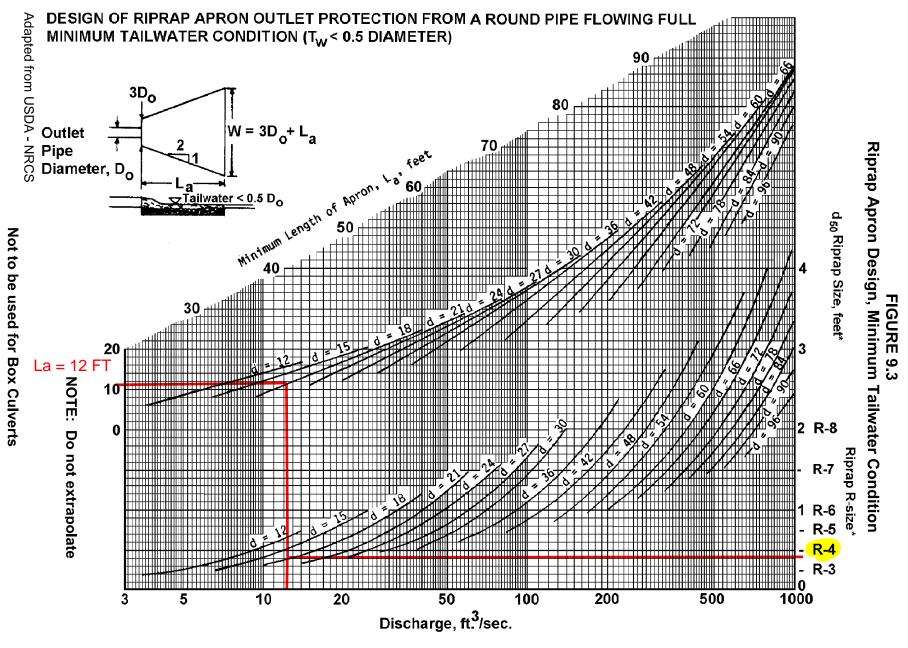
SECT	TION	A-A	

GEOTEXTILE

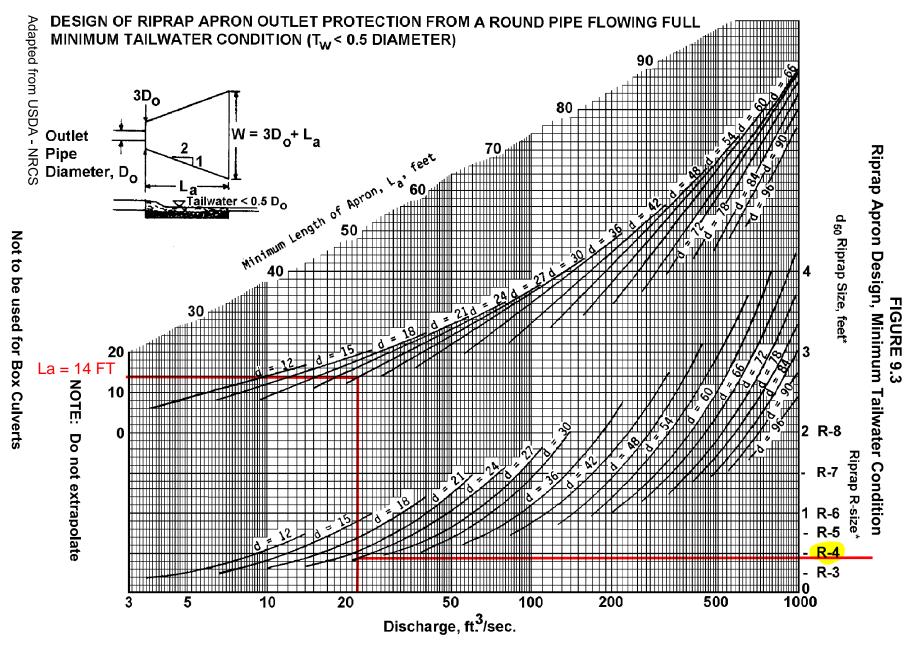

		TAIL									
		WATER	MAN.								
	PIPE	COND.	"n"	PIPE							
	DIA.	(Max or	FOR	SLOPE		V*	RIPRAP				
NO.	Do (in.)	`Min.)	PIPE	(%)	Q (CFS)	(FPS)	SIZE	Rt (in)	Al (ft)	Aiw (ft)	Atw (ft)
EW-A1	18	Min.	0.012	0.50	11.5	6.49	R-4	18	12	4.50	16.50
EW-A2	18	Min.	0.012	1.00	12.0	6.83	R-4	18	12	4.50	16.50
EW-B1	24	Min.	0.012	0.67	23.7	7.56	R-4	18	14	6.00	20.00
EW-B2	15	Min.	0.012	0.51	4.51	3.73	R-3	9	9	3.75	12.75

^{*}The anticipated velocity (V) should not exceed the maximum permissible shown in Table 6.6 for the proposed riprap protection. Adjust for less than full pipe flow. SEE TABLE 9, March 2000 E&S PROGAM MANUAL. Use Manning's equation to calculate velocity for pipe slopes > 0.05 ft/ft.velocity for pipe slopes > 0.05 ft/ft.

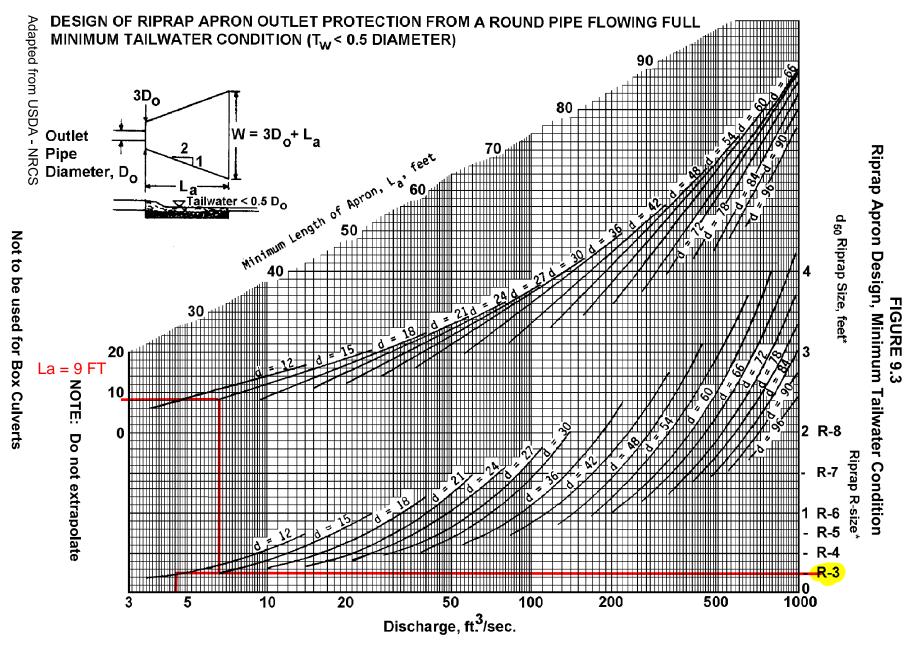
^{**} Based on sediment basin flow through principle spillway


^{***} See attached Hydraflow Storm Sewers

EW-A1


^{*} For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

EW-A2


^{*} For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

EW-B1

^{*} For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

EW-B2

^{*} For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

Anticipated Velocity Calculation for Less Than Full Pipe Flow

Outfall EW-B2

Full Flow Discharge:

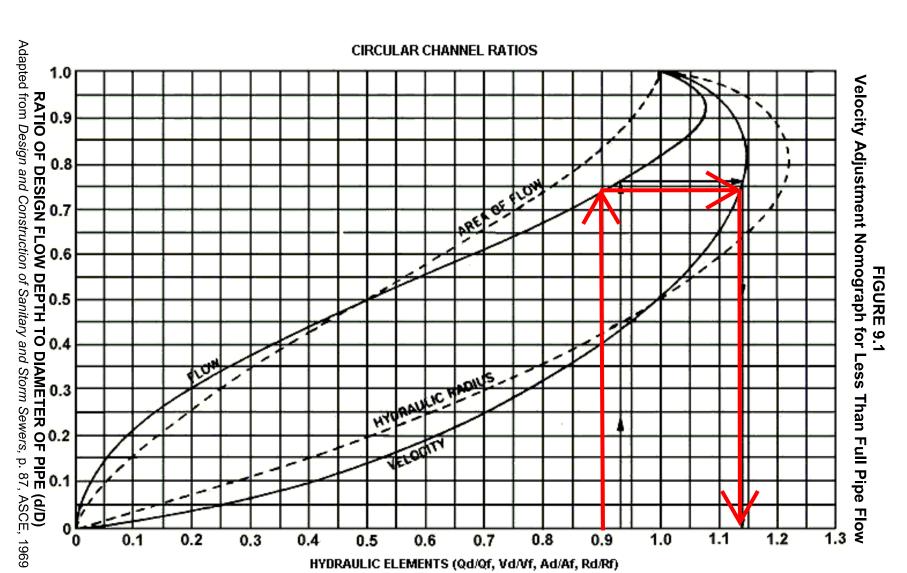
$$Q_f = \frac{0.464}{n} D^{8/3} S^{1/2} = 5.01 \text{ cfs}$$

Continuity Equation to determine full-flow velocity:

$$V_f = \frac{Q_f}{A} = 4.08 \text{ ft/sec}$$

Where: A = 1.23 = Cross Sectional Area (ft²)

Ratio of Partial to Full-Flow Discharge:


$$d/D = \frac{Q_d}{Q_f} = 0.899$$

d/D =0.90 = Ratio of Part-Full to Full-Flow Discharge Where: Qd = = Design Discharge (cfs) Qf = 5.01 = Full-Flow Discharge (cfs) D = 1.25 = Diameter (ft) S= 0.01 = Slope of pipe (ft/ft) 0.012 = Mannings Coefficient n =

Velocity Ratio from Figure 9.1: 1.14

Design Velocity V_d = 4.65 ft/s

EW-B2

Do not use this nomograph to determine "equivalent pipe sizes" for discharges (Q_d) that do not intersect curves corresponding to proposed pipe sizes on Figures 9.3 and 9.4.

363-2134-008 / March 31, 2012 / Page 231

APPENDIX I INFILTRATION REPORTS

October 8, 2018

Westtown School 975 Westtown Road West Chester, PA 19382

c/o

Mr. Charles R. Haley, Jr., P.E. ELA Group, Inc. 743 South Broad Street Lititz, PA 17543

RE: Stormwater Infiltration Feasibility Report

Westtown School Oak Lane - Infiltration

Westtown Township, Chester County, Pennsylvania

Advantage Project Number: 1800331001

Dear Mr. Haley:

In accordance with your request, Advantage Engineers (Advantage) has completed an engineering analysis of the above referenced project site in order to evaluate the suitability of the subsurface soils for the infiltration of stormwater. This correspondence serves to transmit the results of our evaluation.

SITE AND PROJECT DESCRIPTION

The project site currently consists of outdoor athletic fields located east of Westtown Road in Westtown Township, Chester County, Pennsylvania. The site is bordered to the east by agricultural land and grass areas, to the south by Westtown School District buildings, to the west by Westtown Road and to the north by Westtown School District and wooded areas. The approximate location of the site in relation to the surrounding area is depicted on the *Topographic Map* (Figure 1) presented within the Appendix.

According to information provided by the Client, the improvements will include 2 synthetic turf multipurpose fields, 2 grass multipurpose fields, a softball field and a baseball field. Development of the site will also include new field lights, an outbuilding and new stormwater management facilities.

SCOPE OF WORK

The objective of our work was to determine the permeability of the invert soils, identify any limiting zones (i.e. bedrock, groundwater, or seasonal high water table) within the proposed stormwater management facilities, and address PADEP requirements as they relate to stormwater management. This objective was accomplished through completion of a scope of work which included the completion of a subsurface field exploration, laboratory testing program and preparation of this report. This report presents a summary of the scope of work completed, conditions encountered, and results of our engineering analysis of subsurface conditions.

SUBSURFACE FIELD EXPLORATION

In order to characterize subsurface conditions across the project site, 13 test pits were excavated on September 26 through 28, 2018. Supervision and monitoring of the field exploration was provided by a representative of Advantage. Test locations were marked out by ELA Group, Inc., based on the "Sketch Plan", dated July 24, 2017, prepared by Site Engineering Concepts, LLC. The approximate test locations, referenced as TP-1 through TP-13, are shown on the *Exploration Plan* (Figure 3) presented within the Appendix. Data pertaining to the subsurface exploration was documented in the field and is presented in detail on the *Test Pit Logs*, which contain detailed descriptions of the subsurface materials encountered and infiltration test depths. A general description of the soil conditions encountered is provided in the "Subsurface Conditions" section of this report.

October 8, 2018

Advantage Project No.: 1800331001

Page 2 of 5

LABORATORY ANALYSIS

Soil samples retrieved from the site were visually reviewed and classified by Advantage Engineers. Representative soil samples were subjected to laboratory analyses to verify visual classifications in accordance with the following schedule:

- Natural Moisture Content (ASTM D2216)
- Sieve Analysis (ASTM D422)
- Atterberg Limits Determination (ASTM D4318)

Unified Soil Classification System (USCS) Group Symbols and ASTM Group Names has been assigned to the soils analyzed. Graphical depictions of the laboratory testing completed are presented in the table below and within the Appendix.

STANDARD CLASSIFICATION RESULTS											
Location	Depth (ft)	Soil Type	% Gravel	% Sand	% Fines	LL	PL	PI	Natural Moisture Content	USCS Group Symbol	ASTM Group Name
TP-2	3	Stratum I	7.2	54.4	38.4	36	33	3	21.9%	SM	Silty SAND
TP-5	4 – 6		45.6	42.5	11.9	36	35	1	10.7%	GP-GM	Poorly Graded GRAVEL with Silt and Sand

LL-Liquid Limit; PL-Plastic Limit; PI-Plasticity Index

SUBSURFACE CONDITIONS

Geology

According to the Pennsylvania Geologic Survey's, <u>Geologic Map of the State of Pennsylvania</u>, 1980, the project site is underlain by politic schist of the Glenarm Wissahickon Formation (Geologic Symbol Xgw). This formation includes lenticular amphibolites bodies having ocean-floor basalt chemistry. The project site within its geologic setting is presented on the Geologic Map (Figure 2) found within the Appendix.

The Pennsylvania Geologic Survey publication, <u>The Engineering Characteristics of the Rocks of Pennsylvania</u>, Second Edition, 1982, describes the bedding in this formation as well developed, thin to fissile, and steeply dipping. Joints in this formation have an irregular pattern, are poorly formed, widely spaced, steeply dipping, and open. The schist of this formation is moderately resistant to weathering, and often weathers to a moderate depth. The resulting soil mantle is thin.

Soil

Surficial Materials

Each test pit was covered by approximately 6 to 28 inches of topsoil or tilled soil; however, the thickness of surficial materials may differ in unexplored areas of the project site.

Stratum I - Brown to gray Silty SAND and GRAVEL with Silt and Sand

Stratum I was encountered within each test pit completed except for TP-12 and TP-13 and extended to depths ranging from approximately 4.5 to 10 feet below existing site grades. Laboratory testing conducted on representative samples of Stratum I show this soil to be well graded and non-plastic with natural moisture contents of 21.9% and 10.7%. Stratum I is described under the USCS as Silty SAND (SM) and Poorly Graded GRAVEL with Silt and Sand (GP-GM).

October 8, 2018

Advantage Project No.: 1800331001

Page 3 of 5

Stratum II - Brown Silty SAND with Gravel (highly weathered rock)

Stratum II was encountered within test pits TP-10 and TP-11 and extended to depths of approximately 7.5 and 9.5 feet, respectively, below existing site grades. Upon review, the soils of Stratum II were found to be well graded, non-plastic and predominately comprised of Silty SAND with Gravel. The soils of Stratum II are anticipated to represent the highly weathered bedrock surface.

Stratum III - Orange brown to blue gray Sandy CLAY

Stratum III was encountered within test pits TP-12 and TP-13 and extended to depths of approximately 6 feet below existing site grades. Upon review, the soils of Stratum III were found to be moderately graded, plastic and comprised of Sandy CLAY.

Bedrock

The bedrock surface was encountered within test pits TP-10 and TP-11 at depths of approximately 7.5 and 9.5 feet below existing site grades, respectively. The bedrock surface was defined as the depth at which the bucket of the given excavation equipment could no longer excavate. Other equipment may yield different bedrock data.

Groundwater/Soil Mottling

Groundwater was encountered within test pits TP-7, TP-8, TP-12 and TP-13 at depths ranging from approximately 1.5 to 6 feet below existing site grades. Additionally, soil mottling (indication of seasonal high water table and/or poorly draining soils) was encountered within test pits TP-12 and IT-13, starting at a depth of approximately 2.5 feet below existing site grades and extending to 6 feet below existing site grades. It should be noted that standing water was observed at several areas including the agricultural field located in the eastern portion of the site and the portion of the site located north of Oak Lane. These observations were made at the time of the field operation and the groundwater table elevation will vary with daily, seasonal, and climatological variations.

INFILTRATION ANALYSIS

To evaluate the feasibility of infiltration of stormwater within the proposed stormwater management facilities, infiltration tests were completed utilizing the "double-ring" infiltrometer method in accordance with the <u>Pennsylvania Stormwater Best Management Practices Manual</u>, latest Edition. Based on the topsoil thickness encountered within test pit TP-4, the infiltration test was completed below the proposed test elevation. Based on the limiting zone encountered (groundwater and/or soil mottling) within test pits TP-8, TP-12 and TP-13, no infiltration tests were able to be completed. Based on the limiting zones encountered (groundwater/bedrock) within TP-7, TP-10 and TP-11, the infiltration tests were completed above the proposed test elevations. The test pit locations, approximate surface elevation, proposed test elevation, actual test elevation(s), presence of limiting zones, and the infiltration rate(s) achieved at each location are presented in the table below.

October 8, 2018

Advantage Project No.: 1800331001

Page 4 of 5

INFILTRATION TEST RESULTS								
Test Location	Surface Elevation (ft)	Proposed Test Elevations (ft)	Actual Test Elevations (FT)	Limiting Zone Elevation (ft)	Infiltration Rate* (in/hr)			
TP-1	319.5	316	316	Not Encountered @	1.8			
		314	314	312	6.0			
TP-2	317	316	316	Not Encountered @	0.0			
	317	314	314	312	1.4			
TP-3	321	317.5	317.5	Not Encountered @	6.0			
		315.5	315.5	313.5	12.0			
TP-4	319.5	319	318.5	Not Encountered @	1.2			
117-4		317	317	315	1.0			
TP-5	321	319.5	319.5	Not Encountered @	3.4			
11-5		317	317	315	4.8			
TP-6	311	309	309	Not Encountered @	1.0			
11-0		307	307	305	0.0			
TP-7	313	309	311	Groundwater @ 307	0.0			
IP-7		307	309	Gloundwater @ 307	2.8			
TP-8	311	309	No Test	Groundwater @ 309.5	No Test			
11-0		307	No Test	Groundwater @ 509.5	No Test			
TP-9	303	292.5	295	Not Encountered @	3.9			
11-3		291	295	293	4.0			
TP-10	305	299	301	Bedrock @ 297.5	2.8			
		297	299.5	Deditock @ 297.5	4.8			
TP-11	309	303	303	Bedrock @ 299.5	6.0			
		301	301.5	Deditock @ 299.0	5.4			
TP-12	298	296	No Test	Soil Mottling @ 295.5-292	No Test			
11 -12		294	No Test	Groundwater @ 294.5	No Test			
TP-13	286	284	No Test	Groundwater @ 284.5	No Test			
17-13		282	No Test	Soil Mottling @ 283.5-280	No Test			

^{*}Infiltration rates represent the rates recorded in the field and no safety factor has been applied

SUMMARY OF DATA & CONCLUSIONS

Based on the results of our field exploration and engineering analysis of the data obtained, we offer the following comments with regard to the infiltration of stormwater at the project site.

- The infiltration tests were conducted within the well graded, non-plastic, naturally-occurring soils of Stratum I and Stratum II.
- Groundwater was encountered within test pits TP-7, TP-8, TP-12 and TP-13 at depths ranging from approximately 1.5 to 6 feet below existing site grades.
- Soil mottling was encountered within test pits TP-12 and IT-13, starting at depths of approximately 2.5 feet below existing site grades and extending to 6 feet below existing site grades.

⁻Shaded cells represent infiltration tests completed above or below proposed invert due to a limiting zone or topsoil thickness

⁻Bold cells indicate infiltration testing completed at shallower depths due to safety concerns

October 8, 2018

Advantage Project No.: 1800331001

Page 5 of 5

 The bedrock surface was encountered within test pits TP-10 and TP-11 at depths of approximately 7.5 and 9.5 feet below existing site grades, respectively

Infiltration rates were found to range from no movement (0.0 inches per hour) to 12.0 inches per hour.
 These rates are unfactored. The PADEP recommended rate for infiltration of stormwater is 0.1 to 10 inches per hour.

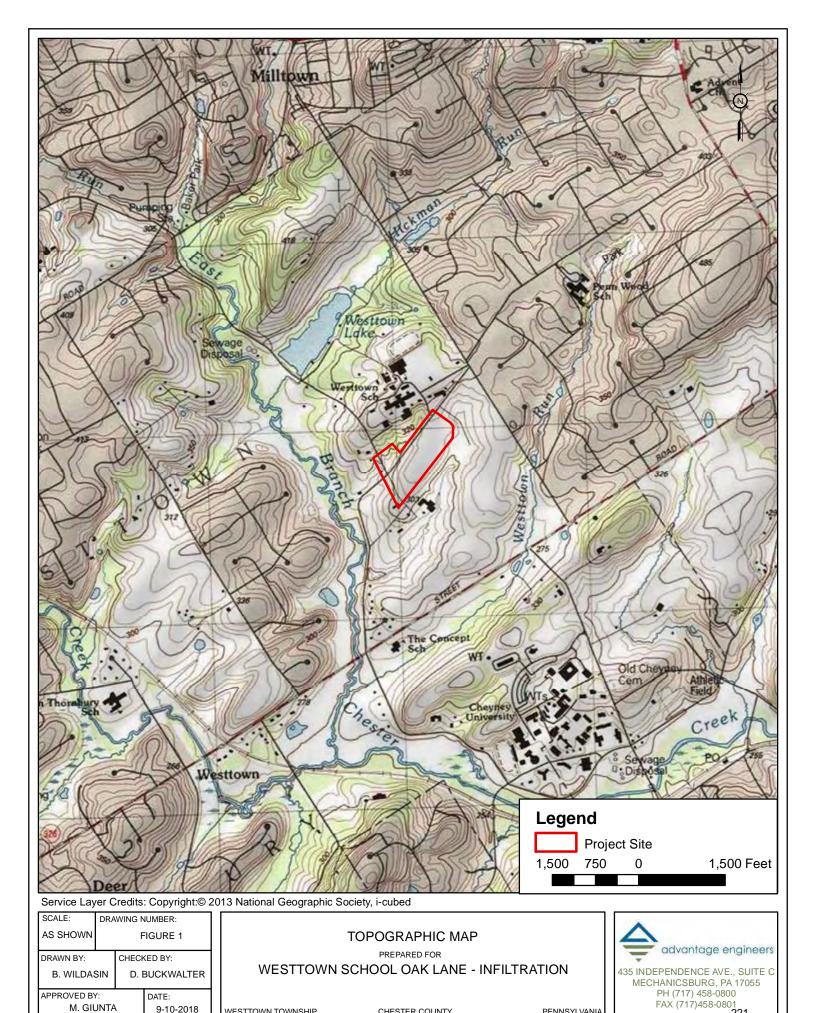
LIMITATIONS

The conclusions contained in this report are based upon the subsurface data collected and on details stated in this report. Should conditions arise which differ from those specifically stated herein, our office should be notified immediately, so that our recommendations can be reviewed and revised, if necessary.

The conclusions presented herein should be applied only to the infiltration tests as depicted on the *Exploration Plan* for the proposed stormwater management facilities to be constructed for Westtown School in Westtown Township, Chester County, Pennsylvania. Advantage takes no responsibility in utilizing this information for any other purposes.

The scope of work was limited to the exploration of the subsurface subsoils. Oil, hazardous waste, radioactivity, irritants, pollutants, radon or other dangerous substances and conditions were not the subject of this study. Their presence and/or absence are not implied, inferred or suggested by this report or results of this study.

We trust that this is the information you require. Should you have any questions or if we may be of further assistance, please don't hesitate to contact our office.

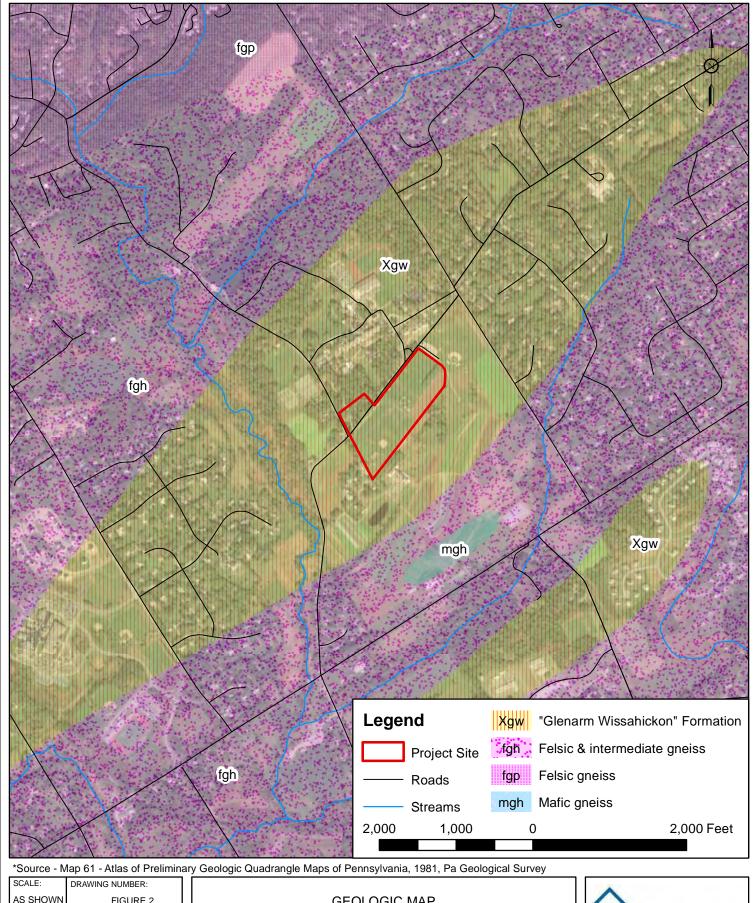

Respectfully, advantage engineers

Bailey J. Wildasin Geotechnical Specialist I

David J. Buckwalter Senior Project Manager

APPENDIX

FIGURE 1 – TOPOGRAPHIC MAP
FIGURE 2 – GEOLOGIC MAP
FIGURE 3 – EXPLORATION PLAN
LABORATORY TEST RESULTS
TEST PIT LOGS


CHESTER COUNTY

PENNSYLVANIA

M. GIUNTA

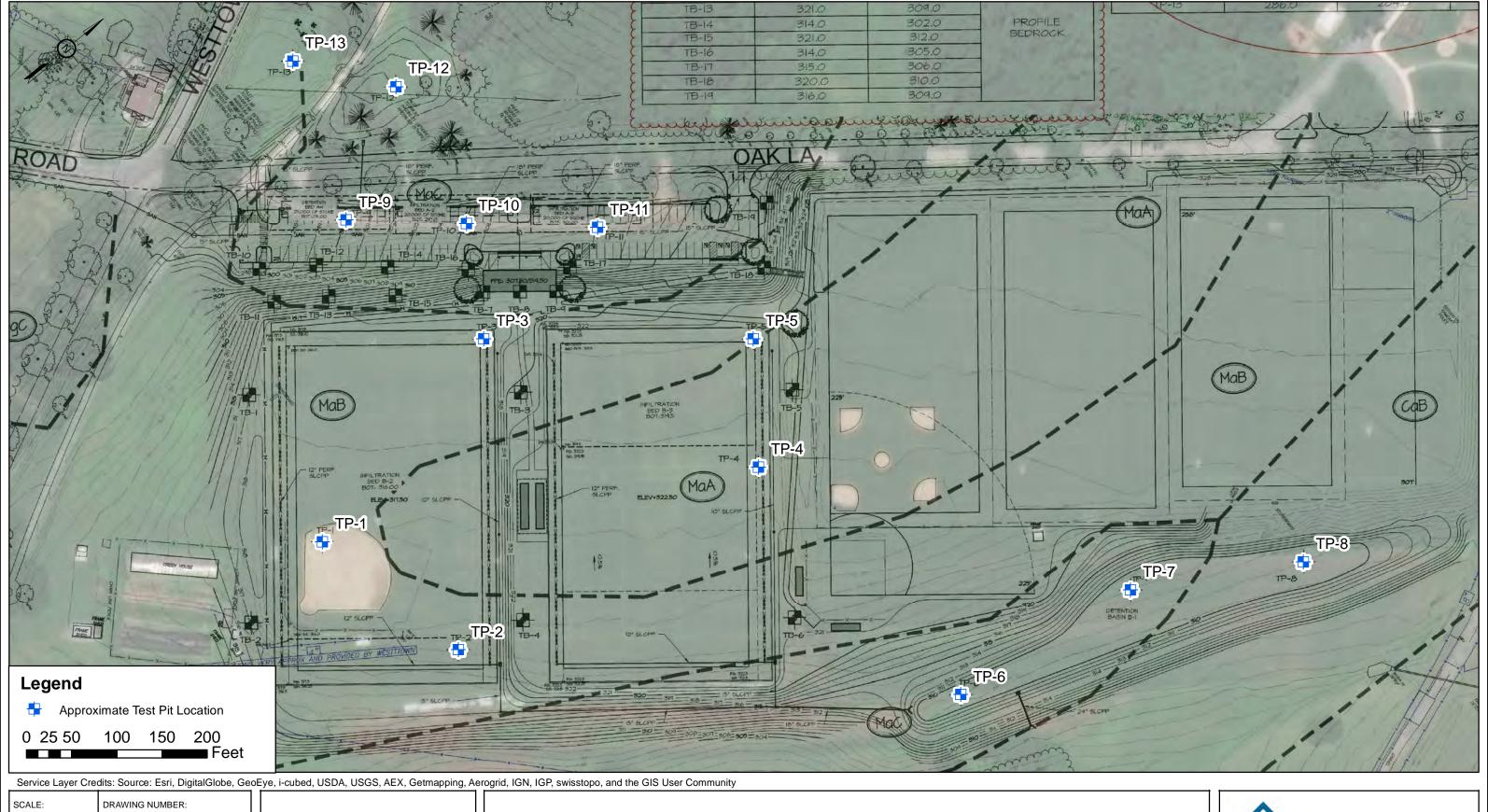
9-10-2018

WESTTOWN TOWNSHIP

AS SHOWN FIGURE 2

DRAWN BY: CHECKED BY:
B. WILDASIN D. BUCKWALTER

APPROVED BY: DATE:
M. GIUNTA 9-10-2018


GEOLOGIC MAP
PREPARED FOR

WESTTOWN SCHOOL OAK LANE - INFILTRATION

WESTTOWN TOWNSHIP CHESTER COUNTY PENNSYLVANIA

435 INDEPENDENCE AVE., SUITE C MECHANICSBURG, PA 17055 PH (717) 458-0800 FAX (717)458-0801

SCALE: DRAWING NUMBER:
AS SHOWN FIGURE 3

DRAWN BY: CHECKED BY:
B. WILDASIN D. BUCKWALTER

APPROVED BY: DATE:
M. GIUNTA 9-10-2018

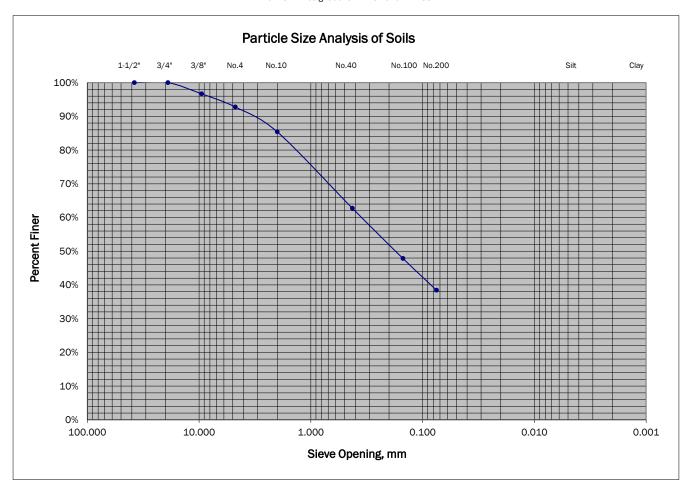
BASE PLAN:
Sketch Plan
PROVIDED BY:
Site Engineering Concepts, LLC
DATE:
7-24-2017

EXPLORATION PLAN

PREPARED FOR

WESTTOWN SCHOOL OAK LANE - INFILTRATION

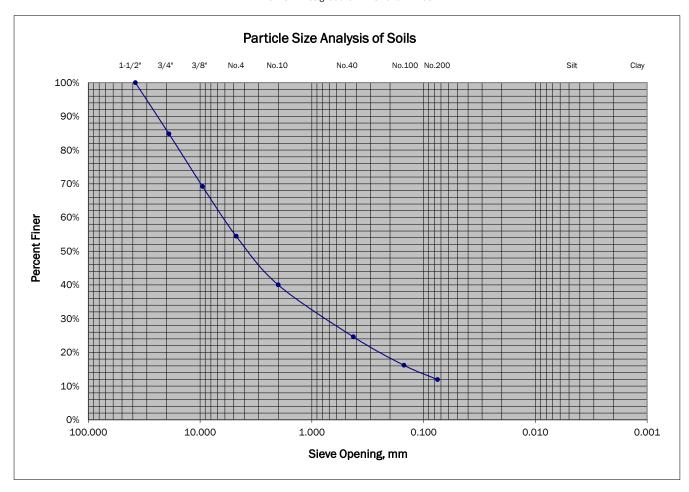
WESTTOWN TOWNSHIP CHESTER COUNTY PENNSYLVANIA



435 INDEPENDENCE AVE., SUITE C MECHANICSBURG, PA 17055 PH (717) 458-0800 FAX (717) 458-0801 223

Soil Classification Report

Per ASTM Designations D 2487 and D 2488



As-Received Moisture 21.9%		Particle Size Distribution				
USCS Classification: Silty SAND (SM)	US Standard	US Standard Sieve Size		%Finer	
Gravel: 7.2% Coarse: 0.0%	Fine: 7.2°	6 Coarse	1-1/2"	38.0	100.0%	
Sand: 54.4% Coarse: 7.4%	Medium: 22.7% Fine: 24.3	6 GRAVEL	3/4"	19.0	100.0%	
Fines: 38.4% Silt:	Clay:	Fine	3/8"	9.50	96.7%	
Gravel Description: Subangular to	Subrounded]	No. 4	4.75	92.8%	
		Coarse	No. 10	2.00	85.4%	
Sand Description: Subangular		Medium	No. 40	0.425	62.7%	
		SAND	No. 100	0.150	47.9%	
Consistency: N/A	Dry Strength: Low	Fine	No. 200	0.075	38.4%	
Dilatancy: Rapid	Toughness: Low	Hydrometer	Silt Size	0.005		
Structure: Homogeneous	Cementation: N/A	Analysis	Clay Size	0.001		
		D ₆₀ :	D ₃₀ :	D ₁₀ :	Cu: Cc:	
Test Pit: TP-2		Atterberg Limits	LL: 36	PL: 33	PI: 3	
Sample: S1 Depth	: 3'	Description:	Brown Silty SAN	ND		
Project: Westtown School Oak Lane	- Infiltration	1				
		Remarks:	Stratum I			
Client: ELA Group, Inc.						
Advantage Project Number:	1800331001	Report Date:	October 4, 201	8		

Soil Classification Report

Per ASTM Designations D 2487 and D 2488

As-Received Moisture	1 0.7%				Particle Size Distribution				
USCS Classification:	Poorly Graded GRAVEL with	Silt and Sar	nd (GP-GN	M)	US Standard	US Standard Sieve Size		%I	Finer
Gravel: 45.6%	Coarse: 15.2%		Fine:	30.4%	Coarse	1-1/2"	38.0	10	0.0%
Sand: 42.5%	Coarse: 14.4% Mediur	15.4%	Fine:	12.7%	GRAVEL	3/4"	19.0	84	1.8%
Fines: 11.9%	Silt:	Clay:			Fine	3/8"	9.50	69	9.2%
Gravel Description:	Subangular					No. 4	4.75	54	1.4%
					Coarse	No. 10	2.00	40	0.0%
Sand Description:	Subangular				Medium	No. 40	0.425	24	1.6%
					SAND	No. 100	0.150	16	6.2%
Consistency: N/A	Dry Stre	gth:	Low		Fine	No. 200	0.075	13	1.9%
Dilatancy: Rapid	Toughne	ss:	Low		Hydrometer	Silt Size	0.005		
Structure: Homogene	ous Cement a	tion:	N/A		Analysis	Clay Size	0.001		
					D ₆₀ : 6.3	D ₃₀ : 0.75	D ₁₀ : 0.57	Cu: 11	Cc: 0.16
Test Pit: TP-5					Atterberg Limits	LL: 36	PL: 35	PI	: 1
Sample: S1	Depth: 4' - 6'				Description:	Brown GRAVEL	with Silt and Sa	nd	
Project: Westtown S	School Oak Lane - Infiltrati	on							
					Remarks:	Stratum I			
Client: ELA Group,	Inc.								
Advantage Project Nu	ımber: 180033	L001			Report Date:	October 4, 201	.8		•

SHEET 1 OF 1

PROJECT NAME: westtown		TEST PIT NO.: TP-1					
PROJECT NO.: <u>1800331001</u> (CLIENT: ELA Group, Inc.			TOP OF GRO			
LOCATION: See Exploration Pla	n (Figure 3)			GROUNDW <i>A</i>	ATER DATA: <u>Dry</u>		
FIELD SURVEYED	X	TOPO ESTIMAT	ΓE	DEPTH: Not	Encountered Time	e: Completion	
DEPTH (feet)		SOIL DESCRIPTION					
	0.0' - 0.5' Tan (Clayey SAND				Baseball Infield	
		n Silty SAND					
5							
	Brow	n Silty SAND	with Gravel				
						Stratum I	
		-End o	f Test Pit at 7.5	Feet-			
10							
	Infiltration 7	Tests Conduct	ed at 3.5 Feet (316') and 5.5 F	eet (314')		
15							
		DOUBLE DIA	IO INICII TOOM	ETED DATA		٦	
	Took Dooth		NG INFILTROM B.5'		5.5'	-	
	Test Depth:	Time (min)	Drop (inches')	Time (min)	Drop (inches)	-	
20	Pre-soak 1	30	1.7	30	5.0	-	
20	Pre-soak 2	30	1.2	30	5.0	-	
	Reading 1	30	1.0	10	1.0	1	
	Reading 2	30	0.8	10	1.0		
	Reading 3	30	0.8	10	1.0		
25	Reading 4	30	1.0	10	1.0		
	Reading 5			10	1.0		
	Reading 6			10	1.0		
	Reading 7						
	Reading 8						
30	Average Rate (inch	nes per hour)	1.8		6.0		

 ${\sf EXCAVATION\ METHOD:\ } \underline{\sf Mini-excavator}$

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 27, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Infiltration				TEST PIT NO.: TP-2				
PROJECT NO.: <u>1800331001</u> CLII	ENT: ELA Group	<u>, Inc.</u>		TO	TOP OF GROUND: ±317'			
LOCATION: See Exploration Plan (F	igure 3)			G	ROUNDWATER DAT	A: <u>Dry</u>		
FIELD SURVEYED		X TOPO ES	STIMATE	DI	EPTH: Not Encounter	ed Time:	Completion	
DEPTH (feet)	SOIL DESCRIPTION						REMARKS	
	0.0' - 0.8'	Brown organi	c soil				Topsoil	
	0.8' - 5.0'	Brown Sandy					•	
		Brown Silty S	AND					
5							Stratum I	
			-End of To	est Pit at 5 Feet	-			
		–		–				
10	Infiltration Tests Conducted at 1 Foot (316') and 3 Feet (314')							
15								
10		DOU	BLE RING	INFILTROMETI	ER DATA			
		Test De		1'	3'			
			Time (min)	Drop (inches)	Drop (inches)			
		Pre-soak 1	30	no movement	1			
20		Pre-soak 2	30	no movement	0.7			
		Reading 1	30	no movement	0.8			
		Reading 2	30	no movement	0.8			
		Reading 3	30	no movement	0.6			
		Reading 4	30	no movement	0.6			
25		Reading 5						
		Reading 6						
		Reading 7						
		Reading 8			_			
		Average Rat per ho		0.0 (no movement)	1.4			
30		PCI 110	ω. <i>)</i>	(110 THOVOINGIN)				
				I				

EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 27, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Infiltration TEST PIT NO.: TP-3 PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc. TOP OF GROUND: ±321' LOCATION: See Exploration Plan (Figure 3) GROUNDWATER DATA: Dry X TOPO ESTIMATE FIELD SURVEYED DEPTH: Not Encountered Time: Completion DEPTH (feet) SOIL DESCRIPTION **REMARKS** 0.0' - 0.8' Brown organic soil Topsoil 0.8' - 7.5'Brown Silty SAND 5 Brown Silty SAND with Gravel Stratum I -End of Test Pit at 7.5 Feet-10 Infiltration Tests Conducted at 3.5 Feet (317.5') and 5.5 Feet (315.5') 15 DOUBLE RING INFILTROMETER DATA Test Depth: 3.5' 5.5' Time (min) Drop (inches) Drop (inches) 30 3.7 5.0 Pre-soak 1 30 3.6 5.0 20 Pre-soak 2 3.2 Reading 1 10 1.2 Reading 2 10 0.9 1.9 10 2.0 Reading 3 0.9 2.1 Reading 4 10 1.1 Reading 5 10 1.0 1.9 25 Reading 6 10 1.0 2.0 Reading 7 Reading 8 Average Rate (inches 12.0 6.0 per hour) 30

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com

EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin DATE EXCAVATED: September 27, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Infiltration				TEST PIT NO.: TP-4			
PROJECT NO.: <u>1800331001</u> CLI	ENT: ELA Group	, Inc.		Т	OP OF GROUND: ±319	9.5'	
LOCATION: See Exploration Plan (I	Figure 3)			C	ROUNDWATER DATA:	<u>Dry</u>	
FIELD SURVEYED		X TOPO ES	STIMATE	Г	DEPTH: Not Encountered	Time:	Completion
DEPTH (feet)	SOIL DESCRIPTION						REMARKS
	0.0' - 0.8'	Brown organi	c soil				Topsoil
	0.8' - 4.5'	Brown Sandy					•
		•					
	_						
5							Stratum I
		-1	End of Tes	t Pit at 4.5 Fee	et-		
10							
	Infiltra	ation Tests Co	enducted at	: 1 Foot (318.5')) and 2.5 Feet (317')		
	_						
15	_	5011		INIEU TROMET			
				INFILTROMET			
		Test De	-	1'	2.5'		
	_	5	Time (min)	Drop (inches)	Drop (inches)		
00	_	Pre-soak 1	30 30	0.6	0.7		
20	-	Pre-soak 2 Reading 1	30	0.6	0.6		
		Reading 1		0.6	0.5		
	_	Reading 3		0.6	0.5		
	_	Reading 4		0.6	0.5		
25		Reading 5			0.0		
23	-	Reading 6					
	-	Reading 7			+		
	-	Reading 8			+		
	=	Average Rat					
30	-	per ho		1.2	1.0		
^	•		<u>.</u>				•

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com ${\sf EXCAVATION\ METHOD:\ } \underline{\sf Mini-excavator}$

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 26, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Infiltration TEST PIT NO.: TP-5 PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc. TOP OF GROUND: ±321' LOCATION: See Exploration Plan (Figure 3) GROUNDWATER DATA: Dry X TOPO ESTIMATE FIELD SURVEYED DEPTH: Not Encountered Time: Completion REMARKS DEPTH (feet) SOIL DESCRIPTION 0.0' - 0.8' Dark brown Sandy CLAY with organic debris Topsoil 0.8' - 6.0'Brown Silty SAND Brown GRAVEL with Silt and Sand 5 Stratum I -End of Test Pit at 6 Feet-Infiltration Tests Conducted at 1.5 Feet (319.5') and 4 Feet (317') 10 15 DOUBLE RING INFILTROMETER DATA 1.5' 4' Test Depth: Time (min) Drop (inches) Time (min) Drop (inches) Pre-soak 1 30 2.4 30 3.4 20 Pre-soak 2 30 1.8 30 3.5 Reading 1 30 1.8 10 1.0 30 1.7 10 8.0 Reading 2 10 Reading 3 30 1.7 8.0 Reading 4 30 1.7 10 8.0 25 Reading 5 10 8.0 Reading 6 Reading 7 Reading 8 Average Rate (inches per hour) 3.4 4.8 30

EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin

DATE EXCAVATED: September 26, 2018

DRAWN/COMPILED BY: B. Wildasin

		IES	SI PII L	.OG		SHE	EET 1 OF 1		
PROJECT NAME: Westtown S	chool Oak Lane -	Infiltration			TEST PIT NO.: TP-6				
ROJECT NO.: <u>1800331001</u> CLI	ENT: ELA Group	, Inc.			TOP OF GROUND: ±3	<u> 11'</u>			
OCATION: See Exploration Plan (Figure 3)				GROUNDWATER DATA	A: <u>Dry</u>			
FIELD SURVEYED		X TOPO ES	STIMATE		DEPTH: Not Encountere		Completion		
DEPTH (feet)	SOIL DESCRIPTION						REMARKS		
	0.0' - 1.5'	Dark brown o	organic soil				Tilled Soil		
	1.5' - 6.0'	Brown Sandy	/ SILT				Tilled Joli		
5									
							Stratum I		
			-End of Te	est Pit at 6 Fee	et-				
					') and 4 Feet (307')				
10	Infii								
15									
<u> </u>	_	DOU	BLE RING	INFILTROME	TER DATA				
		Test De	epth:	2'	4'				
			Time (min)	Drop (inches)	Drop (inches)				
		Pre-soak 1	30	0.6	no movement				
20		Pre-soak 2		0.4	no movement				
		Reading 1	30	0.5	no movement				
		Reading 2		0.5	no movement				
	_	Reading 3	+	0.5	no movement				
		Reading 4		0.5	no movement				
25	_	Reading 5 Reading 6	+						
		Reading 6			+				
		Reading 8			+				
		Average Rat			0.0				
30		per ho		1.0	(no movement)				

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com

EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin DATE EXCAVATED: September 26, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAIVIE. <u>Wesilown School Oak Laile - Inilitiation</u>				'	TEST FIT NO 1F-7				
PROJECT NO.: <u>1800331001</u> CLII	ENT: ELA Group	o, Inc.		Т	OP OF GROUND:	±313'			
LOCATION: See Exploration Plan (F	Figure 3)			C	GROUNDWATER DATA: We				
FIELD SURVEYED		X TOPO ES	STIMATE	С	EPTH: <u>6'</u>	Time:	Completion		
DEPTH (feet)		SOIL DESCRIPTION			CRIPTION				
	0.0' - 1.3'	Brown organ	ic soil				Tilled Soil		
5	1.3' - 8.0'	Brown Sandy Brown Silty S					Tilled 30ll		
5							H ₂ O @ 6'		
	-						Stratum I		
			-End of T	est Pit at 8 Fee	t -				
10									
	Infi	Itration Tests	Conducted	l at 2 Feet (311'	and 4 Feet (309')				
45									
15		DOL	BI E RING	INFILTROMET	FR DATA				
		Test De		2'	4'				
		100121	Time (min)	Drop (inches)	Drop (inches)				
		Pre-soak 1	30	0.1	2.7				
20		Pre-soak 2	30	no movement	1.7				
		Reading 1	30	no movement	1.5				
		Reading 2	30	no movement	1.5				
		Reading 3	30	no movement	1.4				
		Reading 4	30	no movement	1.4				
25		Reading 5							
		Reading 6							
		Reading 7							
		Reading 8							
30		Average Rat		0.0 (no movement	2.8				
^	ı	ı							

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 26, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown	School Oak Lane - Infiltration	TEST PIT NO.: TP-8				
PROJECT NO.: <u>1800331001</u> CI	LIENT: ELA Group, Inc.	TOP OF GROUND:	<u>±311'</u>			
LOCATION: See Exploration Plan	(Figure 3)	GROUNDWATER DA	ATA: <u>Wet</u>			
FIELD SURVEYED	X TOPO ESTIMATE	X TOPO ESTIMATE DEPTH: 1.5'				
DEPTH (feet)	SOIL DESCR	REMARKS				
	0.0' - 1.5' Brown organic soil		Tilled Soil			
	1.5' - 6.0' Brown Silty SAND		H ₂ O @ 1.5'			
5						
	-End of Test Pi	4 a4 C Fa a4	Stratum I			
10	No infiltration tests conducted due to	groundwater at 1.5 Feet (30	9.5')			
20						
25						
30						
^						

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 26, 2018

DRAWN/COMPILED BY: B. Wildasin

X TOPO ESTIMATE

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Infiltration

TEST PIT NO.: TP-9

PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc.

TOP OF GROUND: ±303'

LOCATION: See Exploration Plan (Figure 3)

15

20

25

30

GROUNDWATER DATA: <u>Dry</u>

FIELD SURVEYED

<u>=.,</u>

DEPTH: Not Encountered Time: Completion

DEPTH (feet)	SOIL DESCRIPTION	REMARKS
	0.0' - 0.9' Brown organic soil	Topsoil
	0.9' - 10.0' Brown Silty SAND	
5	Brown Silty SAND with Gravel	
10		Stratum I
	-Extent of Equiptment at 10 Feet-	
	-End of Test Pit at 10 Feet-	

Infiltration Tests Conducted at 8 Feet (295')

DOUBLE RING INFILTROMETER DATA									
Test De	epth:	8'		8'					
	Time (min)		Drop (inches)	Drop (inches)					
Pre-soak 1	30		4.0	4.0					
Pre-soak 2	30		2.3	2.5					
Reading 1	10		0.7	0.7					
Reading 2	10		0.7	0.7					
Reading 3	10		0.6	0.7					
Reading 4	10		0.6	0.6					
Reading 5									
Reading 6									
Reading 7									
Reading 8									
Average Rat	•		3.9	4.0					

EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 28, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

TEST PIT NO.: TP-10

PROJECT NO.: <u>1800331001</u> C			TOP OF GRO	OUND: ±305'			
LOCATION: See Exploration Plan	(Figure 3)			GROUNDWA	TER DATA:	<u>Dry</u>	
FIELD SURVEYED	X TO	X TOPO ESTIMATE					Completion
DEPTH (feet)	SOIL DESCRIPTION						REMARKS
	0.0' - 0.9' Brown		Topsoil				
		Silty SAND					•
5							Stratum I
	6.0' - 7.5' Brown	Cilty CAND v	with Croval (big	hly weathered re	20k)		Stratum I
	O.O - 7.3 BIOWIT	SIILY SAIND V	with Graver (riig	illy weathered it	JCK)		Stratum II
		-Bucke	t Refusal at 7.	5 Feet-			Stratum
10			f Test Pit at 7.				
<u> </u>							
	Infiltration Te	sts Conduct	ed at 4 Feet (30	01') and 5.5 Fee	t (299.5')		
15							
		OUBLE RIN	IG INFILTROM	IFTER DATA			
	Test Depth:		4'		5.5'		
	1000 2000	Time (min)	Drop (inches)	Time (min)	Drop (inche	es)	
20	Pre-soak 1	30	2.2	30	3.5		
	Pre-soak 2	30	1.5	30	2.7		
	Reading 1	30	1.4	10	0.9		
	Reading 2	30	1.4	10	0.6		
	Reading 3	30	1.4	10	0.8		
25	Reading 4	30	1.4	10	0.8		
	Reading 5			10	0.8		
	Reading 6			10	0.8		
	Reading 7						
	Reading 8						
30	Average Rate (inches	s per hour)	2.8		4.8		

PROJECT NAME: Westtown School Oak Lane - Infiltration

EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin

DATE EXCAVATED: September 28, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc.	TOP OF GROUND: +309'	_		
	TOP OF GROUND: ±309'			
LOCATION: See Exploration Plan (Figure 3)	GROUNDWATER DATA: <u>Dry</u>			
FIELD SURVEYED X TOPO ESTIMATE	DEPTH: Not Encountered Time: Completion			
DEPTH (feet) SOIL DESCRIPTIO	REMARKS			
0.0' - 0.8' Brown organic soil	Topsoil	-		
0.8' - 6.0' Brown Silty SAND	·			
5				
	Stratum I			
6.0' - 9.5' Brown Silty SAND with Gravel (hig	ly weathered rock)			
10	Stratum II	_		
-Bucket Refusal at 9.9 -End of Test Pit at 9.9				
-Lind of Fost Fit at o.k	1 001-			
Infiltration Tests Conducted at 6 Feet (30	3') and 7.5 Feet (301.5')			
15	3) and 7.01 eet (001.0)			
DOUBLE RING INFILTRO	IETER DATA			
Test Depth: 6'	7.5'			
Time (min) Drop (inch	s) Drop (inches)			
Pre-soak 1 30 4.0	3.5			
20 Pre-soak 2 30 4.0	3.0			
Reading 1 10 1.2	0.9			
Reading 2 10 1.0	0.8			
Reading 3 10 1.0	0.9			
Reading 4 10 1.0	0.9			
25 Reading 5				
Reading 6				
Reading 7				
Reading 8				
Average Rate (inches per hour) 6.0	5.4			
30 per nour)		_		

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 27, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown Se	chool Oak Lane - Infiltration	TEST PIT NO.: TP-12	
ROJECT NO.: 1800331001 CLIENT: ELA Group, Inc. TOP OF GROUND: ±298			
LOCATION: See Exploration Plan (Figure 3)	GROUNDWATER DATA:	<u>Wet</u>
FIELD SURVEYED	X TOPO ESTIMATE	DEPTH: <u>3.5'</u>	Time: Completion
DEPTH (feet)	SOIL DESCR	RIPTION	REMARKS
	0.0' - 2.3' Brown organic soil		
	2.3' - 6.0' Brown to gray Sandy CLAY		Topsoil H ₂ O @ 3.5'
5	(Soil Mottling 2.5' - 6.0')		1120 @ 3.3
<u> </u>	(con monanty in the		Stratum III
	-End of Test Pi	t at 6 Feet-	
10	No infiltration tests conducted due to So Groundwater at 3.5		
15			
20			
25			
20			
30	1		

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 28, 2018

DRAWN/COMPILED BY: B. Wildasin

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Infiltration PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc.		TEST PIT NO.: TP-13 TOP OF GROUND: <u>±286'</u>		
FIELD SURVEYED	X TOPO ESTIMATE	DEPTH: <u>1.5'</u> Tim	e: Completion	
DEPTH (feet)	SOIL DESCR	RIPTION	REMARKS	
	0.0' - 1.5' Brown organic soil		Topsoil	
	1.5' - 6.0' Brown to gray Sandy CLAY		H ₂ O @ 1.5'	
	(Soil Mottling 2.5' - 6.0')			
5				
	-End of Test Pi	it at 6 Foot-	Stratum III	
	Lina of restri	1 dt 0 1 ddt		
10	No infiltration tests conducted due to Grou	undwater at 1.5 Feet (284.5') and Soil		
	Mottling at 2.5 F	Feet (283.5')		
15				
15				
20				
25				
30				

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com EXCAVATION METHOD: Mini-excavator

ADVANTAGE REPRESENTATIVE: B. Wildasin
DATE EXCAVATED: September 28, 2018

DRAWN/COMPILED BY: B. Wildasin

November 9, 2018

Westtown School 975 Westtown Road West Chester, PA 19382

c/o

Mr. Charles R. Haley, Jr., P.E. ELA Group, Inc. 743 South Broad Street Lititz, PA 17543

RE: Supplemental Infiltration Feasibility Report

Westtown School Oak Lane – Supplemental Infiltration Westtown Township, Chester County, Pennsylvania

Advantage Project Number: 1800331001

Dear Mr. Haley:

In accordance with your request, Advantage Engineers (Advantage) has completed supplemental infiltration testing for the above referenced project site. This correspondence serves to transmit the results of our supplemental evaluation.

SCOPE OF WORK

The objective of our work was to determine the permeability of the invert soils, identify any limiting zones (i.e. bedrock, groundwater, or seasonal high water table) within the proposed stormwater management facility, and address PADEP requirements as they relate to stormwater management. Our scope of work included the completion of a subsurface exploration and preparation of this report. This report presents a summary of the scope of work completed, conditions encountered, and results of the supplemental infiltration testing engineering analysis of subsurface conditions.

SUBSURFACE FIELD EXPLORATION

In order to characterize subsurface conditions, 3 test pits were excavated on October 31, 2018. Supervision and monitoring of the field exploration was provided by a representative of Advantage who field located the test locations based on the "Updated Sketch Plan", prepared by Site Engineering Concepts, LLC. The approximate test locations, referenced as TP-14 through TP-16, are shown on the attached *Exploration Plan* (Figure 1). Data pertaining to the subsurface exploration was documented in the field and is presented in detail on the *Test Pit Logs*, which contain detailed descriptions of the subsurface materials encountered and infiltration test depths/elevations. A general description of the soil conditions encountered is provided in the "Subsurface Conditions" section of this report.

SUBSURFACE CONDITIONS

Soil

Surficial Materials

Each test pit was covered by approximately 16 inches of tilled soil; however, the thickness of surficial materials may differ in unexplored areas of the project site.

Mr. Charles R. Haley, Jr., P.E.

November 9, 2018

Advantage Project No.: 1800331001

Page 2 of 3

Stratum I - Brown Silty SAND/Sandy SILT

Stratum I was encountered within test pits TP-14 and TP-16 and extended to depths of approximately 5 feet below existing site grades. Upon review, the soils of Stratum I were found to be moderately well graded, non-plastic and comprised of Silty SAND and Sandy SILT.

Stratum II - Brown Silty SAND with Gravel (highly weathered rock)

Stratum II was only encountered within test pit TP-16 and extended to its termination depth of approximately 7 feet below existing site grades. Upon review, the soils of Stratum II were found to be well graded, non-plastic and predominately comprised of Silty SAND with Gravel. The soils of Stratum II represent the highly weathered bedrock surface.

Stratum III - Brown Sandy CLAY

Stratum III was only encountered within test pit TP-15 and extended to its termination depth of approximately 5 feet below existing site grades. Upon review, the soils of Stratum III were found to be poorly graded, plastic and comprised of Sandy CLAY.

Bedrock

The bedrock surface was not encountered within the test pits excavated. The bedrock surface would have been defined as the depth at which the bucket of the given excavation equipment could no longer excavate.

Groundwater/Soil Mottling

Neither groundwater nor soil mottling was encountered within the test pits excavated. These observations were made at the time of the field operation and groundwater table elevations will vary with daily, seasonal, and climatological variations.

INFILTRATION ANALYSIS

To evaluate the feasibility of stormwater infiltration within the proposed stormwater management facility, infiltration tests were completed utilizing the "double-ring" infiltrometer method in accordance with the <u>Pennsylvania Stormwater Best Management Practices Manual</u>, latest Edition. It should be noted that the shallow tests in both TP-14 and TP-15 were completed 6-inches below the proposed test elevations due to the thickness of the tilled soil. The test pit locations, approximate surface elevations, proposed test elevations, actual test elevations, presence of limiting zones, and the infiltration rates achieved at each location are presented in the table below.

	INFILTRATION TEST RESULTS							
Test Location	Surface Elevation (ft)	Proposed Test Elevations (ft)	Actual Test Elevations (FT)	Limiting Zone Elevation (ft)	Infiltration Rate* (in/hr)			
TP-14	290	289	288.5	Not Encountered @	0.2			
IP-14	290	287	287	285	1.0			
TP-15 290	200	289	288.5	Not Encountered @	0.0			
	290	287	287	285	0.0			
TP-16	292	289	289	Not Encountered @	2.7			
		287	287	285	6.0			

^{*}Infiltration rates represent the rates recorded in the field and no safety factor has been applied

Mr. Charles R. Haley, Jr., P.E. November 9, 2018

Advantage Project No.: 1800331001

Page 3 of 3

\$

SUMMARY OF DATA & CONCLUSIONS

Based on the results of our field exploration and engineering analysis of the data obtained, we offer the following comments with regard to the infiltration of stormwater at the project site.

- The infiltration tests were conducted within the naturally-occurring soils of Stratum II.
- No limiting zones (i.e. bedrock, groundwater and/or soil mottling) were encountered within the test pits excavated.
- The unfactored infiltration rates were found to range from no movement (0.0 inches per hour) to 6.0 inches per hour. The PADEP recommended rate for infiltration of stormwater is 0.1 to 10 inches per hour.

LIMITATIONS

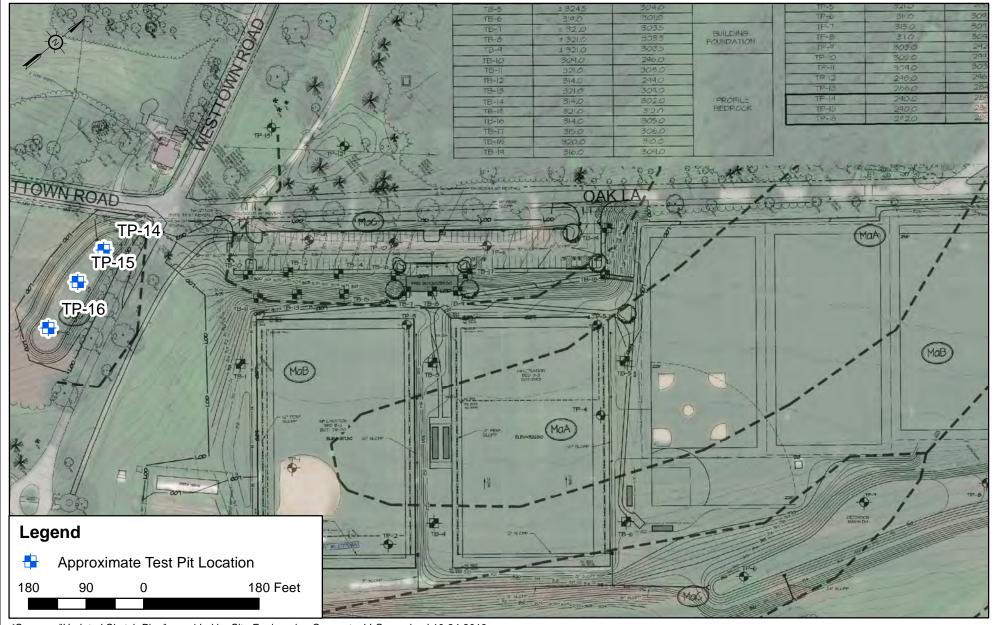
The conclusions contained in this report are based upon the subsurface data collected and on details stated in this report. Should conditions arise which differ from those specifically stated herein, our office should be notified immediately, so that our recommendations can be reviewed and revised, if necessary.

The conclusions presented herein should be applied only to the infiltration tests as depicted on the *Exploration Plan* for the proposed Westtown School improvements in Westtown Township, Chester County, Pennsylvania. Advantage takes no responsibility in utilizing this information for any other purposes.

The scope of work was limited to the exploration of the subsurface subsoils. Oil, hazardous waste, radioactivity, irritants, pollutants, radon or other dangerous substances and conditions were not the subject of this study. Their presence and/or absence are not implied, inferred or suggested by this report or results of this study.

We trust that this is the information you require. Should you have any questions or if we may be of further assistance, please don't hesitate to contact our office.

Respectfully, advantage engineers


lean Wildown

Bailey J. Wildasin Geotechnical Specialist I

David J. Buckwalter Senior Project Manager

Attachments:

Exploration Plan – Figure 1 Test Pit Logs

*Source - "Updated Sketch Plan" provided by Site Engineering Concepts, LLC, received 10-24-2018

SCALE:	DRAWIN	G NUMBER:		
AS SHOWN	FIGURE 1			
DRAWN BY:	СН	CHECKED BY:		
B. WILDASIN		D. BUCKWALTER		
APPROVED BY:		DATE:		
M. GIUNTA		10-26-2018		

EXPLORATION PLAN

PREPARED FOR

WESTTOWN SCHOOL OAK LANE - SUPPLEMENTAL INFILTRATION

WESTTOWN TOWNSHIP CHESTER COUNTY PENNSYLVANIA

MECHANICSBURG, PA 17055 PH (717) 458-0800 FAX (717)458-0801**243**

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Supplemental Infiltration TEST PIT NO.: TP-14 PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc. TOP OF GROUND: ±290' LOCATION: See Exploration Plan (Figure 3) GROUNDWATER DATA: Dry FIELD SURVEYED X **TOPO ESTIMATE** DEPTH: Not Encountered Time: Completion SOIL DESCRIPTION **DEPTH** (feet) REMARKS 0.0' - 1.3' Brown organic soil **Tilled Soil** 1.3' - 5.0' **Brown Sandy SILT** Brown Silty SAND 5 Stratum I -End of Test Pit at 5 Feet-10 Infiltration Tests Conducted at 1.5 Feet (288.5') and 3 Feet (287') 15 DOUBLE RING INFILTROMETER DATA Test Depth: 1.5' Time (min) Drop (inches) Drop (inches) 0.3 30 8.0 Pre-soak 1 30 0.2 0.7 20 Pre-soak 2 0.1 0.5 Reading 1 30 30 0.1 Reading 2 0.5 0.1 0.5 Reading 3 30 Reading 4 30 0.1 0.5 Reading 5 25 Reading 6 Reading 7 Reading 8 Average Rate (inches 0.2 1.0 per hour) 30

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com

EXCAVATION METHOD: Backhoe

ADVANTAGE REPRESENTATIVE: B. Wildasin

DATE EXCAVATED: October 31, 2018 DRAWN/COMPILED BY: B. Wildasin

TEST PIT LOG SHEET 1 OF 1 PROJECT NAME: Westtown School Oak Lane - Supplemental Infiltration TEST PIT NO.: TP-15 PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc. TOP OF GROUND: ±290' LOCATION: See Exploration Plan (Figure 3) GROUNDWATER DATA: Dry FIELD SURVEYED X **TOPO ESTIMATE** DEPTH: Not Encountered Time: Completion <S

DEPTH (feet)	SOIL DESCRIPTION					REMARKS		
	0.0' - 1.3'	Brown organ	ic soil					
	- 0.0							Tilled Soil
	1.3' - 5.0' Brown Sandy CLAY						Timou Con	
5								Stratum III
-			-End of T	est	Pit at 5 Feet-			
10								
	Infiltration Tests Conducted at 1.5 Feet (288.5') and 3 Feet (287')							
	Infiltra	ation Tests Co	onducted a	at 1.	5 Feet (288.5') and 3 Feet (287	')	
15								
	0.0' - 1.3' Brown organic soil 1.3' - 5.0' Brown Sandy CLAY							
		Test Depth: 1.5' 3'						
			Time (min)		Drop (inches)	Drop (inches)		
		Pre-soak 1	30		0.2	0.0		
20		Pre-soak 2	30		0.0	0.0		
	7	Reading 1	30		0.0	0.0		
		Reading 2	30		0.0	0.0		
		Reading 3	30		0.0	0.0		
		Reading 4	30		0.0	0.0		
25		Reading 5						
		Reading 6						
		Reading 7						
		Reading 8						
	Test Depth: 1.5' 3' Time (min) Drop (inches) Drop (inches)							
30		per ho	our)	(n	o movement)	(no movement)		

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com

EXCAVATION METHOD: Backhoe

ADVANTAGE REPRESENTATIVE: B. Wildasin

DATE EXCAVATED: October 31, 2018 DRAWN/COMPILED BY: B. Wildasin

TOPO ESTIMATE

SHEET 1 OF 1

PROJECT NAME: Westtown School Oak Lane - Supplemental Infiltration

PROJECT NO.: 1800331001 CLIENT: ELA Group, Inc.

LOCATION: See Exploration Plan (Figure 3)

FIELD SURVEYED

e Exploration Plan (Figure 3)

X

TEST PIT NO.: TP-16

TOP OF GROUND: <u>+292'</u>

GROUNDWATER DATA: Dry

DEPTH: Not Encountered Time: Completion

DEPTH (feet)		SOIL DESCRIPTION				
	0.0' - 1.3' Browr	n organic soil				
		-				Tilled Soil
	1.3' - 5.0' Brown	n Silty SAND				
5						Stratum I
	5.0' - 7.0' Browr	Silty SAND	with Gravel (hig	hly weathered r	ock)	
						Stratum II
		-End	of Test Pit at 7	Feet-		
10						
	Infiltration	Infiltration Tests Conducted at 3 Feet (289') and 5 Feet (287')				
15						
	Test Depth:		3'			
		Time (min)	Drop (inches)	Time (min)	Drop (inches)	
20	Pre-soak 1	30	1.9	30	5.0	
	Pre-soak 2	30	1.4	30	5.0	
	Reading 1	30	1.4	10	1.0	
	Reading 2	30	1.3	10	1.0	
	Reading 3	30	1.3	10	1.0	
25	Reading 4	30	1.4	10	1.0	
	Reading 5			10	1.0	
	Reading 6					
	Reading 7					
	Reading 8					
30	Average Rate (inch	es per hour)	2.7		6.0	

435 Independence Avenue, Suite C, Mechanicsburg, PA 17055 Office: (717) 458-0800 Fax: (717) 458-0801 www.advantageengineers.com EXCAVATION METHOD: Backhoe

ADVANTAGE REPRESENTATIVE: B. Wildasin

DATE EXCAVATED: October 31, 2018
DRAWN/COMPILED BY: B. Wildasin